

Evolutionary Multi-Objective

Optimization Platform

User Manual 2.0

BIMK Group

December 15, 2018

Thank you very much for using PlatEMO. The copyright of PlatEMO belongs to the BIMK Group. This

tool is mainly for research and educational purposes. The codes were implemented based on our

understanding of the algorithms published in the papers. You should not rely upon the material or

information on the website as a basis for making any business, legal or any other decisions. We

assume no responsibilities for any consequences of your using any algorithms in the tool. All

publications using the platform should acknowledge the use of “PlatEMO” and reference the

following literature:

Ye Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, “PlatEMO: A MATLAB

platform for evolutionary multi‐objective optimization [educational

forum],” IEEE Computational Intelligence Magazine, 2017, 12(4): 73‐87.

If you have any comment or suggestion to PlatEMO or the MOEAs in PlatEMO, please send it to

field910921@gmail.com (Ye Tian). If you want to add your MOEA or MOP to PlatEMO, please send

the MATLAB code and the relevant literature to field910921@gmail.com as well. You can obtain the

newest version of PlatEMO from https://github.com/BIMK/PlatEMO.

Contents

I. Release Notes

A. Release Highlights .. 1

B. New Features .. 2

C. Compatibility Considerations ... 3

II. Introduction to PlatEMO

A. Evolutionary Multi-Objective Optimization ... 4

B. PlatEMO ... 5

C. File Structure of PlatEMO .. 5

III. How to Use PlatEMO

A. Use PlatEMO without GUI ... 7

B. Use PlatEMO with GUI .. 8

IV. How to Extend PlatEMO

A. Architecture of PlatEMO .. 12

B. Add Algorithms ... 13

C. Add Problems.. 15

D. Add Performance Metrics ... 17

Section I. Release Notes

1

I. Release Notes

We strongly recommend the users who have used PlatEMO v1.0-v1.6 to read this

section before using PlatEMO 2.0.

A. Release Highlights

 Lighter framework. The architecture of PlatEMO is simplified, which leads to

lower learning cost and higher efficiency. The result file size is also reduced.

 Higher efficiency. The runtime of Pareto dominance based algorithms is reduced

by using a more efficient non-dominated sorting algorithm. The runtime of

decomposition based algorithms is reduced due to the new architecture of PlatEMO.

The runtime of hypervolume calculation is reduced by new logic and GPU

acceleration. In experimental module, the algorithms can be executed in parallel.

old (524 lines) new (381 lines)

old new

old

new

old

new

old

new

PlatEMO User Manual

2

 More conveniences. The populations obtained during the evolutionary process can

be saved in result files. The references of each algorithm, problem, operator, and

metric are given in the comments of the function. The codes of GUI are now open

source.

B. New Features

 The operator cannot be specified by users anymore. Algorithms should directly

invoke an operator function (e.g., GA(), DE(), and PSO()) to generate offsprings

instead of GLOBAL.Variation(). Problems should specify the encoding

GLOBAL.encoding (e.g.,'real', 'binary', and 'permutation')

instead of the operator function GLOBAL.operator.

 All the problem functions are converted into classes. Each problem should be

written as a class and inherit the class PROBLEM, and each operation (e.g.,

initialization, calculation of objective values, and calculation of constraint

violations) is an overloaded method.

 The populations obtained during the evolutionary process can be saved. Each

result file contains two variables result and metric, where result is a cell

with the first column storing the number of evaluations at each time point and the

second column storing the population obtained at each time point. Use

main(…,'-save',N,…) to set the number of saved populations to N. The

reference point set PF is no longer stored in the result file.

 The algorithms can be executed in parallel in experimental module. The

number of workers depends on the number of CPUs of the machine.

 The algorithms can be executed on a problem with different numbers of

objectives or decision variables in experimental module. It allows either the

old new

old new

Section I. Release Notes

3

number of objectives or the number of decision variables or both of them to be

vectors. The filename of a result file is like NSGAII_DTLZ2_M2_D11_1.mat.

 The convergence profile of any metric values can be shown in experimental

module. The convergence profile can be shown by right-clicking on a cell in the

table in experimental module. The number of metric values in the figure depends

on the number of saved populations, which can also be set in experimental module.

 The code of hypervolume is enhanced and accelerated. The function HV() in

the new version is the same to NHV() in the old version, and the function NHV()

is removed. The efficiency of hypervolume calculation is highly improved by new

logic and GPU acceleration.

 The code of non-dominated sorting is accelerated. When the number of

individuals and the number of objectives are large, the T-ENS is adopted to perform

non-dominated sorting instead of ENS-SS.

 The way to set the parameters in algorithms and problems is changed. Use

main(…,'-algorithm',{@MOEAD,2},…) to set the parameter in MOEA/D

instead of main(…,'-MOEAD_parameter',{2},…).

 Add a public function for performing roulette-wheel selection. The function

RouletteWheelSelection() can return a set of individuals generated by

roulette-wheel selection.

 Provide the references of each function. The references of each algorithm,

problem, operator, and metric are given in the comments of the function.

 The codes of GUI are now open source, which can be reused by users.

C. Compatibility Considerations

 The function GLOBAL.Variation() or GLOBAL.VariationDec()

cannot be invoked anymore. Each algorithm should invoke an operator function

like GA(), DE(), and PSO(). Note that the interfaces of different operator

functions may be different.

 Each problem should be written as a subclass of PROBLEM, and each operation

(e.g., repairing infeasible variables, calculating objective values, and calculating

constraint violations) should be written as an overloaded method, but not a branch

of switch-case-end.

 The filename and variables in the result file are modified. The filename and

variables are different to those in the old version, hence the data generated by the

old version cannot be loaded in the experimental module of the new version.

PlatEMO User Manual

4

II. Introduction to PlatEMO

A. Evolutionary Multi-Objective Optimization

Multi-objective optimization problems (MOPs), which involve two or more

conflicting objectives to be optimized simultaneously, can be formulated as:

൝
min

௑
 𝐹ሺ𝑋ሻ ൌ ൫𝑓ଵሺ𝑋ሻ, 𝑓ଶሺ𝑋ሻ, … , 𝑓ெሺ𝑋ሻ൯

்

𝑠. 𝑡. 𝑔௜ሺ𝑋ሻ ൑ 0, 𝑖 ൌ 1, … , 𝑝

Where 𝑋 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥஽ሻ் ∈ Ω ⊂ ℝ஽ is the decision vector (i.e. solution), and Ω is

the known decision space. 𝐹ሺ𝑋ሻ ∈ Λ ⊂ ℝெ is the objective vector, and Λ is the

unknown objective space. 𝑔௜ሺ𝑋ሻ are 𝑝 inequality constraints. Each element

in 𝑋 denotes a decision variable, and 𝐷 is the number of decision variables. Each

element in 𝐹ሺ𝑋ሻ denotes an objective function, and 𝑀 is the number of objectives.

Solution 𝑋 is said to Pareto dominate solution 𝑌 (denoted by 𝑋 ≺ 𝑌) if and only if

൜
𝑓௜ሺ𝑋ሻ ൑ 𝑓௜ሺ𝑌ሻ, ∀𝑖 ൌ 1,2, … , 𝑀
𝑓௝ሺ𝑋ሻ ൏ 𝑓௝ሺ𝑌ሻ, ∃𝑗 ൌ 1,2, … , 𝑀

And solution 𝑋 is said to be Pareto optimal if and only if

∄𝑌 ∈ Ω: 𝑌 ≺ 𝑋

All the Pareto optimal solutions in Ω constitute the Pareto set, and the objective values

of all the solutions in Pareto set constitute the Pareto front.

Many metaheuristics have been employed to solve MOPs in the last two decades,

including genetic algorithm, differential evolution, particle swarm optimization,

memetic algorithm, estimation of distribution algorithm, and so on, which are

collectively known as multi-objective evolutionary algorithms (MOEAs). An MOEA

usually maintains a population consisting of a set of individuals, where an individual

represents a solution together with its objective values and constraint violations. The

population is updated in each generation of the evolution, where new individuals are

generated by operators (e.g. crossover and mutation), and the population together with

new individuals is truncated by environmental selection. The goal of MOEAs is to make

the population approximate the Pareto set with good convergence and diversity.

Section II. Introduction to PlatEMO

5

B. PlatEMO

PlatEMO is an open source and free MATLAB-based platform for evolutionary

multi-objective optimization, which is available at http://bimk.ahu.edu.cn/index.php?

s=/Index/Software/index.html and https://github.com/BIMK/PlatEMO. PlatEMO can

be used on any operating system able to run MATLAB®. PlatEMO provides two

running modes to users, i.e., command mode and GUI mode. In command mode, no

GUI is displayed, and users should set the parameters and execute the algorithms by

commands. In GUI mode, a GUI is displayed, and users can set the parameters and

execute the algorithms on the GUI. In order to successfully use the GUI mode, the

version of MATLAB® software should not be lower than R2014b.

The main features of PlatEMO are:

· It includes more than 90 existing MOEAs, most of which are representative

algorithms published in top journals after 2010.

· It includes more than 120 benchmark MOPs, which provide a variety of

difficulties for testing the MOEAs.

· It includes many performance metrics for quantitatively measuring the

performance of MOEAs.

· Users need not establish any project or write any code to run PlatEMO, but just

invoke the interface function main().

· It provides a powerful experimental module in the GUI, which can help users

perform experiments on multiple MOEAs and MOPs, and obtain the statistical

results in the format of Excel or LaTeX directly.

C. File Structure of PlatEMO

Fig. 1 The file structure of PlatEMO

As shown in Fig. 1, there are six folders and one .m file in the root directory of

PlatEMO, the functions of which are listed in the following.

· main.m. The only interface of PlatEMO, invoke this function to run the

platform.

PlatEMO User Manual

6

· Algorithms. For storing the source codes of all the MOEAs.

· GUI. For storing the codes to establish the GUI of PlatEMO.

· Metrics. For storing the source codes of all the performance metrics.

· Operators. For storing the source codes of all the operators.

· Problems. For storing the source codes of all the MOPs.

· Public. For storing public classes and utility functions.

All the files in these folders are .m files, each of which represents one MATLAB

function or MATLAB class. All the files are open source and with detailed comments.

Section III. How to Use PlatEMO

7

III. How to Use PlatEMO

A. Use PlatEMO without GUI

Users can run the command mode of PlatEMO by invoking the interface function

main() with input parameters. While if main() is invoked without any input

parameter, the GUI mode will be run. All the acceptable parameters for main() are

listed in Table 1. Note that users need not assign all the parameters since each of them

has a default value.

Table 1 The acceptable parameters for main()

Parameter name Data type Default value Description

-algorithm function handle @NSGAII MOEA function

-problem function handle @DTLZ2 MOP function

-N positive integer 100 Population size

-M positive integer 3 Number of objectives

-D positive integer 12 Number of variables

-evaluation positive integer 10000 Number of evaluations

-run positive integer 1 Run number

-save integer 0 Number of saved populations

-outputFcn function handle @GLOBAL.Output Function invoked after each
generation

· -algorithm. The function handle of the MOEA to be executed.

· -problem. The function handle of the MOP to be solved.

· -N. The population size of the MOEA. Note that it is fixed to some particular

values in some MOEAs (e.g. MOEAD.m), hence the actual population size of

these MOEAs may not exactly equal to this parameter.

· -M. The number of objectives of the MOP. Note that the number of objectives

is constant in unscalable MOPs (e.g. ZDT1.m), hence this parameter is invalid

for these MOPs.

· -D. The number of decision variables of the MOP. Note that the number of

decision variables is constant or fixed to some particular integers in some MOPs

(e.g. ZDT5.m), hence the actual number of decision variables may not exactly

equal to this parameter.

PlatEMO User Manual

8

· -evaluation. The maximum number of function evaluations.

· -run. The run number. If users want to save multiple results for the same

parameters of algorithm, problem, M and D, modify this parameter in each

run so that the filenames of the results are different.

· -save. The number of saved populations. If this parameter is set to 0 (default),

a figure showing the result will be displayed after termination; otherwise, the

populations obtained during the evolutionary process will be saved in a file

named as Data\algorithm\algorithm_problem_M_D_run.mat.

For example, if save is 5 and evaluation is 20000, the populations

obtained when the number of evaluation is 4000, 8000, 12000, 16000 and 20000

will be saved.

· -outputFcn. The function invoked after each generation, which need not be

modified in general.

For example, use the following command to run RVEA on WFG1 with a population

size of 200 and 10 objectives, and the final result will be displayed:

1. main('-algorithm',@RVEA,'-problem',@WFG1,'-N',200,'-M',10);

Use the following command to run KnEA on WFG2, and set the parameters in KnEA

and WFG2:

1. main('-algorithm',{@KnEA,0.4},'-problem',{@WFG2,6});

The specific parameters for each MOEA and MOP can be found in the comments in the

head of the corresponding function. Use the following command to run AR-MOEA on

DTLZ5 for 10 times, and the final population will be saved:

1. for r = 1 : 10

2. main('-algorithm',@ARMOEA,'-problem',@DTLZ5,'-save',1,

'-run',r);

3. end

B. Use PlatEMO with GUI

Users can run the GUI mode of PlatEMO by the following command:

1. main();

Section III. How to Use PlatEMO

9

Then two modules can be seen on the GUI, i.e. the test module and the experimental

module. The test module is used to execute one MOEA on an MOP each time, and the

result will be displayed in a figure. The experimental module is used to execute multiple

MOEAs on several MOPs at the same time, and the statistical results will be listed in a

table.

Fig. 2 The interface of test module

The interface of test module of PlatEMO is shown in Fig. 2. The functions of the

controls in each region are:

· Region A. Select the MOEA and MOP to be executed.

· Region B. Set the parameters of the selected MOEA and MOP. The value of

each parameter should be a scalar. Note that here the common parameters N, M,

D and evaluation are regarded as the parameters of the MOP. A parameter

will equal to its default value if it is set to empty.

· Region C. Execute the MOEA according to the current configuration.

· Region D. Show the introduction of the parameter in Region B which the cursor

is moving over.

· Region E. Show the current population during the optimization.

· Region F. Zoom in, zoom out, pan or rotate the axis in Region E.

· Region G. Open the axis in Region E in a new standard MATLAB figure, thus

more operations can be acted on the axis, e.g. saving the axis.

· Region H. Select the data to be displayed in the axis in Region E, including the

A
B

C

D

E

I

F G H J

K

L

PlatEMO User Manual

10

Pareto front of the population, the Pareto set of the population, the true Pareto

front of the MOP, and the convergence profile of any performance metric.

· Region I. Control the optimization procedure, i.e., start, pause, stop, backward

and forward.

· Region J. Show one of the historical results.

· Region K. Show a performance metric value of the final population of the result.

· Region L. Show the detailed information of the execution.

After opening the test module, users should first select the MOEA and MOP to be

executed in Region A and set their parameters in Region B, then press the button in

Region C to execute the algorithm. The real-time population will be displayed in the

axis in Region E, and users can use the buttons in Region I to control the optimization

procedure. After the algorithm is terminated, all the historical results can be redisplayed

by selecting the popup menu in Region J.

Fig. 3 The interface of experimental module

The interface of experimental module of PlatEMO is shown in Fig. 3. The functions

of the controls in each region are:

· Region A. Select multiple MOEAs and MOPs to be executed.

· Region B. Set the parameters of the selected MOEAs and MOPs. Note that the

value of each parameter in the MOPs can be a vector, thus the MOEAs can be

executed on the same MOP with different settings.

A

B

F

G

K

HI J

C

D

E

L

Section III. How to Use PlatEMO

11

· Region C. Set the number of populations saved in each file. For example, if the

number of populations is 5 and the number of evaluations is 20000, the

populations obtained when the number of evaluation is 4000, 8000, 12000,

16000 and 20000 will be saved.

· Region D. Set the number of runs of each MOEA on each MOP.

· Region E. Set the file path for saving the experimental settings. Users can also

open an existing configuration file to load experimental settings. All the results

will be saved in the same folder to the file path.

· Region F. Execute the experiment in sequence or in parallel.

· Region G. Show the statistical results of the experiment.

· Region H. Specify the type of data to be shown in the table.

· Region I. Save the table in the format of Excel or LaTeX.

· Region J. Select the data to be shown in the table, including any performance

metric values of the final populations.

· Region K. Control the optimization procedure, i.e., start, pause and stop.

· Region L. Right-click on a cell to show the Pareto front of the population, the

Pareto set of the population, or the convergence profile of metric values.

After opening the experimental module, users should first select the MOEAs and

MOPs to be executed in Region A and set their parameters in Region B, the number of

saved populations in Region C, and the number of runs in Region D. Then, press one of

the two buttons in Region F to start the experiment. The statistical results will be

displayed in the table in Region G, and users can use the buttons in Region K to control

the optimization procedure. After the experiment is terminated, the data shown in the

table can be saved in the format of Excel or LaTeX by pressing the button in Region I.

Alternatively, users can load existing configurations by pressing the button in Region

E, and then start the experiment. If any result file has already existed in the folder given

in Region E, the result file will be loaded instead of executing the algorithm.

PlatEMO User Manual

12

IV. How to Extend PlatEMO

A. Architecture of PlatEMO

GLOBAL

‐algorithm
‐problem
‐N ‐M ‐D ‐evaluation
... ...

+Initialization()
+NotTermination()
... ...

Algorithm

PROBLEM

… …

NSGA‐II

… …

DTLZ1

INDIVIDUAL

‐dec
‐obj
‐con
‐add

+Individual()
... ...

1 1

1 1

Fig. 4 Architecture of PlatEMO

The architecture of PlatEMO is shown in Fig. 4, where there are three classes in the

implementation of PlatEMO, i.e. GLOBAL, INDIVIDUAL and PROBLEM. Note that

each algorithm is a function, and ‘Algorithm’ is not a class but just a unified interface

for all the algorithm functions.

GLOBAL represents the configuration of the current run, the source code and the

detailed comments of which can be found in Public\GLOBAL.m. During each

execution, one GLOBAL object is maintained to store all the parameter settings and the

result, including the function handles of the executed MOEA and MOP, the population

size, the number of objectives, the number of decision variables, the maximum number

of function evaluations, the number of evaluated individuals, and so on. GLOBAL also

provides some methods which can be invoked by the MOEAs, for instance,

GLOBAL.Initialization() can generate a random initial population, and

GLOBAL.NotTermination() can check whether the algorithm should be

terminated or not.

INDIVIDUAL represents one individual, the source code and the detailed comments

of which can be found in Public\INDIVIDUAL.m. An INDIVIDUAL object stores

Section IV. How to Extend PlatEMO

13

the decision variables dec, the objective values obj, the constraint violations con,

and the additional property values add of one individual. The values of dec and add

are assigned when invoking the constructor, then the values of obj and con are

calculated automatically. Each of the above properties is a row vector, and P.decs,

P.objs, P.cons or P.adds denotes a matrix of the decision variables, objective

values, constraint violations or additional property values of an array of INDIVIDUAL

objects P, respectively, where each row of the matrix denotes one individual and each

column denotes one dimension of the values. The number of evaluated individuals

GLOBAL.evaluated will be increased once new INDIVIDUAL objects are

instantiated, and the algorithm will be forced to be terminated when the number of

instantiated INDIVIDUAL objects exceeds the maximum number of function

evaluations GLOBAL.evaluation,

PROBLEM is the superclass for all the problem classes. It contains several methods,

i.e., PROBLEM.Init() for generating an initial population, PROBLEM.CalDec()

for repairing infeasible decision variables, PROBLEM.CalObj() for calculating

objective values, PROBLEM.CalCon() for calculating constraint violations, and

PROBLEM.PF() for sampling reference points on the true Pareto front. Each problem

should be written as a subclass of PROBLEM and overload the above methods.

B. Add Algorithms

An MOEA function is represented by an .m file in PlatEMO, which should be put in

the folder Algorithms. For example, the source code of NSGAII.m is

1. function NSGAII(Global)

2. Population = Global.Initialization();

3. [~,FrontNo,CrowdDis] =

EnvironmentalSelection(Population,Global.N);

4. while Global.NotTermination(Population)

5. MatingPool = TournamentSelection(2,Global.N,FrontNo,

-CrowdDis);

6. Offspring = GA(Population(MatingPool));

7. [Population,FrontNo,CrowdDis] =

EnvironmentalSelection([Population,Offspring],

Global.N);

8. end

9. end

To begin with, an MOEA function has one input parameter denoting the GLOBAL object

PlatEMO User Manual

14

and zero output parameter. Then an initial population Population is generated (Line

2), and the non-dominated front number and the crowding distance of each individual

are calculated (Line 3). In each generation, Global.NotTermination() is

invoked to check whether the number of evaluated fitness exceeds the maximum

number of function evaluation, and Population is passed to the function to be the

final output (Line 4). Afterwards, the mating pool selection, generating offsprings, and

environmental selection are performed in sequence (Lines 5-7).

As a result, one MOEA should perform three operations at least: obtaining an initial

population via Global.Initialization(), checking the optimization state and

passing Population via Global.NotTermination(), and generating

offsprings via an operator function such as GA(). Besides, the function

EnvironmentalSelection() is specific to NSGA-II, and NDSort() and

TournamentSelection() are utility functions stored in the folder Public.

For decomposition based MOEAs, a set of reference points should be generated

beforehand. For example in MOEAD.m, the following command is used to generate the

reference points:

1. [W,Global.N] = UniformPoint(Global.N,Global.M);

Where UniformPoint() is a utility function in the folder Public for generating

about Global.N uniformly distributed points with Global.M objectives on the unit

hyperplane. W is the set of reference points, and the population size Global.N is reset

to the same to the number of reference points in W.

The comments in the head of the MOEA functions (as well as MOP functions) should

be written in a specified form such that it can be identified by the GUI. For example in

GFMMOEA.m, the comments in the head of the function are

1. function GFMMOEA(Global)

2. % <algorithm> <G>

3. % Generic front modeling based MOEA

4. % theta --- 0.2 --- Penalty parameter

5. % fPFE --- 0.1 --- Frequency of generic front modeling

Line 2 gives two labels of the function, the first label <algorithm> indicates that this

is an MOEA function (it is <problem> and <metric> for MOP classes and

performance metric functions, respectively), and the second label <G> can be an

arbitrary string. Line 3 gives the full name of the MOEA. Lines 4-5 define the

parameters for GFM-MOEA, where the name of the parameter is located on the first

Section IV. How to Extend PlatEMO

15

column of each line, the default value is located on the second column, and the

introduction is located on the third column; the columns are divided by --- .

GFM-MOEA then receives the parameter settings from users by the following

command:

1. [theta,fPFE] = Global.ParameterSet(0.2,0.1);

The detailed introduction to Global.ParameterSet() can be found in

Public\GLOBAL.m.

For surrogate-assisted MOEAs, the following command can be used to generate new

decision variables according to the decision variables of parents, while no

INDIVIDUAL object will be instantiated, and the number of evaluated individuals

GLOBAL.evaluated will not be increased.

1. OffDec = GA(Population(MatingPool).decs);

For the function GA(), if the input is an array of INDIVIDUAL objects, the output is

also an array of INDIVIDUAL objects. While if the input is a matrix of decision

variables, the output is also a matrix of decision variables.

C. Add Problems

An MOP function is represented by an .m file in PlatEMO, which should be put in

the folder Problems. For example, the source code of DTLZ2.m is

1. classdef DTLZ2 < PROBLEM
2. methods

3. function obj = DTLZ2()

4. if isempty(obj.Global.M)

5. obj.Global.M = 3;

6. end

7. if isempty(obj.Global.D)

8. obj.Global.D = obj.Global.M + 9;

9. end

10. obj.Global.lower = zeros(1,obj.Global.D);

11. obj.Global.upper = ones(1,obj.Global.D);

12. obj.Global.encoding = 'real';

13. end

14. function PopObj = CalObj(obj,PopDec)

PlatEMO User Manual

16

15. M = obj.Global.M;

16. g = sum((PopDec(:,M:end)-0.5).^2,2);

17. PopObj = repmat(1+g,1,M).*fliplr(cumprod([ones

(size(g,1),1),cos(PopDec(:,1:M-1)*pi/2)],2)).*

[ones(size(g,1),1),sin(PopDec(:,M-1:-1:1)*pi/2)];

18. end

19. function P = PF(obj,N)

20. P = UniformPoint(N,obj.Global.M);

21. P = P./repmat(sqrt(sum(P.^2,2)),1,obj.Global.M);

22. end

23. end

24. end

To begin with, DTLZ2 is a subclass of PROBLEM, and each operation is an overloaded

method. In the constructor DTLZ2.DTLZ2(), the values of number of objective

GLOBAL.M, the number of decision variables GLOBAL.D, the lower bounds of

decision variables GLOBAL.lower, the upper bounds of decision variables

GLOBAL.upper, and the encoding GLOBAL.encoding are set. In

DTLZ2.CalObj(), the objective values of a population are calculated. In

DTLZ2.PF(), a set of reference points on the true Pareto front is sampled.

It is worth to note that a decision variable may be infeasible in three cases. Firstly,

for continuous MOPs, it may be greater than the upper bound GLOBAL.upper or less

than the lower bound GLOBAL.lower, in this case it will be set to the boundary value

by INDIVIDUAL class, while MOP classes need not handle this case. Secondly, it may

not fulfill the constraints (a positive constraint violation indicates that this constraint is

not fulfilled), in this case the constraint violations should be calculated by overloading

the method PROBLEM.CalCon(), for example in C1_DTLZ1.m,

1. function PopCon = CalCon(obj,PopDec)

2. PopObj = obj.CalObj(PopDec);

3. PopCon = PopObj(:,end)/0.6+sum(PopObj(:,1:end-1)/0.5,2)

-1;

4. end

Thirdly, for combinational MOPs, it may be an illegal character, in this case it should

be repaired by overloading the method PROBLEM.CalDec(), for example in

MOKP.m,

Section IV. How to Extend PlatEMO

17

1. function PopDec = CalDec(obj,PopDec)

2. C = sum(obj.W,2)/2;

3. [~,rank] = sort(max(obj.P./obj.W));

4. for i = 1 : size(PopDec,1)

5. while any(obj.W*PopDec(i,:)’>C)

6. k = find(PopDec(i,rank),1);

7. PopDec(i,rank(k)) = 0;

8. end

9. end

10. end

Similar to MOEA functions, MOP classes can receive parameter settings from users,

for example in WFG1.m, the following command is used to receive parameter settings:

1. obj.K = obj.Global.ParameterSet(obj.Global.M-1);

D. Add Performance Metrics

A performance metric function is represented by an .m file in PlatEMO, which

should be put in the folder Metrics. For example, the source code of IGD.m is

1. function score = IGD(PopObj,PF)

2. % <metric> <min>

3. score = mean(min(pdist2(PF,PopObj),[],2);

4. end

To begin with, a performance metric function has two input parameters and one output

parameter, where PopObj denotes the matrix of objective values of a population, PF

denotes a set of reference points sampled on the true Pareto front, and score denotes

the performance metric value. Note that the comment in Line 2 is necessary for being

identified by the GUI, where the first label <metric> indicates that this is a

performance metric function, and the second label <min> indicates that a smaller metric

value means a better performance. By contrast, if the second label is <max>, it indicates

that a larger metric value means a better performance.

