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Abstract—In this paper, we assume that we have two types of 
datasets for classifier design. One is an in-house dataset which is 
fully available for classifier design as training data. The other is 
an external dataset which is kept under a very severe privacy 
preserving policy. We assume that the available information on 
the external dataset is only the error rate of a presented classifier. 
No other information is available such as the number of patterns, 
attribute values of each pattern, and its class label. Thus, the 
external dataset can be viewed as a black-box model where the 
error rate is calculated as an output for an input classifier. In this 
paper, we discuss how such a black-box type dataset can be 
utilized in fuzzy genetics-based machine leaning (GBML). We 
use a hybrid fuzzy GBML algorithm where its Michigan-style 
part is applied to each individual of a Pittsburgh-style part. Since 
a fuzzy rule-based classifier is an individual in the Pittsburgh-
style part, a black-box type dataset can be utilized for fitness 
evaluation. Through computational experiments, we examine the 
effect of using a black-box type dataset in comparison with fuzzy 
rule-based classifiers design only from a fully available dataset. 

Keywords—Fuzzy rules, fuzzy classifiers, fuzzy genetics-based 
machine learning, privacy preserving, black-box type datasets  

I. INTRODUCTION 

In the current big data era [1]-[3], a huge amount of data 
are collected and stored. However, in some application fields, 
the size of the available data is much smaller than the total size 
of the stored data. This is because those data are often collected 
separately in a large number of different organizations (e.g., a 
large number of hospitals in many countries). It is often very 
difficult for an organization to use the stored data in other 
organizations. One reason for the difficulty is the heterogeneity 
of data. Each organization may have a different set of testing 
equipments, and each country may have different regulations 
for their use. Another reason is privacy preservation. Many 
organizations may have a severe privacy preserving policy.  

Based on these discussions, we proposed an idea of parallel 
distributed fuzzy genetics-based machine learning (GBML) 
from multiple datasets with different missing attributes and a 
severe privacy preserving policy [4]. It was assumed that each 
organization had an incomplete dataset with missing attributes 
together with a severe privacy preserving policy. Each dataset 
was handled as a black-box model with a classifier as an input 
and its error rate as an output. An incomplete black-box type 
dataset used in [4] is illustrated as a black-box in Fig. 1. 

ID x1 x2 x3 x4 x5 x6 y
P1 1 8 1 1 0
P2 1 8 2 3 0
P3 3 9 2 1 1

Dataset Di

Black-Box

Classifier
Error 
Rate

 
Fig. 1. An incomplete black-box type dataset used in [4]. 

 
In Fig. 1, the available information from the dataset was 

only the error rate of the presented classifier. There was no 
limit on the number of examined classifiers. All the other 
information was assumed to be hidden in the black-box. In 
addition to this black-box property, it was assumed in [4] that 
some attributes were missing (e.g., x4 and x6 in Fig. 1). Then, a 
parallel distributed fuzzy GBML algorithm [5] was applied to 
black-box type datasets with missing attributes in [4]. It was 
shown that the usefulness of incomplete black-box type 
datasets heavily depended on the number of missing attributes. 
When many attributes were missing, the use of incomplete 
black-box type datasets had no positive effects on the 
performance of designed fuzzy rule-based classifiers. 

In this paper, we focus our attention on the utilization of 
black-box type datasets in fuzzy GBML. This is because the 
above-mentioned two issues (i.e., the utilization of black-box 
type datasets and the handling of missing attributes) are too 
difficult to analyze simultaneously. We assume that we have 
multiple black-box type datasets and a single fully available 
dataset. No missing attributes are assumed in those datasets. 

This paper is organized as follows. In Section II, we briefly 
discuss how such a black-box type dataset can be utilized in 
classifier design. In Section III, we explain the use of black-
box type datasets in our hybrid fuzzy GBML algorithm [6]. In 
Section IV, we explain its parallel distributed implementation 
[5]. In Section V, we report experimental results to examine 
the effect of using black-box type datasets in addition to a fully 
available dataset. Experimental results under the following 
three assumptions about training data are compared: (i) only a 
fully available in-house dataset is available, (ii) both a fully 
available in-house dataset and multiple black-box type external 
datasets are available, and (iii) all datasets are fully available. 
In the third setting, both the in-house dataset and the external 
datasets are assumed to be fully available for comparison. This 
paper is concluded in Section VI. 

This work was partially supported by Grand-in-Aid for Scientific 
Research (C): KAKENHI (25330292). 
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II. USE OF BLACK-BOX TYPE DATASETS 

Privacy preserving data mining [7]-[11] has been an active 
research field. Our assumption about black-box type datasets 
can be viewed as the most severe privacy preserving policy 
except for a total ban on any case of datasets. To the best of our 
knowledge, classifier design from black-box type datasets has 
not been discussed in the literature yet. 

Our classifier design problem is shown in Fig. 2 where we 
have a single fully available dataset (i.e., D1) and other black-
box type datasets (i.e., D2, D3, ..., DN). Since no information on 
attribute values of each pattern in the black-box type datasets is 
available, almost all supervised and non-supervised learning 
algorithms are unable to handle them. The simplest approach to 
our problem in Fig. 2 is to design a classifier using only the 
fully available dataset D1. In this approach, our hybrid fuzzy 
GBML algorithm [6] is executed on D1 to design a fuzzy rule-
based classifier. This approach is referred to as E(D1)-S(D1) in 
Table I where E(D1) and S(D1) mean that only D1 is used for 
the fitness evaluation at each generation and for the final 
classifier selection at the final generation, respectively. 

ID x1 x2 x3 x4 x5 x6 y
A1 3 9 2 3 2 9 1
A2 5 8 1 4 3 6 1
A3 1 9 5 7 1 5 0

Dataset D2

ID x1 x2 x3 x4 x5 x6 y
C1 5 9 9 1 8 8 0
C2 2 6 2 1 2 7 1
C3 4 5 5 2 1 7 1

ID x1 x2 x3 x4 x5 x6 y
P1 1 8 1 1 1 2 0
P2 1 8 2 2 3 5 0
P3 3 9 2 2 1 1 1

Dataset D1

Classifier Design

Error
RateClassifier

Dataset DN

Full 
Access

Classifier

Error
Rate

 
Fig. 2. Our classifier design problem in this paper. 

If multiple classifiers are generated from D1 as candidates 
for a final classifier, the black-box type datasets can be used for 
choosing a single classifier from the candidates. The reliability 
of classifier selection may be improved by using all datasets D1, 
D2, ..., DN instead of only the fully available dataset D1. When 
our hybrid fuzzy GBML algorithm is applied to D1, a number 
of fuzzy rule-based classifiers will be included in the final 
population. In the simplest setting E(D1)-S(D1) in Table I, the 
best classifier with respect to D1 is selected from the final 
population as a single final classifier. Another setting is to 
choose the best classifier from the final population using all 
datasets D1, D2, ..., DN. This setting is referred to as E(D1)-
S(All) in Table I. E(D1)-S(All) means the use of D1 for fitness 
evaluation and the use of all the N datasets for classifier 
selection. Except for the final classifier selection, E(D1)-S(D1) 
and E(D1)-S(All) are exactly the same.  

The basic structure of our hybrid fuzzy GBML algorithm is 
Pittsburgh-style GBML where each individual is a fuzzy rule-
based classifier. Good individuals are selected to generate new 
fuzzy rule-based classifiers by crossover and mutation. In the 
Pittsburgh-style part, the black-box type datasets can be used 
together with the fully available dataset for evaluating each 
individual at each generation in the same manner as the above-
mentioned classifier selection at the final generation.  

TABLE I.  USE OF THE FULLY AVAILABLE DATASET D1 AND THE BLACK-
BOX TYPE DATASETS D2, D3 , ..., DN IN EACH VARIANT. 

Algorithm Variant Fitness Evaluation Classifier Selection

E(D1)-S(D1) D1 D1 

E(D1)-S(All) D1 D1, D2 , ..., DN 

E(All)-S(D1) D1, D2 , ..., DN D1 

E(All)-S(All) D1, D2 , ..., DN D1, D2 , ..., DN 

 

We denote the fitness evaluation using all the N datasets by 
E(All) in Table I. Two variants of our hybrid fuzzy GBML 
algorithm with E(All) are shown in the last two rows of Table I 
depending on the setting of final solution selection: E(All)-
S(D1) and E(All)-S(All). Only D1 is used for final solution 
selection in E(All)-S(D1) while all the N datasets are used for 
final classifier selection in E(All)-S(All). Whereas all the N 
datasets are used for fitness evaluation at each generation in 
these two variants, only D1 is used in almost all the other parts 
of our hybrid GBML algorithm as explained in the next section. 
For example, initial fuzzy rule-based classifiers are generated 
using D1. When a new fuzzy rule is generated by crossover and 
mutation, its consequent class and rule weight are specified by 
D1. In the Michigan-style part of all the four variants in Table I, 
only D1 is always used. Since an individual is a single fuzzy 
rule in the Michigan-style part, each fuzzy rule instead of a 
fuzzy rule-based classifier is to be evaluated. However, the 
black-box type external datasets D2, D3, ..., DN can be used 
only for classifier evaluation. Thus they cannot be used in the 
Michigan-style part in all the four variants in Table I. 

In principle, evolutionary computation is applicable to any 
learning and optimization problems if each individual can be 
evaluated. Since each individual in the Pittsburgh-style part is a 
fuzzy rule-based classifier, we can apply it to a black-box type 
dataset Dk (2  k  N). However, when we cannot use any 
information on each pattern for initial classifier generation or 
fuzzy rule specification at each generation, the search ability of 
our hybrid fuzzy GBML algorithm is severely deteriorated. 
Thus we modify our hybrid fuzzy GBML algorithm as follows 
for its application to Dk (2  k  N): The Michigan-style part is 
not used, and D1 is used for initial classifier generation and 
fuzzy rule specification. If we use the same notation as in Table 
I, this variant can be denoted as “E(Dk)-S(Dk)”. However, we 
do not use this variant as a separate GBML algorithm because 
E(D1)-S(D1) is likely to outperform E(Dk)-S(Dk). As shown in 
Section IV, we examine the use of E(Dk)-S(Dk) as a part of a 
parallel distributed hybrid fuzzy GBML with N islands where 
E(Dk)-S(Dk) is executed at the kth island (k=1, 2, ..., N). 

III. HYBRID FUZZY GBML ALGORITHM [6] 

A. Fuzzy Rules for Classification Problems 

We use the following fuzzy rule for a pattern classification 
problem with n attributes [12]: 

Rule Rq: If x1 is Aq1 and … and xn is Aqn  

then Class Cq with CFq, (1) 

where Rq is the label of the qth fuzzy rule, x=(x1, ..., xn) is an 
n-dimensional pattern vector, Aqi is an antecedent fuzzy set on 
the ith attribute xi (i=1, 2, ..., n), Cq is a consequent class, and 



CFq is a rule weight. A single training pattern x p=(xp1, xp2, ..., 
xpn) is used to specify the n antecedent fuzzy sets Aq1, Aq2, ..., 
Aqn by choosing a fuzzy set with a high compatibility grade for 
each attribute value xpi [13]. Then each condition is replaced 
with don’t care using a pre-specified don’t care probability. 
The corresponding consequent class Cq and rule weight CFq 
are specified using the compatible training patterns [14].  

In this paper, we use fuzzy rules in (1) in order to realize a 
good compromise between accuracy and interpretability of 
fuzzy rule-based classifiers. If the accuracy maximization is a 
dominant objective, it may be a good idea to use fuzzy rules 
with certainty grades for all classes as in [15], [16]. For further 
discussions on fuzzy classification rules, see Cordón et al. [17]. 

B. Fuzzy Rule-Based Classifiers 

A fuzzy rule-based classifier is a set of fuzzy rules in (1). 
Let S be a fuzzy rule-based classifier. When a new pattern is 
presented to S, the compatibility grade of each fuzzy rule with 
the pattern is calculated using the product operator. Then a 
single winner rule is selected using the weighted compatibility 
(i.e., the product of the compatibility and the rule weight). The 
new pattern is classified by the single winner rule. If multiple 
fuzzy rules with different consequent classes are selected as 
the winner rules (i.e., if those fuzzy rules have the same 
maximum weighted compatibility), the classification of the 
new pattern is rejected. The classification is also rejected if no 
fuzzy rule in S is compatible with the new pattern.  

The use of the single winner-based fuzzy reasoning method 
makes the fitness assignment very easy in the Michigan-style 
part. This is because we can identify a single responsible 
fuzzy rule for the classification of each pattern. See Cordón et 
al. [17] for other types of fuzzy rules and fuzzy reasoning 
mechanisms for pattern classification problems. 

C. Pittsburgh-Style Framework of Our Hybrid Algorithm 

The overall structure of our hybrid fuzzy GBML algorithm 
[6] is shown in Fig. 3. Our algorithm has a Pittsburgh-style 
basic framework where an individual is a fuzzy rule-based 
classifier. Offspring (i.e., new fuzzy rule-based classifiers) are 
generated from the current population by selection, crossover 
and mutation in the Pittsburgh-style part. A Michigan-style 
GBML algorithm [13] is probabilistically applied to each of 
the newly generated fuzzy rule-based classifiers.  

When the Michigan-style part is applied to a fuzzy rule-
based classifier, all fuzzy rules included in the classifier are 
used as an initial population. Each step in Fig. 3 is explained 
in the following. 

Initialization: First, an initial population of fuzzy rule-
based classifiers is generated from the given training dataset. 
As we have already mentioned, the antecedent part of an initial 
fuzzy rule is specified from a randomly selected training 
pattern. Its consequent part is specified by compatible training 
patterns with the antecedent part. In our computational 
experiments, a fuzzy rule-based classifier with 30 fuzzy rules is 
generated by randomly selected 30 training patterns. This 
procedure is iterated to generate an initial population of fuzzy 
rule-based classifiers. In the initialization phase, we need the 
fully available in-house dataset D1. 

Initialization

Michigan-style part

Genetic operations
(Crossover and Mutation)

Selection

Choose the best individual

Population update

Michigan probability

Population update

New rule generation
• Genetic rule generation
• Heuristic rule generation

No

No

Yes

Yes

Termination condition

Pittsburgh-style framework

Michigan-style part

 
Fig. 3. Structure of our hybrid fuzzy GBML algorithm [5]. 

Selection: Binary tournament selection is used to choose a 
pair of parents from the current population. Each fuzzy rule-
based classifier is evaluated by the following fitness function: 

 fitness(S) = w1 f1(S) + w2 f2(S) + w3 f3(S),              (2) 

where w1, w2 and w3 are pre-specified non-negative weights, 
and f1(S), f2(S) and f3(S) are defined as follows: 

 f1(S): Training data error rate of S in percentage, 

 f2(S): The number of fuzzy rules in S (i.e., f2(S) = |S |),  

 f3(S): The total rule length of S. 

The rule length of each fuzzy rule is the number of its 
antecedent conditions excluding don’t care conditions. The 
total rule length of S is the same as the total number of 
antecedent conditions (excluding don’t care conditions) of all 
fuzzy rules in S. As in our former studies [4], the weight values 
are specified as w1 = 100, w2 = 1 and w3 = 1. 

In the selection phase, we need only the error rate on the 
given training dataset. So, we can utilize the black-box type 
external datasets D2, ..., DN as well as the fully available in-
house dataset D1. As we have already explained in Section II, 
we examine the two options: One is based on only the fully 
available dataset D1 (i.e., E(D1)), and the other is based on all 
the datasets D1, D2, ..., DN (i.e., E(All)). 

Crossover and Mutation: An offspring classifier is 
constructed by choosing a randomly specified number of fuzzy 
rules from each parent. The size of each parent can be different. 
The size of the generated offspring can also be different from 
the size of each parent. For example, an offspring classifier 
with 20 rules can be generated from two parents with 30 and 
40 rules. This crossover is applied to a pair of parents with a 
pre-specified crossover probability. Mutation is used to 
randomly replace an antecedent fuzzy set with another one 
(including don’t care). When the antecedent part of a fuzzy 
rule is changed by the mutation, the consequent class and the 
rule weight are updated using the compatible training patterns. 
Thus we need the fully available in-house dataset D1 when we 
generate new fuzzy rule-based classifiers.  

Michigan-Style Part: The Michigan-style part is explained 
in the next subsection. 



Population Update: Let Npop be the population size. We 
generate Npop offspring classifiers. Then we choose the best 
Npop classifiers from the current population of size Npop and the 
offspring population of size Npop. That is, we use the (  )-ES 
mechanism with . Each fuzzy rule-based classifier is 
evaluated by the fitness function in (2). As in the selection 
phase, we can utilize the black-box type datasets as well as the 
fully available dataset in the population update phase. 

Termination Condition: We use a pre-specified number 
of generations as the termination condition in this paper. 

Final Classifier Selection: The best classifier with respect 
to the fitness function in (2) is selected as the final result from 
the final population. We examine the following two options: 
One is based on only D1 (i.e., S(D1)), and the other is based on 
all datasets D1, D2, ..., DN (i.e., S(All)). 

D. Michigan-Style Part of Our Hybrid Algorithm 

A single iteration of a Michigan-style algorithm is applied 
to each offspring with a pre-specified probability in our hybrid 
algorithm [6]. An offspring in the Pittsburgh-style part is used 
as an initial population in the Michigan-style part. Each rule is 
evaluated as follows. First, each pattern in the given training 
dataset is classified using the population of fuzzy rules. A 
single winner rule is identified for the classification of each 
pattern. When a pattern is correctly classified, one point is 
added to the winner rule. After the classification of all training 
patterns, the fitness of each rule is defined by the number of 
correctly classified training patterns by the rule. 

Since the classification result of each pattern is needed for 
fitness evaluation, we cannot use any black-box type datasets 
in the Michigan part. Only the fully available dataset D1 is 
usable in the Michigan part. Actually, D1 is needed almost 
everywhere in the Michigan part. For example, the antecedent 
part of a new rule is generated by uniform crossover of the 
two parent rules and mutation. D1 is needed to specify the 
consequent class and the rule weight of the generated rule. A 
new rule is also generated from a misclassified or rejected 
training pattern. The attribute values of the pattern are needed 
to specify the antecedent part of the new rule. Then D1 is 
needed to specify the consequent class and the rule weight. 

IV. PARALLEL DISTRIBUTED IMPLEMENTATION 

A parallel distributed implementation of our hybrid fuzzy 
GBML algorithm [6] was proposed in [5] to significantly 
decrease its computation time. As shown in Fig. 4, the 
population of fuzzy rule-based classifiers is divided into N 
sub-populations (N=7 in Fig. 4). The given training dataset is 
also divided into N subsets. As a result, the computation load 
at each CPU becomes 1/N2 of the standard implementation.  

The assigned training data subsets are periodically rotated 
over the CPUs to avoid the overfitting of each sub-population 
to a particular subset. Periodical migration of a copy of the 
best individual in each sub-population is also performed. An 
interesting trick is to perform the migration and the training 
data rotation in the opposite directions as shown in Fig. 4. It 
was reported in [5] that the computation time was decreased 
by seven CPUs to 1/44 of the standard non-parallel non-

distributed implementation on average over nine benchmark 
problems without clear deterioration in the generalization 
ability of the designed fuzzy rule-based classifiers.  

CPU
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Fig. 4. Parallel distributed implementation [5]. 

Let us consider the parallel distributed implementation of 
our hybrid fuzzy GBML algorithm for our classifier design 
problem in Fig. 2 where D1 is a fully available in-house 
dataset and D2, ..., DN are black-box type external datasets. We 
assume that the number of CPUs is the same as the number of 
datasets (i.e., N). First, we focus on the implementation of the 
fitness evaluation of each individual using all datasets (i.e., the 
implementation of the E(All) variants in Section II) using the 
parallel distributed model in Fig. 4.  

This can be easily implemented as follows. An initial 
population of fuzzy rule-based classifiers is generated using 
the fully available dataset D1. The generated population is 
divided into N sub-populations of the same size and assigned 
to N CPUs. In the first iteration, DN is assigned to the first 
CPU. Each individual at the first CPU is evaluated using DN. 
In the second iteration, DN is rotated to the second CPU, and 
DN1 is assigned to the first CPU. Each individual at the first 
and second CPUs is evaluated using the assigned training data 
subset to each CPU. In the third iteration, each of DN and DN1 
is rotated to the next CPU, and DN2 is assigned to the first 
CPU. Each individual at each CPU is evaluated using the 
assigned training data subset. In this manner, we iterate the 
assignment of a training data subset, the rotation of the 
assigned training data subsets, and the evaluation of each 
individual at each CPU.  

In the Nth iteration, the kth CPU has the kth training data 
subset Dk. After the evaluation of each individual, a single 
generation update step of our hybrid fuzzy GBML algorithm 
is performed on the first CPU with D1. The fitness of each 
individual is defined by the evaluation results over all training 
data subsets. After the generation update is completed at the 
first CPU with D1, all the assigned data subsets are rotated in 
the (N+1)th iteration. After the evaluation of each individual, 
the generation update is performed at the second CPU with D1. 
In this manner, the generation update at each CPU is 
performed only when D1 is assigned. At each CPU with one of 
the other (N1) training data subsets, the CPU is used only for 
the evaluation of each individual using the assigned subset. 
That is, the generation update at each CPU is performed every 
N iterations. The computation load at each CPU is 1/N in 
comparison with a standard non-parallel non-distributed case. 



This is because the number of individuals evaluated at each 
CPU is 1/N of the entire population while each individual is 
evaluated using all the training data sets. Actually this 
implementation is the same as an island model with N islands 
where all training data subsets are assigned to each island. No 
migration is performed in this implementation. In this case, it 
is clear that the computation load at each CPU is 1/N. 

The E(All)-S(D1) and E(All)-S(All) variants in Section II 
are executed in the above-mentioned manner. The other 
variants (i.e., E(D1)-S(D1) and E(D1)-S(All)) in Section II are 
performed as a standard non-parallel non-distributed algorithm 
since only D1 is used for the fitness evaluation (i.e., since the 
computation load is not so heavy).  

Next we discuss a more straightforward parallel distributed 
implementation for our classifier design problem in Fig. 2. An 
initial population of fuzzy rule-based classifiers is generated 
using D1. The generated population is divided into N sub-
populations. Those sub-populations are assigned to N CPUs. 
The training data subsets are also assigned to the N CPUs. At 
the CPU with D1, our hybrid fuzzy GBML algorithm is 
performed with no modification. At the other CPUs with a 
black-box type dataset Dk (2  k  N), we do not use the 
Michigan-style part. At each CPU, the assigned training data 
subset Dk is used for fitness evaluation while D1 is always 
used for fuzzy rule specification. All the training data subsets 
are periodically rotated over the N CPUs. 

V. COMPUTATIONAL EXPERIMENTS 

We use ten classification problems in Table II from the UC 
Irvine Machine Learning Repository. The ten-fold cross-
validation is used to calculate the average classification rate 
on test data. The ten-fold cross-validation is iterated five times 
(i.e., 5  10CV) in almost all experiments. The training data 
are randomly divided into seven subsets of the same size to 
specify the seven datasets (i.e., D1, D2, ..., D7). In the last 
column, we show the size of D1 for each problem. 

TABLE II.  TEN CLASSIFICATION PROBLEMS IN THIS PAPER. 

Problem Number of 
Patterns 

Number of 
Attributes 

Number of 
Classes 

Average 
Size of D1

Glass 214 9 6 28 

Heart 270 13 2 35 

Pima 768 8 2 99 

Newthyroid  215 5 3 28 

Wine 178 13 3 23 

Wisconsin 683 9 2 88 

Segment 2,310 19 7 297 

Phoneme 5,404 5 2 695 

Page-blocks 5,472 10 5 704 

Satimage  6,435 36 6 827 

 
Computational experiments are performed in the same 

settings as in our former study [5]: 

Population size: 210 (Subpopulation size: 30), 
Number of sub-populations (N): 7, 
Termination condition: 50,000 generations, 

Weight vector: (w1, w2, w3) = (100, 1, 1), 
Training data rotation interval: 1, 10, 100, 1000, 
Migration interval: 100, 
Don’t care probability: (n5)/n for n-dimensional problems, 
The number of fuzzy rules in each initial classifier S: 30, 
Upper limit on the number of fuzzy rules in S: 60, 
In Pittsburgh-style part: Crossover probability: 0.9, 
                                       Mutation probability: 1/(n |S|), 
In Michigan-style part: Crossover probability: 0.9, 
                                      Mutation probability: 1/n. 

The four settings of the training data rotation interval are 
examined for the parallel distributed implementation. For 
example, the data rotation interval 1000 means that the data 
rotation is performed at every 1000 generations. In other 
words, the hybrid fuzzy GBML algorithm is locally performed 
at each CPU using the same training data subset for 1000 
generations between the training data rotations. The migration 
interval is always specified as 100 (migration at every 100 
generations). 

In Table III, we show the average classification rate on test 
data by each variant in Section II for each problem. The best 
result for each problem is highlighted by boldface. We 
performed the Friedman test to examine whether there exist 
significant differences among four variants or not. The 
obtained p-value was 2.328  10-6. Then, we applied the 
Shaffer’s post-hoc procedure to perform all pairwise 
comparisons of four variants. Tables IV and V show the 
Friedman rankings and the adjusted p-values by the Shaffer’s 
procedure, respectively. We used the software available from 
http://sci2s.ugr.es/sicidm/ [18]. 

Table V shows that the difference between E(D1)-S(D1) and 
E(D1)-S(All) was not statistically significant. That is, the use 
of all training datasets for the final classifier selection has 
almost no effect when D1 is used for fitness evaluation. We 
can observe the same effect from the comparison between 
E(All)-S(D1) and E(All)-S(All).  

Table V also shows that the difference between E(D1)-S(D1) 
and E(All)-S(D1) was statistically significant. The difference 
between E(D1)-S(All) and E(All)-S(All) was also statistical 
significant. It is clear that the use of all training data subsets 
for fitness evaluation has a much larger positive effect on the 
generalization ability of the designed classifiers than the use 
of all training data subsets for final classifier selection. The 
best results in Table III are obtained by E(All)-S(All) where 
all training data subsets are used for fitness evaluation and 
classifier selection. These observations show that the use of 
the black-box type datasets can improve the performance of 
our hybrid fuzzy GBML algorithm. 

As shown in the last column of Table II, the size of D1 is 
very small in the first six classification problems. Thus, it is 
very difficult to design fuzzy rule-based classifiers with high 
generalization ability using only D1 for those classification 
problems. A large increase in the average classification rate on 
test data by the use of the black-box type training data subsets 
is observed for each of the first six problems in Table III.  

The size of D1 is not so small in the last three classification 
problems in Table II (i.e., 695-827 patterns). Even for those 



large-size problems, we can observe an increase in the average 
classification rate on the test data by the use of the black-box 
type training data subsets in Table III (e.g., a 3% increase 
from 81.28% to 84.28% for Phoneme).  

TABLE III.  EFFECT OF THE USE OF THE BLACK-BOX TYPE DATASETS IN THE 
FITNESS EVALUATION E(ALL) AND THE FINAL SOLUTION SELECTION S(ALL). 

Problem E(D1)-S(D1) E(D1)-S(All) E(All)-S(D1) E(All)-S(All)

Glass 54.50 55.08 62.02 65.34 

Heart 70.81 70.89 78.22 80.07 

Pima 69.59 69.46 74.02 74.20 

Newthyroid  87.20 87.56 91.85 94.61 

Wine 84.75 85.07 89.93 93.80 

Wisconsin 93.53 93.86 95.96 95.99 

Segment 89.77 89.79 92.78 93.21 

Phoneme 81.28 81.31 83.76 84.28 

Page-blocks 95.22 95.26 96.10 96.20 

Satimage  83.50 83.54 84.91 85.13 

Average 81.02 81.18 84.95 86.28 
 

TABLE IV.  FRIEDMAN RANKING. 

Variant Friedman ranking 

E(D1)-S(D1) 3.90 

E(D1)-S(All) 3.10 

E(All)-S(D1) 2.00 

E(All)-S(All)  1.00 

 

TABLE V.  ADJUSTED P-VALUES BY THE SHAFFER’S TEST. 

Hypothesis Adjusted p-value

E(D1)-S(D1) vs. E(All)-S(All) 3.05310-6 

E(D1)-S(All) vs. E(All)-S(All) 8.26510-4 

E(D1)-S(D1) vs. E(All)-S(D1) 0.003 

E(D1)-S(All) vs. E(All)-S(D1) 0.170 

E(All)-S(D1) vs. E(All)-S(All) 0.170 

E(D1)-S(D1) vs. E(D1)-S(All) 0.170 

 

In Table VI, we show experimental results by the parallel 
distributed implementation of our hybrid fuzzy GBML 
algorithm for the fully available dataset D1 and the black-box 
type datasets D2, ..., D7. The four settings of the training data 
rotation interval are examined in Table VI. For example, (100) 
means that the training data rotation is performed every 100 
generations. All training data subsets are used for final 
classifier selection in Table VI. The best results are obtained 
in Table VI when the data rotation is performed at every 
generation (i.e., (1) in Table VI) on average. In order to 
confirm the statistical difference among four setting, we 
performed the Friedman test for Table VI. The obtained p-
value was 5.92710-5. Then, we applied the Holm’s post-hoc 
procedure to compare the best setting (i.e., (1) in Table VI)) as 
the control algorithm with the remaining ones. Table VII 
shows the Friedman rankings and the adjusted p-values by the 
Holm’s procedure. Table VII shows that the difference 
between the best setting (i.e., (1) in Table VI) and the second 
best one (i.e., (10) in Table VI) was not statistical significant, 
while the differences between the best setting and the worst 

two settings others (i.e., (100) and (1000) in Table VI) were 
statistical significant. That is, the frequent training data 
rotation improved the generalization ability. 

TABLE VI.  EXPERIMENTAL RESULTS OF THE PARALLEL DISTRIBUTED 
IMPLEMENTATION FOR THE FULLY AVAILABLE DATASET D1 AND THE BLACK-

BOX TYPE DATASETS D2, ..., D7. 

Problem 
Parallel Distributed (Data Rotation Interval) 

(1)  (10) (100) (1000) 

Glass 63.28 61.56 57.19 56.53 

Heart 80.52 77.56 73.85 76.00 

Pima 75.63 74.43 73.36 73.23 

Newthyroid 94.33 93.68 91.00 89.24 

Wine 93.26 92.61 91.26 89.47 

Wisconsin 96.58 96.34 95.58 95.32 

Segment 91.85 93.77 91.56 91.39 

Phoneme 82.88 82.76 81.41 81.94 

Page-blocks 95.76 95.91 95.72 95.65 

Satimage  83.86 85.86 83.19 84.39 

Average 85.79 85.45 83.41 83.31 

 

TABLE VII.  FRIEDMAN RANKING AND ADJUSTED P-VALUES BY THE 
HOLM’S TEST WITH THE BEST SETTING ((1) IN TABLE VI) AS THE CONTROL 

ALGORITHM. 

Setting Friedman ranking Adjusted p-value

Every generation 1.40 - 

10 generations 1.70 0.603  

100 generations 3.30 0.002 

1000 generations 3.60 4.1610-4 

 

From the comparison between Table III and Table VI, we 
can see that better results are obtained in almost all settings in 
Table VI than the first two variants with E(D1) in Table III. 
This observation suggests the usefulness of using all training 
data subsets (including the black-box type training data 
subsets) for fitness evaluation in the Pittsburgh-style part. 

For comparison, we report experimental results using all the 
training data as fully available data. That is, we assume that all 
of the seven training data subsets D1, D2, ..., D7 are fully 
available (whereas we assumed that D2, ..., D7 are black-box 
type training data subsets in Table III and Table VI). 
Experimental results are summarized in Table VIII. The 
second column of Table VIII shows the experimental results 
by the standard non-parallel non-distributed implementation of 
our hybrid fuzzy GBML algorithm [6]. Due to its heavy 
computation load, the average classification rate on test data is 
calculated over three iterations of the ten-fold cross-validation 
(3  10CV) for the last four problems with more than 2000 
patterns. 5 10CV is used for all the other problems. The last 
four columns show the results by the parallel distributed 
implementation with different settings of the training data 
rotation interval. As reported in [5], similar average 
classification rates on test data are obtained from the standard 
algorithm in the second column and the parallel distributed 
implementation in the other columns (especially when the data 
rotation interval is 1).  



TABLE VIII.  EXPERIMENTAL RESULTS UNDER THE ASSUMPTION 
THAT ALL TRAINING DATASETS D1, D2, ..., D7 ARE FULLY AVAILABLE.  

Problem 
Standard 

Algorithm 

Parallel Distributed (Data Rotation Interval) 

(1) (10) (100) (1000) 

Glass 67.88 65.61 61.24 61.25 58.00 

Heart 78.37 81.78 79.48 78.00 77.11 

Pima 75.31 75.34 75.29 74.40 73.47 

Newthyroid  94.42 94.90 93.58 91.65 91.94 

Wine 94.18 93.82 93.61 90.02 89.31 

Wisconsin 95.96 96.31 95.93 95.43 95.32 

Segment 94.01 92.77 94.16 94.02 93.13 

Phoneme 84.57 83.43 84.55 84.09 83.43 

Page-blocks 96.19 95.94 96.22 96.31 96.11 

Satimage  84.47 84.16 85.94 86.89 85.77 

Average 86.54 86.41 86.00 85.21 84.36 

 

TABLE IX.  FRIEDMAN RANKING AND ADJUSTED P-VALUES BY THE HOLM’S 
TEST WITH THE STANDARD METHOD AS THE CONTROL ALGORITHM. 

Algorithm Friedman ranking Adjusted p-value

Standard 2.20 - 

PD (1) 2.75 0.873  

PD (10) 2.50 0.873 

PD (100) 3.10 0.609 

PD (1000) 4.45 0.006 

 

In order to confirm the statistical difference among five 
models, we performed the Friedman test for Table VIII. The 
obtained p-value was 0.016. The difference was statistically 
significant but not highly significant. Then, we applied the 
Holm’s post-hoc procedure to compare the best model (i.e., 
“standard algorithm” in Table VIII)) as the control algorithm 
with the remaining ones. Table IX shows the Friedman 
rankings and the adjusted p-values by the Holm’s procedure. 
The differences between the standard algorithm and the others 
were not statistically significant except for the parallel 
distributed model with infrequent training data rotation (i.e., 
(1000) in Table VIII).  

The comparison between Table VI and Table VIII shows 
that the difference in the average classification rates between 
the two tables is small. For example, the best overall average 
classification rates in Table VI and Table VIII are 85.79% and 
86.54%, respectively. To statistically confirm this difference, 
we performed the Wilcoxon signed-rank test. The obtained p-
value was 0.202. Thus, this difference is not statistically 
significant. The best overall average classification rate 86.28% 
in Table III is also similar to the best result 86.54% in Table 
VI. We also examined this difference by the Wilcoxon signed-
rank test. The obtained p-value was 0.508. However, if no 
black-box type datasets are available (i.e., only D1 is 
available), the average classification rate 81.02% by E(D1)-
S(D1) in Table III is much smaller than the above-mentioned 
results obtained using the black-box type training data subsets 
D2, ..., D7 in addition to the fully available training data subset 
D1 (i.e., see Table IV).  

In our computational experiments, 85.7% of the training 
data (i.e., six out of the seven training data subsets) are 

assumed to be black-box type datasets. It is very interesting to 
observe that similar results are obtained from the following 
two settings: 100% of the training data are fully available in 
Table VII and 85.7% of the training data are black-box type 
training data subsets in Table III and Table VII. It is also 
interesting to observe that good results are not obtained when 
we use only 14.3% of the training data. These observations 
show that the use of the black-box type datasets has a positive 
effect on the generalization ability of designed classifiers.  

VI. CONCLUSIONS 

In this paper, we examined the effect of using black-box 
type datasets on the generalization ability of fuzzy rule-based 
classifiers designed by our hybrid fuzzy GBML algorithm. We 
assumed that the available information on a black-box type 
dataset was only the error rate for a presented classifier. We 
explained how such a black-box type dataset can be utilized in 
our hybrid fuzzy GBML algorithm and its parallel distributed 
implementation. In our computational experiments, we 
compared the following three settings about the available 
training data: (i) 100% of the training data were fully available, 
(ii) 14.3% of the training data were fully available and the 
other 85.7% were totally unavailable, and (iii) 14.3% of the 
training data were fully available and the other 85.7% were 
available as black-box type training data subsets. We obtained 
the following observations:  

1. Good results were not obtained from the use of only 14.3% 
fully available training data,  

2. Similar results were obtained from the following two cases: 
100% fully available training data, and 85.7% black-box 
type and 14.3% fully available training data. 

These observations suggest that the increase in the amount 
of available training data may improve the generalization 
ability of designed classifiers even when only the amount of 
available training data in black-box type datasets is increased. 
Moreover, our experimental results do not suggest any large 
difference in the importance between fully available datasets 
and black-box type datasets with respect to the generalization 
ability of designed fuzzy rule-based classifiers. 

One interesting future research topic is classifier design 
only from black-box type datasets (whereas this task may be 
very difficult). Another interesting research topic is the 
performance evaluation of designed classifiers using various 
combinations of the amount of fully available training datasets 
and the amount of black-box type datasets. It may also be 
interesting to discuss the implementation of multiobjective 
classifier design algorithms for black-box type datasets.  
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