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Abstract. This paper compares heuristic criteria used for extracting a pre-specified number of fuzzy 

classification rules from numerical data. We examine the performance of each heuristic criterion through 

computational experiments on well-known test problems. Experimental results show that better results are 

obtained from composite criteria of confidence and support measures than their individual use. It is also 

shown that genetic algorithm-based rule selection can improve the classification ability of extracted fuzzy 

rules by searching for good rule combinations. This observation suggests the importance of taking into 

account the combinatorial effect of fuzzy rules (i.e., the interaction among them). 
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1. Introduction 

In the design of fuzzy rule-based systems, there exist two conflicting objectives: error minimization and 

comprehensibility maximization. The error minimization has been used in many applications of fuzzy 

rule-based systems in the literature (e.g., fuzzy control, fuzzy modeling, and fuzzy classification). While 

the comprehensibility was not usually taken into account in those applications, recently the tradeoff 

between these two objectives has been discussed in some studies (e.g., see Casillas et al. (2003a, 2003b)).  

 When fuzzy rule-based systems are used for two-dimensional problems, fuzzy rules can be 

represented in a tabular form. Figure 1 shows an example of a fuzzy rule table for a two-dimensional 

pattern classification problem. In this figure, we have four fuzzy rules: 

  If 1x  is small and 2x  is small then Class 1,         (1) 

  If 1x  is small and 2x  is large then Class 2,         (2) 

  If 1x  is large and 2x  is small then Class 3,         (3) 

  If 1x  is large and 2x  is large then Class 4,         (4) 

where small and large are linguistic values defined by triangular membership functions. As shown in 

Figure 1, fuzzy rules for two-dimensional problems can be written in a human understandable manner 

using the tabular form representation. When fuzzy rule-based systems are applied to high-dimensional 

problems, their comprehensibility is significantly degraded due to the two difficulties: the increase in the 

number of fuzzy rules and the increase in the number of antecedent conditions of each fuzzy rule. 
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Figure 1. Four fuzzy rules in the two-dimensional pattern space ]1,0[]1,0[ × . 
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 In the field of knowledge discovery and data mining (Fayyad et al. (1996)), emphasis is placed on 

the comprehensibility of extracted rules. Fuzzy rule-based systems have an inherent advantage with 

respect to their comprehensibility over other nonlinear systems (e.g., neural networks). This is because 

fuzzy rules are linguistically interpretable. Such an inherent advantage, however, is significantly degraded 

due to the above-mentioned two difficulties when fuzzy rule-based systems are applied to high-

dimensional problems. For finding comprehensible fuzzy rule-based systems for high-dimensional 

classification problems, fuzzy rule extraction was formulated as a three-objective optimization problem in 

Ishibuchi, Nakashima and Murata (2001) where the classification performance was maximized, the 

number of fuzzy rules was minimized, and the number of antecedent conditions was minimized. Three-

objective GBML (genetics-based machine learning) algorithms were used for finding non-dominated rule 

sets with respect to the three objectives. Because the number of possible fuzzy rules exponentially 

increases with the number of attributes (i.e., with the dimensionality of problems), the search space for 

finding good rule sets also exponentially increases. As a result, Pittsburgh-style fuzzy GBML algorithms 

where an entire rule set is represented by a string require long CPU time and large memory storage in the 

case of high-dimensional problems. On the other hand, Michigan-style fuzzy GBML algorithms where a 

single fuzzy rule is represented by a string cannot directly optimize rule sets while they require much less 

CPU time and memory storage. An alternative approach called iterative fuzzy GBML algorithms has 

been proposed for efficiently extracting fuzzy rules using heuristic rule selection criteria (e.g., Gonzalez 

and Perez (1999), Castillo et al. (2001), Castro et al. (2001)). Such an iterative fuzzy GBML algorithm 

searches for fuzzy rules using a given heuristic rule selection criterion. When a fuzzy rule is found, 

training patterns covered by that rule are removed from the training data set. Then another fuzzy rule is 

found using the modified training data set. In this manner, the interaction among fuzzy rules is taken into 

account in the rule generation process. Iterative fuzzy GBML algorithms require much less memory 

storage and computation time than Pittsburgh-style algorithms where an entire rule set is represented by a 

string. On the other hand, iterative algorithms often lead to higher classification performance than 

Michigan-style algorithms where each fuzzy rule is represented by a string and a population corresponds 

to a fuzzy rule set. For further discussions on these three classes of fuzzy GBML algorithms, see Cordon 

et al. (2001). 

 The aim of this paper is to compare several heuristic rule selection criteria used for fuzzy rule 

extraction from numerical data. In our computational experiments, we extract a pre-specified number of 

fuzzy rules using each heuristic criterion. The performance of extracted fuzzy rules is examined on well-

known data sets with many continuous attributes available from the UCI ML repository. Experimental 
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results show that better results are obtained from composite criteria of confidence and support measures 

than their individual use. Experimental results also show that any heuristic criteria do not always generate 

fuzzy rules with high classification performance when we use a simple greedy method for rule extraction 

(i.e., when we simply extract a pre-specified number of the best fuzzy rules with respect to a given 

heuristic criterion without taking into account the combinatorial effect of extracted fuzzy rules). Finally 

we show that genetic algorithm-based rule selection can improve the classification ability of extracted 

fuzzy rules. This means that heuristic rule selection criteria can be used as a pre-screening tool of 

candidate fuzzy rules in genetic algorithm-based rule selection (Ishibuchi and Yamamoto (2002a, 2003a, 

2003b)).  

 

2. Fuzzy Rules for Classification Problems 

For classification problems with n attributes, we use fuzzy rules of the following form: 

  Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  then Class qC  with qCF ,    (5) 

where qR  is the label of the q-th rule, )...,,( 1 nxx=x  is an n-dimensional pattern vector, qiA  is an 

antecedent fuzzy set (i.e., linguistic value such as small and large in Figure 1), qC  is a class label, and 

qCF  is a rule weight. It should be noted that the consequent part of our fuzzy rule for classification 

problems in (5) is totally different from standard fuzzy rules for function approximation problems. The 

consequent of our fuzzy rule is a non-fuzzy class label (i.e., Class qC  such as Class 1 and Class 2). 

Moreover the rule weight qCF , which is a real number in the unit interval [0, 1], is assigned to each fuzzy 

rule. The rule weight works as the strength of each fuzzy rule when a new pattern is classified by a set of 

fuzzy rules (for details, see Ishibuchi & Nakashima (2001)). For other types of fuzzy rules for pattern 

classification problems, see Cordon et al. (1999). 

 First we explain how the consequent class qC  and the rule weight qCF  of the fuzzy rule qR  in (5) 

are specified from numerical data. Let us assume that we have m labeled patterns ),...,( 1 pnpp xx=x , 

mp ,...,2,1=  from M classes (i.e., we have an n-dimensional M-class problem). We define the 

compatibility grade of each training pattern px  with the antecedent part )...,,( 1 qnqq AA=A  of the fuzzy 

rule qR  using the product operator as  

  )(...)()()( 2211 pnqnApqApqApq xxx µµµµ ⋅⋅⋅=xA ,        (6) 

where )( ⋅qiAµ  is the membership function of the antecedent fuzzy set qiA . The fuzzy conditional 

probability )|ClassPr( qh A  of Class h ( Mh ,...,2,1= ) for the antecedent part qA  is numerically 
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approximated as follows (van den Berg et al. (2002)): 

  ∑∑
=∈

≅
m

p
pq

hp
pqqh

1Class
)()()|ClassPr( xxA A

x
A µµ .       (7) 

The right-hand side of (7) is often referred to as the confidence of the fuzzy association rule 

“ hq Class⇒A ” in the field of fuzzy data mining (Hong et al. (2001), Ishibuchi, Yamamoto and 

Nakashima (2001)). This definition of the confidence is a natural extension of its non-fuzzy version 

(Agrawal and Srikant (1994), Agrawal et al. (1996)). That is, the confidence of the fuzzy association rule 

“ hq Class⇒A ” is defined as follows: 

  ∑∑
=∈

=⇒
m

p
pq

hp
pqq hc

1Class
)()()Class( xxA A

x
A µµ .      (8) 

 The consequent class qC  of the fuzzy rule qR  is specified by identifying the class with the 

maximum fuzzy conditional probability (i.e., the maximum confidence). That is, we choose the 

consequent class qC  so that the following relation holds: 

  }1,2,...,|)Class({max)Class( MhhcCc qqq =⇒=⇒ AA .     (9) 

 On the other hand, there exist several alternative methods for specifying the rule weight qCF  

(Ishibuchi and Yamamoto (2002b)). The choice of an appropriate specification depends on a fuzzy 

reasoning method used for pattern classification (van den Berg et al. (2002)). The specification of the rule 

weight of each fuzzy rule has a large effect on the classification performance of fuzzy rule-based systems 

(Ishibuchi and Nakashima (2001)). 

 In this paper, we use a single winner-based method (Ishibuchi, Nakashima and Morisawa (1999)). 

Let S  be the set of fuzzy rules in our fuzzy rule-based system. A single winner rule wR  is chosen from 

the rule set S for an input pattern px  as 

  }|)(max{)( SRCFCF qqpqwpw ∈⋅=⋅ xx AA µµ .        (10) 

That is, the winner rule has the maximum product of the compatibility grade and the rule weight in the 

fuzzy rule-based system. For other fuzzy reasoning methods in fuzzy rule-based classification systems, 

see Cordon et al. (1999), Ishibuchi, Nakashima and Morisawa (1999), and van den Berg et al. (2002). 

 When we use the single winner-based method, the following definition of the rule weight qCF  is 

appropriate for two-class problems (Ishibuchi and Nakashima (2001), Ishibuchi and Yamamoto (2002b)): 
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The point is the extension of this formulation to the case of multi-class problems. In this paper, we use the 

following definition (which is the fourth definition in Ishibuchi and Yamamoto (2002b)) because good 

results were obtained from this definition in our preliminary computational experiments. 

  )Class()Class( qqqqq CcCcCF ⇒−⇒= AA ,        (12)  

where  

  ∑
≠
=

⇒=⇒
M

qCh
h

qqq hcCc
1

)Class()Class( AA .        (13) 

In this definition, our M-class pattern classification problem is virtually handled as a two-class problem 

where classification is performed between Class qC  and a merged class including all the other classes 

(i.e., }{}1,2,...,{ qq CMC −= ). When qCF  is negative in (12), we do not generate any fuzzy rule with the 

antecedent part qA . 

 Other possible definitions examined in Ishibuchi and Yamamoto (2002b) are as follows: 

  )Class( qqq CcCF ⇒= A ,            (14) 

  )1/()Class()Class( −⇒−⇒= MCcCcCF qqqqq AA ,      (15)  

  )Class()Class( 2ndCcCcCF qqqq ⇒−⇒= AA ,       (16) 

where Class 2ndC  is the class with the second largest confidence for the antecedent part qA . The 

definition in (15) has been used in many fuzzy rule-based classification systems in our former studies 

(e.g., Ishibuchi, Nakashima and Murata (1999), and Ishibuchi and Nakashima (1999)) since Ishibuchi et 

al. (1992). On the other hand, the definition in (16) has been used in some recent studies (e.g., Ishibuchi 

and Yamamoto (2003b)).  

 As shown in Ishibuchi and Nakashima (2001), fuzzy rule-based systems can generate various 

classification boundaries by adjusting the rule weight of each fuzzy rule even when we use fixed 

membership functions. In Figure 2, we show some examples of classification boundaries generated by the 

four fuzzy rules in Figure 1 using different rule weights. It should be noted that the membership function 

of each antecedent fuzzy set in Figure 1 is not modified in Figure 2. A real number in each decision area 
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in Figure 2 shows the rule weight of the corresponding fuzzy rule. As we can see from this figure, 

classification boundaries are not always parallel to the axes of the pattern space. This is a characteristic 

feature of fuzzy rule-based classification. For detailed comparison between fuzzy and non-fuzzy rule-

based classification, see Ishibuchi and Yamamoto (2002c).   
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Figure 2.  Some examples of classification boundaries generated by the four fuzzy rules in Figure 1. 

 

3. Rule Selection Criteria 

In the field of data mining, the confidence and the support of association rules have been often used as 

rule selection criteria (Agrawal and Srikant (1994), Agrawal et al. (1996)). In (8), we have already shown 

an extension of the confidence to the case of fuzzy rules. In the same manner, the support is defined for 

the fuzzy association rule “ hq Class⇒A ” as follows (Hong et al. (2001), Ishibuchi, Yamamoto and 

Nakashima (2001)): 

  ∑
∈

=⇒
hp

pqq m
hs

Class
)(1)Class(

x
A xA µ ,         (17) 

where m is the number of given training patterns. In our former studies (Ishibuchi, Yamamoto and 

Nakashima (2001), Ishibuchi and Yamamoto (2003b)), we used the confidence, the support and their 

product as rule selection criteria for extracting a pre-specified number of fuzzy rules from numerical data. 

Experimental results in those studies showed that the product criterion of the confidence and the support 

outperformed their individual use. In this paper, we examine two composite criteria of the confidence and 

the support in addition to their product. One is the support criterion with the minimum confidence level 

where the rule selection is performed using the support criterion from fuzzy rules whose confidence 

values are larger than or equal to a pre-specified minimum confidence level. The other is the confidence 
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criterion with the minimum support level.  

 In an iterative fuzzy GBML algorithm called SLAVE in Gonzalez and Perez (1999) and Castillo et 

al. (2001), a heuristic rule selection criterion was used for extracting fuzzy rules from numerical data. 

While a somewhat complicated general formulation was shown in those studies, the rule selection 

criterion in their computational experiments was very simple: )()( RnRn −+ −  where )(Rn+  and )(Rn−  

are the number of positive and negative examples, respectively. This measure can be fuzzified as  

  )()()(SLAVE qqq RnRnRf −+ −= ∑∑
∉∈

−=
qCp

pq
qCp

pq
ClassClass

)()(
x

A
x

A xx µµ .  (18) 

This formulation can be equivalently rewritten by dividing the right-hand side by m as 

  )Class()Class()(SLAVE qqqqq CsCsRf ⇒−⇒= AA ,      (19) 

where  

  ∑
≠
=

⇒=⇒
M

qCh
h

qqq hsCs
1

)Class()Class( AA .        (20) 

 On the other hand, the following measure is used in an iterative fuzzy GBML algorithm for the 

learning of maximal structure fuzzy rules in Castro et al. (2001): 

  
|Class|

)(|Class|
|Class|

)(
)(Castro

q

qq

q

q
q C

RnC
C

Rn
Rf

−+ −
×= ,       (21) 

where |Class| qC  and |Class| qC  are the number of training patterns in Class qC  and the other classes, 

respectively. This formulation can be fuzzified and equivalently rewritten by dividing the right-hand side 

by 2m  as 

  
⎟
⎟
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|Class|
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4. Computational Experiments 

In our computational experiments, we used four data sets in Table 1 available from the UCI ML 

repository. For comparison, some reported results by fuzzy rule-based systems are also included in Table 

1 where the average error rates on test data and the average number of fuzzy rules are cited from the 
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literature. We also show some reported results by the C4.5 algorithm (Quinlan (1993)) in the literature. 

Quinlan (1996) proposed a modified version (Rel 8 in Table 2) of his C4.5 algorithm (Rel 7 in Table 2) 

for appropriately handling continuous attributes. He evaluated the performance of each version by the 10-

CV (ten-fold cross-validation) technique. The whole 10-CV procedure was iterated ten times (i.e., 

×10 10-CV) using different partitions of each data set into ten subsets in Quinlan (1996). Elomaa and 

Rousu (1999) proposed an optimal discretization method of continuous attributes into multiple intervals. 

They examined the performance of six variants of the C4.5 algorithm, which were implemented using 

three discretization methods (i.e., binary discretization, greedy multisplitting, and optimal multisplitting) 

and two evaluation functions (i.e., gain ratio and balanced gain). The performance of each variant was 

examined in Elomaa and Rousu (1999) by ten iterations of the whole 10-CV procedure as in Quinlan 

(1996). We show in the last two columns in Table 2 the worst and best results among the six variants 

reported in Elomaa and Rousu (1999) for each data set. 

 In the Wisconsin breast cancer data, 16 samples with missing values (among 699 samples in total) 

were not used in our computational experiments. All attribute values of the four data sets were 

normalized into real numbers in the unit interval [0, 1] before extracting fuzzy rules.  

 

Table 1. Data sets used in this paper and some reported results by fuzzy rule-based systems. 
 

Reported results by fuzzy rule-based systems Data set Number of
attributes 

Number of 
samples 

Number of
classes Reference Error rate # of rules

Glass 9 214 6 Sanchez et al. (2001) 42.1 8.5 
Wisconsin 9 683 2 Sanchez et al. (2001) 4.65 5.1 

Wine 13 178 3 Castillo et al. (2001) 3.24 5.2 
Sonar 60 208 2 - - - 

 

Table 2. Reported error rates by some variants of the C4.5 algorithm. 
 

Quinlan (1996) Elomaa & Rousu (1999) Data set 
Rel 7 Rel 8 Best Worst 

Glass 32.1 32.5 27.3 32.2 
Wisconsin 5.29 5.26 5.1 6.0 

Wine - - 5.6 8.8 
Sonar 28.4 25.6 24.6 35.8 

 

 Since we did not know an appropriate fuzzy partition for each attribute of each test problem, we 

simultaneously used four different fuzzy partitions in Figure 3. One of the 14 triangular fuzzy sets was 
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used as an antecedent fuzzy set. For generating simple fuzzy rules (i.e., short fuzzy rules with a small 

number of antecedent conditions), we also used “don’t care” as an antecedent fuzzy set. The membership 

function of “don’t care” is defined as 1)(' =xcaretdonµ  for x∀  because “don’t care” is compatible with 

any input values. Since each antecedent fuzzy set may assume one of the 14 triangular fuzzy sets in 

Figure 3 or “don’t care”, the total number of combinations of antecedent fuzzy sets is n15  for an n-

dimensional problem. Our task is to find a small number of comprehensible fuzzy rules with high 

classification ability from n15  possible rules. In our computational experiments on the sonar data with 60 

attributes (i.e., =n 60), we only examined fuzzy rules with two or less antecedent conditions (i.e., with 

)2( −n  or more “don’t care” conditions). For the other data sets, we examined fuzzy rules with three or 

less antecedent conditions. The restriction on the number of antecedent conditions is for finding short (i.e., 

comprehensible) fuzzy rules as well as for decreasing the CPU time.  
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Figure 3. Four fuzzy partitions used in our computational experiments. 

 

 We extracted N fuzzy rules ( ,...2,1=N ) for each class using one of the seven rule selection criteria 

described in the previous section: the confidence, the support, their product, the confidence with the 

minimum support level, the support with the minimum confidence level, the SLAVE criterion, and the 

Castro criterion. Several values of the minimum support and confidence levels were examined for each 

data set. The rule extraction was performed for each class in a simple greedy manner. First, the best fuzzy 

rule with respect to a given rule selection criterion was found for each class. Next, the second best fuzzy 

rule was found. In this manner, the best N fuzzy rules were found for each class. There were many cases 

where multiple fuzzy rules had the same best value of a given rule selection criterion. In those cases, the 

tiebreak was performed by applying the following two-step procedure to the multiple fuzzy rules with the 

same best value of the primary criterion (i.e., one of the seven rule selection criteria). The first tiebreak 



 - 12 -

criterion was the number of antecedent conditions. The fuzzy rule with the least antecedent conditions 

was chosen. This tiebreak criterion is to favor simpler fuzzy rules. When a single fuzzy rule could not be 

chosen by the first tiebreak criterion, we used the total area of the antecedent fuzzy sets of each fuzzy rule 

as the second tiebreak criterion. The total area was calculated by simply summing up the area of the 

triangular membership function of each antecedent fuzzy set in each fuzzy rule. The fuzzy rule with the 

largest total area was chosen from the competitive fuzzy rules with the same value of the primary 

criterion and the same number of antecedent conditions. The second tiebreak criterion is to favor more 

general fuzzy rules that cover larger subspaces of the pattern space. When multiple fuzzy rules still had 

the same best evaluation with respect to all the three criteria (i.e., the primary criterion and the two 

tiebreak criteria), a single rule was randomly selected from those best rules. This two-step tiebreak 

process was used together with each of the seven primary rule selection criteria. It should be noted that 

our computational experiments in this section are designed for comparing various rule selection criteria 

with each other (not for finding optimal fuzzy rule-based classification systems). Thus we use simple 

experimental settings where a pre-specified number of fuzzy rules are selected for each class. The number 

of fuzzy rules for each class is adjustable in our genetic algorithm-based rule selection method discussed 

in Section 5. 

 In order to evaluate the classification performance on test data (i.e., generalization ability), we used 

the 10-CV technique for all the four data sets. Since the classification rate estimated by the 10-CV 

technique usually depends on the data partition into ten subsets, we executed the whole 10-CV procedure 

five times using different data partitions. Average error rates (including rejection rates) on test data 

estimated by the 10-CV technique are summarized in Tables 3-6. Note that each error rate in those tables 

includes the rejection rate (i.e., the error rate was calculated as 100)1( ×− cr % where cr  is the correct 

classification rate). On the other hand, average rejection rates are shown in Tables 7-10. Moreover, the 

average rule length over extracted fuzzy rules is shown in Tables 11-14. It should be noted that the 

number of actually extracted fuzzy rules was not always the same as the number of fuzzy rules specified 

in the first column of each table. For example, when we used the minimum support (or confidence) level 

in the rule extraction, there were several cases where a pre-specified number of fuzzy rules could not be 

generated for some minority classes because many fuzzy rules did not satisfy the given minimum level. In 

those cases, the number of actually extracted fuzzy rules was smaller than the specified number in the 

first column of each table. 

 From Tables 3-6, we can see that better results were obtained in many cases from the three 

composite criteria based on both the confidence and the support than their individual use (i.e., the second 
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and third columns). In general, the confidence criterion tends to choose fuzzy rules that cover only a 

small number of patterns from the same class. Thus the classification of many patterns is likely to be 

rejected (see Tables 7-10). On the other hand, the support criterion tends to choose fuzzy rules that cover 

many patterns from multiple classes. Thus some patterns are likely to be misclassified while rejection 

rates are not high (see Tables 7-10). The point is to find a good balance between these two tendencies by 

combining the confidence and the support into a single rule selection criterion. The SLAVE and Castro 

criteria can be viewed as attempts for finding such a good balance.  

Table 3.  Average error rates including rejection rates on test data of the glass data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

6 94.95 51.40 47.85 66.26 73.55 74.81 49.58 42.24 70.28 46.12 48.88
12 94.11 48.46 46.36 59.44 66.82 68.60 48.83 41.12 68.69 45.56 47.90
18 93.36 48.18 47.34 58.27 65.19 67.24 48.08 41.03 67.57 45.98 47.52
24 92.85 47.76 46.92 54.95 62.20 64.21 47.99 40.89 66.73 46.07 48.41
30 92.15 48.04 46.36 54.58 61.68 63.74 47.57 40.84 65.79 46.54 48.08
60 89.63 45.98 46.07 54.49 60.51 62.06 46.54 41.31 63.64 46.17 47.29

 

Table 4.  Average error rates including rejection rates on test data of the Wisconsin breast cancer data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

2 90.76 9.78 6.59 51.23 51.42 33.09 9.84 9.08 7.35 6.28 5.70 
4 87.07 10.34 7.01 42.46 42.46 23.35 10.28 8.30 8.13 6.85 5.90 
6 84.85 8.95 7.07 37.92 37.73 18.67 9.11 5.62 7.09 6.98 4.71 
8 83.37 6.18 5.94 33.03 32.88 14.96 5.99 5.46 6.87 6.21 4.58 
10 82.46 5.20 5.42 28.57 28.96 12.53 5.20 5.46 6.62 5.21 4.48 
60 76.65 4.25 3.97 15.58 16.34 4.44 4.19 4.47 4.55 4.00 4.01 

 

Table 5.  Average error rates including rejection rates on test data of the wine data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

3 73.60 30.22 11.46 72.70 74.33 74.21 15.39 12.87 10.96 11.35 16.29
6 66.01 22.92 10.84 66.07 66.57 66.46 13.71 11.40 7.25 7.53 12.53
9 52.75 15.11 7.92 35.79 38.88 39.10 14.78 9.72 6.52 7.13 10.11
12 49.89 15.45 6.52 30.17 33.20 33.71 14.49 8.88 6.91 7.25 8.09 
15 47.08 15.79 6.57 27.81 25.39 26.18 13.54 7.47 6.69 7.47 7.53 
60 44.61 11.18 6.91 5.56 5.84 5.11 6.52 6.69 6.80 6.18 7.13 
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Table 6.  Average error rates including rejection rates on test data of the sonar data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

2 98.37 46.63 46.83 97.84 98.03 98.41 26.68 27.55 43.89 27.55 27.60
4 96.49 46.63 47.69 94.38 96.59 96.54 26.78 27.84 38.99 27.40 27.50
6 95.10 46.78 47.45 78.89 93.46 92.50 27.50 27.55 36.59 26.78 27.50
8 94.52 46.78 47.12 68.94 88.89 88.56 27.98 26.54 34.76 26.39 27.79
10 94.09 47.07 45.48 64.47 85.05 83.99 27.98 26.35 33.85 26.35 27.40
60 87.55 46.35 43.03 51.68 47.84 48.17 27.16 25.19 26.35 23.75 25.10

 

Table 7.  Average rejection rates on test data of the glass data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

6 91.87 0.56 1.40 27.57 51.22 56.45 1.96 7.06 45.65 4.95 0.42 
12 89.44 0.42 1.26 17.80 37.06 47.48 1.21 5.37 42.52 3.74 0.28 
18 87.94 0.28 1.21 15.28 29.02 43.74 0.79 4.72 40.33 2.90 0.23 
24 86.64 0.23 1.07 10.89 25.09 38.93 0.70 3.88 38.83 2.38 0.19 
30 85.61 0.23 1.03 9.02 23.36 36.73 0.56 2.80 37.29 2.29 0.14 
60 82.10 0.09 0.79 0.93 16.31 26.40 0.42 0.93 32.34 1.36 0.09 

 

Table 8.  Average rejection rates on test data of the Wisconsin breast cancer data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

2 89.66 0.00 1.35 50.86 50.94 32.05 0.00 0.40 0.89 1.29 1.76 
4 85.93 0.00 1.13 41.70 41.54 21.71 0.00 0.32 0.32 1.13 1.43 
6 83.73 0.00 0.92 36.65 36.49 16.91 0.00 0.13 0.04 0.97 0.38 
8 82.24 0.00 0.38 31.23 31.00 12.97 0.00 0.00 0.00 0.57 0.18 
10 81.33 0.00 0.13 26.33 26.91 10.42 0.00 0.00 0.00 0.16 0.07 
60 74.57 0.00 0.00 12.21 10.50 0.98 0.00 0.00 0.00 0.00 0.00 

 

Table 9.  Average rejection rates on test data of the wine data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

3 73.20 0.06 4.16 72.30 73.82 73.76 0.00 0.00 4.72 6.18 1.35 
6 65.22 0.00 0.51 65.56 65.84 65.84 0.00 0.00 0.51 1.40 0.00 
9 51.69 0.00 0.22 31.46 34.94 35.17 0.00 0.00 0.00 1.12 0.00 
12 48.82 0.00 0.00 23.54 28.48 29.16 0.00 0.00 0.00 0.28 0.00 
15 45.90 0.00 0.00 19.21 18.71 19.49 0.00 0.00 0.00 0.22 0.00 
60 42.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 10.  Average rejection rates on test data of the sonar data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

2 96.59 0.00 0.00 96.35 96.83 96.63 0.19 1.59 23.37 0.48 0.48 
4 93.17 0.00 0.00 91.39 94.28 93.46 0.00 0.53 15.29 0.00 0.19 
6 89.09 0.00 0.00 68.80 88.46 87.12 0.00 0.29 11.11 0.00 0.10 
8 87.69 0.00 0.00 55.38 81.97 80.82 0.00 0.10 8.65 0.00 0.00 
10 86.92 0.00 0.00 48.65 76.25 74.81 0.00 0.00 6.44 0.00 0.00 
60 78.22 0.00 0.00 27.84 3.17 3.32 0.00 0.00 0.05 0.00 0.00 

 

Table 11.  Average rule length over extracted rules for the glass data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

6 1.50 2.49 2.79 1.40 1.04 1.00 2.69 2.71 2.72 2.85 2.57 
12 1.56 2.51 2.81 1.40 1.08 1.00 2.73 2.76 2.76 2.85 2.59 
18 1.60 2.56 2.84 1.40 1.11 1.00 2.76 2.78 2.79 2.84 2.59 
24 1.66 2.61 2.84 1.42 1.14 1.00 2.78 2.81 2.80 2.82 2.62 
30 1.73 2.64 2.85 1.43 1.15 1.00 2.80 2.83 2.78 2.83 2.65 
60 1.93 2.71 2.86 1.52 1.13 1.00 2.85 2.87 2.76 2.82 2.72 

 

Table 12.  Average rule length over extracted rules for the Wisconsin breast cancer data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

2 1.80 0.50 1.99 2.00 2.00 2.00 0.50 1.00 1.08 1.99 1.97 
4 2.04 0.75 1.96 2.07 2.00 2.00 0.75 1.00 1.18 1.93 1.90 
6 2.16 0.84 1.95 2.07 2.00 2.00 0.84 1.02 1.22 1.94 1.92 
8 2.24 0.89 1.95 2.08 2.00 2.00 0.89 1.03 1.26 1.93 1.95 
10 2.29 0.92 1.95 2.09 2.00 2.00 0.92 1.12 1.38 1.94 1.98 
60 2.46 1.55 2.22 2.36 2.00 2.00 1.56 1.64 1.76 2.24 2.23 

 

Table 13. Average rule length over extracted rules for the wine data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

3 1.00 1.23 1.00 1.00 1.00 1.00 1.17 1.30 1.02 1.00 1.00 
6 1.00 1.42 1.05 1.00 1.00 1.00 1.13 1.42 1.21 1.18 1.00 
9 1.19 1.38 1.13 1.13 1.00 1.00 1.18 1.55 1.47 1.34 1.01 
12 1.30 1.35 1.23 1.22 1.00 1.00 1.31 1.62 1.59 1.45 1.17 
15 1.37 1.31 1.31 1.28 1.00 1.00 1.40 1.62 1.68 1.53 1.27 
60 1.82 1.70 1.75 2.21 1.04 1.00 1.81 1.98 2.00 1.89 1.75 
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Table 14.  Average rule length over extracted rules for the sonar data set. 

c with minimum s-level s with minimum c-levelNumber 
of rules c s Product s: 0.1 s: 0.2 s: 0.3 c: 0.6 c: 0.7 c: 0.8 SLAVE Castro

2 1.00 0.52 0.52 1.00 1.00 1.00 1.06 1.55 1.78 1.00 1.23 
4 1.02 0.78 0.78 1.02 1.00 1.00 1.26 1.75 1.82 1.15 1.37 
6 1.15 0.88 0.87 1.11 1.00 1.00 1.33 1.81 1.87 1.34 1.46 
8 1.23 0.94 0.92 1.17 1.00 1.00 1.39 1.84 1.89 1.48 1.54 
10 1.28 0.99 0.95 1.22 1.00 1.00 1.44 1.86 1.90 1.56 1.60 
60 1.48 1.40 1.33 1.44 1.10 1.00 1.77 1.94 1.95 1.85 1.87 

 

 Let us examine our experimental results in detail. First we compare our results with the reported 

results by fuzzy rule-based systems in Table 1. For the glass data set in Table 3, a 42.24% average error 

rate was obtained by six fuzzy rules in the case of the support criterion with the minimum confidence 

level 0.7. This average result is almost the same as a 42.1% average error rate in Table 1 by 8.5 fuzzy 

rules in Sanchez et al. (2001). For the Wisconsin breast cancer data set in Table 4, a 4.71% average error 

rate was obtained by six fuzzy rules in the case of the Castro criterion. This average result is almost the 

same as a 4.65% error rate in Table 1 by 5.1 fuzzy rules in Sanchez et al. (2001). These observations 

show that good rule sets can be obtained by our simple greedy method for the glass data set and the 

Wisconsin breast cancer data set if we appropriately choose a rule selection criterion. On the other hand, 

our results in Table 5 (e.g., a 7.25 average error rate by six fuzzy rules) on the wine data are inferior to the 

reported result (i.e., a 3.24% average error rate by 5.2 fuzzy rules; see Table 1) in Castillo et al. (2001). 

This observation shows that good rule sets are not always obtained by our simple greedy method.  

 Next we compare our results with the reported results by the C4.5 algorithm in Table 2. While the 

average error rates by fuzzy rules in Table 3 for the glass data are much inferior to those by the C4.5 

algorithm in Table 2, the performance of fuzzy rules is comparable to the C4.5 algorithm on the other 

data sets. For example, the best average error rate by fuzzy rules in Table 4 on the Wisconsin breast 

cancer data was 3.97% while the best result by the C4.5 algorithm in Table 2 was 5.1%. A 5.11% average 

error rate was obtained for the wine data by fuzzy rules while the best result by the C4.5 algorithm was 

5.6% in Table 2. The best average error rate on the sonar data by fuzzy rules was 23.75% in Table 6, 

which is almost the same as the best result by the C4.5 algorithm in Table 2 (i.e., 24.6%). It should be 

noted that threshold values were carefully specified in a sophisticated manner for each continuous 

attribute in each variant of the C4.5 algorithm in Table 2. That is, interval partitions were appropriately 

specified based on the distribution of training patterns. On the other hand, we simply used homogeneous 

fuzzy partitions independent of the distribution of training patterns. High performance of fuzzy rules was 
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realized by their ability to adjust classification boundaries through rule weights as shown in Fig. 2. 

 In Tables 3-6, it is very interesting to observe that the classification performance does not 

monotonically increase with the number of fuzzy rules in some cases (e.g., see the last column of Table 3). 

This is because the interaction among selected fuzzy rules was not taken into account in our simple 

greedy method. This observation suggests the possibility that better results can be obtained by searching 

for appropriate combinations of a smaller number of fuzzy rules. In the next section, we will examine this 

possibility using genetic algorithms. It should be noted that the above-mentioned drawback of our simple 

greedy method was partially resolved in the iterative fuzzy GBML algorithms (Gonzalez and Perez 

(1999), Castillo et al. (2001), Castro et al. (2001)) by removing training patterns that had already been 

covered by the previously found rules. 

 In our computational experiments, we used the restriction on the rule length for generating short 

fuzzy rules and for decreasing the CPU time. From the point of view of the CPU time, this restriction is 

not always necessary for all the seven rule selection criteria. In the case of the support criterion, we can 

utilize the well-known Apriori algorithm, which was proposed for extracting non-fuzzy association rules 

in the field of data mining (Agrawal et al. (1996)). The following relation holds for fuzzy association 

rules from the definition of the support in (17) when the inclusion relation qq BA ⊆  holds: 

  )Class()Class( qqqq CsCs ⇒≤⇒ BA ,         (23) 

where the inclusion relation between the two fuzzy vectors qA  and qB  (i.e., between the two antecedent 

parts) is defined by their elements as 

  iBA qiqiqq ∀⊆⇔⊆ forBA .          (24) 

The inequality in (23) means that the support of a fuzzy rule does not increase when we add an additional 

condition to its antecedent part. For example, the inequality condition in (23) holds for =qA (small, 

small, don’t care) and =qB (small, don’t care, don’t care). When the support of the fuzzy rule 

“ qq CClass⇒B ” is not high, we do not have to examine any fuzzy rules “ qq CClass⇒A ” satisfying 

the inclusion relation qq BA ⊆ . Thus we can efficiently perform the fuzzy rule extraction using the 

support criterion. This search technique can be also utilized for the product criterion, the SLAVE criterion, 

and the Castro criterion using the following relations: 

  )Class()()( qqqq CsRsRc ⇒≤⋅ A ,          (25) 

  )Class()(SLAVE qqq CsRf ⇒≤ A ,          (26) 
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)Class()(Castro ×⇒≤ A .        (27) 

 On the other hand, the confidence has no monotonicity property similar to (23). The confidence 

tends to increase as an additional condition is added to the antecedent part (i.e., as the rule length 

increases). Thus the confidence criterion usually needs the restriction on the rule length. In the case of the 

support criterion with the minimum confidence level, the necessity of the restriction on the rule length 

depends on the value of the minimum confidence level. When the minimum confidence level is very low, 

this criterion is almost the same as the support criterion. Thus the restriction on the rule length is not 

necessary. On the other hand, this criterion with no restriction on rule length may require long CPU time 

when the minimum confidence level is high. In this case, we may have to examine a huge number of long 

fuzzy rules when short fuzzy rules do not satisfy the minimum confidence level. The confidence criterion 

with the minimum support level also requires the restriction on the rule length when the minimum support 

level is very low. In this case, the minimum support level is not likely to play an important role for 

decreasing the search space. 
 
 

5. Genetic Algorithm-Based Rule Selection 

In the above computational experiments, we did not take into account the combinatorial effect of 

generated fuzzy rules (i.e., the interaction among them). Thus we could not always find good rule sets. 

We will be able to find better rule sets with higher classification performance by directly searching for 

rule sets (i.e., combinations of fuzzy rules) as in Pittsburgh-style fuzzy GBML algorithms (e.g., see 

Cordon et al. (2001)). Such a fuzzy GBML algorithm, however, usually requires long CPU time and large 

memory storage for finding good rule sets for high-dimensional problems. A promising idea for 

efficiently finding good rule sets is to search for good subsets of fuzzy rules generated by a heuristic rule 

selection criterion (Ishibuchi and Yamamoto (2002a, 2003b)). In this section, we demonstrate that good 

rule sets can be obtained by genetic algorithms as subsets of fuzzy rules generated in the previous section. 

Of course, the performance of obtained rule sets (i.e., obtained fuzzy rule-based classification systems) 

totally depends on the choice of candidate fuzzy rules, which are generated by heuristic rule selection in 

the previous section. When the number of candidate fuzzy rules is very small, we can examine all of their 

subsets as fuzzy rule-based classification systems. By increasing the number of candidate fuzzy rules, we 

can increase the chance to find good subsets. At the same time, the size of the search space is 

exponentially increased. Thus we need a good heuristic rule selection criterion for finding a tractable 
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number of candidate fuzzy rules. It is a very difficult task to find a good rule set without such a heuristic 

procedure. This is because the search space with possible fuzzy rules is huge for high-dimensional pattern 

classification problems involving tens of input variables (e.g., the number of possible fuzzy rules was 
6015  for the sonar data with 60 attributes in the previous section). 

 In our computational experiments, we used 60 fuzzy rules generated by the product criterion as 

candidate rules in rule selection. A subset S of those 60 fuzzy rules was handled as an individual and 

represented by a binary string of the length 60 (i.e., 6021 ... sssS = ). In this coding, =qs 1 and =qs 0 

mean the inclusion of the q-th fuzzy rule qR  in S and the exclusion of qR  from S, respectively. A genetic 

algorithm was used for finding the best subset with respect to the following fitness function: 

  )()()()( 332211 SfwSfwSfwSfitness ⋅−⋅−⋅= ,         (28) 

where )(1 Sf  is the number of correctly classified training patterns by S, )(2 Sf  is the number of fuzzy 

rules in S, )(3 Sf  is the total number of antecedent conditions (i.e., total rule length) in S, and iw  is a 

positive weight for the i-th objective )(Sfi . In our computational experiments, the weight values were 

specified as =1w 100, =2w 10 and =3w 1.  

 As in the previous section, we executed the whole 10-CV procedure five times for calculating the 

average error rate on test data for each data set. A genetic algorithm with the following specifications was 

used for searching for a rule set with the maximum value of the fitness function in (28). 

  Selection: Standard binary tournament selection, 

  Crossover: Standard uniform crossover with the crossover rate 0.8, 

  Mutation: Standard flip-flop mutation with the mutation rate 1/60, 

  Population size: 500 strings, 

  Generation update: Standard generation model with a single elite individual, 

  Stopping condition: 5000 generations. 

 Experimental results were summarized in Table 15. From this table, we can see that the average 

error rates were improved by removing unnecessary fuzzy rules (i.e., finding good subsets of fuzzy rules 

extracted by the simple greedy method) except for the case of the wine data. It should be noted that the 

number of fuzzy rules was significantly decreased from 60. This means that the interpretability of fuzzy 

rule-based systems was significantly improved.  

 



 - 20 -

Table 15.  Genetic algorithm-based rule selection from 60 candidate fuzzy rules.  

Before rule selection After rule selection Data set 
Error rate # of rules Error rate # of rules 

Glass 46.07 60 41.84 7.72 
Wisconsin 3.97 60 3.84 4.58 

Wine 6.91 60 6.95 5.44 
Sonar 43.03 60 31.25 4.00 

 

Table 16.  Genetic algorithm-based rule selection from 600 candidate fuzzy rules. 

Before rule selection After rule selection Data set 
Error rate # of rules Error rate # of rules 

Glass 44.72 600 40.38 11.88 
Wisconsin 3.65 600 3.25 7.76 

Wine 4.49 600 6.90 5.68 
Sonar 29.28 600 24.06 7.04 

 

 We also performed similar computational experiments by extracting much more fuzzy rules (i.e., 

600 rules) as candidate rules using our simple greedy method. A genetic algorithm was used for finding 

good subsets of those 600 fuzzy rules. We used the same parameter specifications as in the previous 

computational experiments except for the mutation probability. We specified it as 1/600 because the 

string length was 600. Experimental results were summarized in Table 16. From the comparison between 

Table 15 and Table 16, we can see that lower error rates were obtained in Table 16 than Table 15. This 

improvement in the performance of selected fuzzy rules was realized at the cost of the increase in the 

CPU time and the required memory storage. For example, the average CPU time for a single run of the 

genetic algorithm for the glass data set was 8.33 minutes in Table 15 with 60 candidate rules while it was 

13.75 minutes in Table 16 with 600 rules. Moreover the increase in the number of candidate fuzzy rules 

significantly increases the difficulty in the search for good rule sets because the size of the search space is 
Q2  where Q is the number of candidate fuzzy rules. Thus the number of candidate rules should be 

appropriately specified. From the comparison of our results in Table 16 with the reported results in the 

literature in Table 1 and Table 2, we can see that very good results were obtained by the genetic 

algorithm-based rule selection for the Wisconsin breast cancer data (a 3.25% average error rate) and the 

sonar data (i.e., a 24.06% average error rate). 

 For the simplicity of explanation, we used a single-objective genetic algorithm for rule selection in 

this section. Thus we had to pre-specify the weight values in the fitness function in (28). In our 
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computational experiments, we performed the weight specification in a trial-and-error manner. If we use a 

three-objective genetic algorithm for rule selection, such a trail-and-error specification is not necessary 

and better results can be obtained (Ishibuchi and Yamamoto (2003a)).  

 

6. Conclusion 

In this paper, we first examined the performance of fuzzy rules extracted from numerical data using 

heuristic rule selection criteria through computational experiments on four well-known data sets with 

many continuous attributes (i.e., glass data, Wisconsin breast cancer data, wine data, and sonar data). 

Experimental results showed that better results were obtained from composite criteria of the confidence 

and the support than their individual use. It was also shown that the SLAVE and Castro criteria also 

worked well. In our computational experiments, we obtained good results using a simple greedy rule 

selection method in comparison with the C4.5 algorithm for the three data sets except for the glass data 

when we appropriately chose a rule selection criterion and the number of extracted fuzzy rules. Finally 

we showed that the classification performance of extracted fuzzy rules was improved by searching for 

their good subsets by genetic algorithms. This suggests that the combinatorial effect of fuzzy rules (i.e., 

the interaction among them) should be taken into account when we design fuzzy rule-based systems. 

 Our comparative study in this paper is based on computational experiments for some benchmark 

data sets. From those experiments, we do not conclude which criterion is the best among the examined 

ones. As our experimental results show, the choice of a heuristic rule selection criterion seems to be 

problem-dependent while we can say that better results were obtained from composite criteria of the 

confidence and the support than their individual use. Theoretical studies as well as further computational 

experiments may be required for providing guidelines for the choice of a heuristic rule selection criterion 

for a particular pattern classification problem.  
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