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Abstract 

This paper discusses fuzzy reasoning for approximately realizing nonlinear functions by a small 

number of fuzzy if-then rules with different specificity levels. Our fuzzy rule base is a mixture of 

general and specific rules, which overlap with each other in the input space. General rules work as 

default rules in our fuzzy rule base. First we briefly describe existing approaches to the handling of 

default rules in the framework of possibility theory. Next we show that standard interpolation-

based fuzzy reasoning leads to counterintuitive results when general rules include specific rules 

with different consequents. Then we demonstrate that intuitively acceptable results are obtained 

from a non-standard inclusion-based fuzzy reasoning method. Our approach is based on the 

preference for more specific rules, which is a commonly used idea in the field of default reasoning. 

When a general rule includes a specific rule and they are both compatible with an input vector, the 

weight of the general rule is discounted in fuzzy reasoning. We also discuss the case where general 

rules do not perfectly but partially include specific rules. Then we propose a genetics-based 

machine learning (GBML) algorithm for extracting a small number of fuzzy if-then rules with 

different specificity levels from numerical data using our inclusion-based fuzzy reasoning method. 

Finally we describe how our approach can be applied to the approximate realization of fuzzy 

number-valued nonlinear functions. 

Keywords: Fuzzy modeling, Fuzzy reasoning, Default reasoning, Genetics-based 

machine learning, Fuzzy number-valued function. 
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1 

Introduction 

Fuzzy logic has been recognized as a convenient tool for handling continuous 

variables in rule-based systems (Russell & Norvig (1995)). This recognition is 

supported by many successful applications of fuzzy rule-based systems (for 

example, see Leondes (1999)). Fuzzy reasoning is a basic component in many 

applications of fuzzy logic to rule-based systems. In this paper, we discuss fuzzy 

reasoning for approximately realizing nonlinear functions using a small number of 

fuzzy if-then rules with different specificity levels. For an n-input and single-

output nonlinear function )(xyy = , we use the following fuzzy if-then rules: 

Rule kR : If 1x  is 1kA  and ... and nx  is knA  then y  is kB ,  Nk ,...,2,1= ,    (1) 

where ix  is the i-th input variable of an n-dimensional input vector ),...,( 1 nxx=x , 

y is an output variable, k is a rule index, kiA  is an antecedent linguistic value (e.g., 

small and large) for ix , kB  is a consequent linguistic value, and N is the total 

number of fuzzy if-then rules. We also use the same type of fuzzy if-then rules for 

approximately realizing an n-input and single-output fuzzy number-valued 

nonlinear function )(~~ xyy = , which maps an n-dimensional non-fuzzy input 

vector x to a fuzzy number y~ . There are many interpretations of fuzzy if-then 

rules. The most common and widely used interpretation is to consider the fuzzy if-

then rule kR  in (1) as a fuzzy point kknkk BAAA ××⋅⋅⋅×× 21  and a collection of 

fuzzy if-then rules as a fuzzy graph (Dubois & Prade (1996)). Throughout this 

paper, we use this interpretation unless stated otherwise. 

 When fuzzy if-then rules are used for describing a nonlinear function with 

only two input variables, they are concisely written in a tabular form as in many 

applications of fuzzy rule-based systems to control problems. A two-dimensional 

fuzzy rule table describes the input-output relation of a nonlinear function in a 

human understandable manner (e.g., see Fig. 1). Fig. 1 includes 25 fuzzy if-then 

rules from the bottom-left rule “If 1x  is small and 2x  is small then y  is large” to 

the top-right rule “If 1x  is large and 2x  is large then y  is small”. From this 

table, we can imagine a three-dimensional graphic as shown in Fig. 2.  
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Fig. 1.  An example of a two-dimensional fuzzy rule table. Each axis of the input space is divided 

into five linguistic values (S: small, MS: medium small, M: medium, ML: medium large, and L: 

large). The same five linguistic values are also used for describing the output variable. 
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Fig. 2.  Three-dimensional graphic corresponding to the fuzzy rule table in Fig. 1. This graphic is 

drawn using a standard interpolation-based fuzzy reasoning method.  

 

 While the tabular form representation of fuzzy if-then rules has been used 

in many applications to control problems, it cannot scale up to high-dimensional 

problems because the number of rules exponentially increases with the 

dimensionality of the input space. A simple trick for avoiding the exponential 

increase in the number of fuzzy if-then rules is to use general rules with many 

don’t care conditions (i.e., many kiA ’s in (1) are don’t care). Since each general 

rule covers a large portion of the input space, the entire input space can be 

covered by a small number of general rules. General rules describe rough 

behavior of a nonlinear function while its accurate behavior is described by 

specific rules with many antecedent conditions. Thus our fuzzy rule base is a 
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mixture of general and specific rules. For example, the nonlinear function in Fig. 

2 can be described by the following three rules: 

Rule AR : y is small,           (2) 

Rule BR : If 1x  is small then y is medium,        (3) 

Rule CR : If 1x  is small and 2x  is small then y is large.      (4) 

Since the first rule AR  has no antecedent conditions, it can be viewed as having 

don’t care conditions on both 1x  and 2x . The second rule BR  has an antecedent 

condition on 1x  and a don’t care condition on 2x . The third rule CR  is the same 

as the bottom-left rule in Fig. 1. The most general rule AR  is applicable to any 

input vector in the input space ]1,0[]1,0[ ×  of the nonlinear function in Fig. 2. The 

most specific rule CR  is applicable only when 1x  is small and 2x  is small. 

 Combinations of general and specific information are used for describing 

our knowledge in many situations. The following example is often used for 

explaining such a combination in the field of default reasoning (Reiter (1980), 

Poole (1991), Goldszmidt & Pearl (1996)). 

Rule IR : Birds fly,           (5) 

Rule IIR : Penguins are birds,          (6) 

Rule IIIR : Penguins do not fly.         (7) 

Let us consider the reasoning about a penguin x using the above three rules. The 

question is whether x flies or not. If we use the first two rules IR  and IIR , we can 

conclude that x flies. We, however, usually conclude that x does not fly using the 

third rule IIIR . This is because the third rule IIIR  is more specific than the first 

rule IR . This example illustrates the preference for specific rules over general 

ones. Many studies on default reasoning espouse some form of preference for 

more specific information (Bacchus et al. (1996)). In data mining algorithms for 

finding exceptions (Suzuki & Kodratoff (1998), Knorr & Ng (1999), Knorr et al. 

(2000), Suzuki (2000)), specific information (i.e., exception rules) is implicitly 

assumed to have priority over general rules.  

 The three fuzzy if-then rules in (2)-(4) can be viewed as an inconsistent 

rule base. In other words, they are not coherent (Dubois & Prade (1996)). For 

example, an input vector with a small 1x  and a small 2x  is applicable to all the 
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three fuzzy if-then rules. Their consequent linguistic values, however, are 

different from each other. When a specific rule is included in a general rule and 

they have different consequent linguistic values, they are viewed as being 

inconsistent with each other. Several approaches have been proposed for finding 

inconsistent rules in fuzzy rule bases (Yager & Larsen (1991), Bien & Yu (1995), 

Mees (1999), Viaene et al. (2000)). In those studies, it was implicitly assumed that 

the inconsistency in fuzzy rule bases should be removed or resolved. On the 

contrary, we explicitly utilize both specific and general rules even when they are 

inconsistent with each other. This is for describing nonlinear functions using a 

small number of fuzzy if-then rules. For example, three fuzzy if-then rules in (2)-

(4) can concisely describe the nonlinear function in Fig. 2 depicted by the 25 

fuzzy if-then rules in Fig. 1. As we have already explained using the penguin 

example from default reasoning, inconsistency is included in our knowledge in 

many cases.  

 The handling of default rules has been discussed in the framework of 

possibility theory. Yager (1987a, 1987b) proposed an idea of possibility 

qualification where a standard statement “V is A” is modified as “V is A is 

possible”. The possibility-qualified statement is less restrictive than the standard 

statement. Let V be a variable with a base set X. The possibility-qualified 

statement “V is A is possible” is handled as a statement “V is +A ” where 

},|{ φ≠⊆=+ BAXBBA I . Using the idea of possibility qualification, Yager 

(1987a, 1987b) discussed the handling of default rules of the type “If 1V  is 1A  

and 2V  is 2A  is possible then U is B”. The handling of default rules of this type 

was further discussed in Yager (1988a) where a knowledge system (i.e., world) 

with n atoms 1A , 2A , ..., nA  was considered. Each atom is a basic proposition 

which can be true or false. Thus the world has n2  interpretations. When we have 

no information about the world, all the n2  interpretations are possible. Our 

knowledge of the world eliminates some possibilities. While standard statements 

monotonically reduce the possible interpretations, possibility-qualified statements 

do not. That is, possibility-qualified statements exhibit the property of non-

monotonicity. The truth value of an arbitrary statement can be evaluated as true, 

false or unknown from the current set of possible interpretations. Yager (1988b) 

proposed a mathematical programming approach to the handling of default rules 
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where the determination of the truth value of a statement was formulated as a 0-1 

integer programming problem. In his formulation, inference was performed by 

restricting the set of possible interpretations. Our knowledge of the world was 

used as constraint conditions in the 0-1 integer programming problem. 

 Dubois & Prade (1988) pointed out that Yager’s proposal (Yager (1987a)) 

failed to capture the uncertainty nature of conclusions obtained via default rules. 

This is also the case in Reiter’s default logic (Reiter (1980)) where facts inferred 

from default rules have the same status as facts inferred from standard rules with 

no exceptions (Dubois & Prade (1988)). They proposed an idea to assign a 

certainty grade to a default statement. Let λ  be the certainty grade of the 

statement “V is A”. When =λ 1, this statement is the same as the standard 

statement. On the other hand, this statement is less certain than the standard 

statement when 1<λ . The statement “V is A” with the certainty grade λ  was 

handled as a fuzzy set λA  with the membership function }1),(max{ λµ −vA  in 

Dubois & Prade (1988) where )(vAµ  is the membership function of A. This 

means that )1( λ−  was considered as the possibility that V is outside A. In Dubois 

& Prade (1987), the handling of multiple statements of the form “V is iA  with 

)( iACr ”, ni ,...,2,1=  was discussed in the framework of evidence theory where 

)( iACr  is the grade of credibility of the statement “V is iA ”. They proposed the 

minimum specificity principle for inducing a basic probability assignment )(⋅m  

from the given set of statements with credibility grades. Dubois et al. (1994a, 

1994b) discussed the handling of default rules using possibilistic logic. They 

considered two types of statements: a certainty-qualified statement ))(,( ϕϕ N  and 

a possibility-qualified statement ))(,( ϕϕ Π  where ϕ  is a statement, )(ϕN  is the 

certainty grade, and )(ϕΠ  is the possibility grade. While Yager (1987a, 1887b, 

1988a) discussed the determination of possible interpretations, the determination 

of a possibility distribution over the n2  interpretations was discussed in Dubois et 

al. (1994a, 1994b) using possibilistic logic. Dubois & Prade (1996) explained the 

handling of certainty-qualified and possibility-qualified fuzzy if-then rules: 

))(,( ϕϕ N  and ))(,( ϕϕ Π  where ϕ  is a fuzzy if-then rule. 

 Our goal in this paper is to linguistically describe unknown nonlinear 

functions using a small number of fuzzy if-then rules. For this purpose, we 



7 

propose an inclusion-based fuzzy reasoning method that can simultaneously 

handle fuzzy if-then rules with different specificity levels in an intuitively 

acceptable manner. We also propose a genetics-based machine learning (GBML) 

algorithm for automatically extracting fuzzy if-then rules with different specificity 

levels from numerical data. Our GBML algorithm simultaneously minimizes three 

objectives: the approximation error, the number of fuzzy if-then rules, and the 

number of antecedent conditions in each rule. Our fuzzy reasoning method is 

based on the preference for more specific rules, which is a commonly used idea in 

the field of default reasoning. More specifically, we use a preference order 

defined by an inclusion relation among fuzzy if-then rules. In the terminology of 

default reasoning, our fuzzy reasoning method can be viewed as a kind of priority-

based approach (Brewka & Eiter (2000), Delgrande & Schaub (2000)). Specificity 

is frequently used for resolving the conflict among contradictory conclusions in 

priority-based approaches (Dung & Son (2001)). The characteristic features of our 

inclusion-based fuzzy reasoning method are summarized as follows: 

1. Our fuzzy reasoning method is used for function approximation. 

2. A preference order among fuzzy if-then rules in a fuzzy rule base is 

automatically specified with no intervention of human users during the iterative 

execution of our GBML algorithm. 

3. The weight of each fuzzy if-then rule is also automatically specified with no 

intervention of human users. 

4. The weight of each fuzzy if-then rule depends on the input vector as well as the 

other rules in the same rule base. This means that the same fuzzy if-then rule 

may have different weights for different input vectors in the same rule base. It 

may also have different weights for the same input vector in different rule 

bases. 

5. In our fuzzy reasoning method, the weight of each fuzzy if-then rule is used for 

decreasing the membership functions of its antecedent linguistic values. 

 An idea of inhibiting the activation of general rules when more specific 

rules match the input has already been suggested and discussed in Yager (1993) 

and Hoffmann & Pfister (1996,1997). The proposed fuzzy reasoning method in 

this paper can be viewed as a practical implementation scheme of their idea. The 

main contribution of this paper is that the usefulness of such an idea is clearly 

demonstrated in various situations such as function approximation, fuzzy 
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genetics-based machine learning, and approximation of fuzzy number-valued 

functions. Another contribution is that such an idea is extended for manually 

controlling the magnitude of the preference for more specific rules using a user-

definable parameter. 

 The rest of this paper is organized as follows. In Section 2, we show that 

counterintuitive results can be obtained from a standard interpolation-based fuzzy 

reasoning method when our fuzzy rule base is a mixture of general and specific 

rules. Then we show that intuitively acceptable results are obtained from our non-

standard inclusion-based fuzzy reasoning method. In Section 3, our inclusion-

based fuzzy reasoning method is modified for handling partially overlapping 

rules. In Section 4, we propose a genetics-based machine learning (GBML) 

algorithm for extracting a small number of fuzzy if-then rules with different 

specificity levels from numerical data using our inclusion-based fuzzy reasoning 

method. In Section 5, our inclusion-based fuzzy reasoning method is applied to 

approximation problems of fuzzy number-valued nonlinear functions. Finally 

Section 6 concludes this paper.  

 

2  

Inclusion-based fuzzy reasoning 

2.1 

Standard interpolation-based fuzzy reasoning 

The following fuzzy reasoning method has been frequently used in fuzzy rule-

based systems since its first proposal in a neuro-fuzzy system (Ichihashi (1991)): 
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where )(xkµ  is the compatibility grade of the fuzzy if-then rule kR  with the input 

vector x, and kb  is a representative real number of the consequent linguistic value 
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kB . The compatibility grade )(xkµ  is usually calculated by the product operation 

as 

)()()( 11 nknkk xx µµµ ×⋅⋅⋅×=x ,          (9) 

where )(⋅kiµ  is the membership function of the antecedent linguistic value kiA . 

The representative real number kb  can be viewed as a result of the defuzzification 

of the consequent linguistic value kB . In computational experiments of this paper, 

the center of the triangular membership function of each linguistic value is used as 

its representative real number. That is, 0, 0.25, 0.5, 0.75, and 1 are used for the 

five linguistic values small, medium small, medium, medium large, and large in 

Fig. 1, respectively. The three-dimensional graphic in Fig. 2 was drawn using the 

fuzzy reasoning method in (8) and the 25 fuzzy if-then rules in Fig. 1. 

 The fuzzy reasoning method in (8) can be viewed as a simplified version 

of the Takagi-Sugeno (TS) model (Takagi & Sugeno (1985)) where a linear 

function is used in the consequent part of each fuzzy if-then rule. The simplified 

fuzzy reasoning method in (8) has several advantages. For example, its reasoning 

mechanism is very simple, and it is suitable for gradient-based learning 

algorithms. 

 We applied the fuzzy reasoning method in (8) to the three fuzzy if-then 

rules in (2)-(4). The generated nonlinear function is shown in Fig. 3. We can see 

that the three-dimensional graphic in Fig. 3 is different from Fig. 2 depicted by the 

25 fuzzy if-then rules in Fig. 1. As we have already described, we intuitively feel 

that the three fuzzy if-then rules in (2)-(4) describe almost the same input-output 

relation as the 25 fuzzy if-then rules in Fig. 1. The fuzzy reasoning result in Fig. 3 

is, however, different from Fig. 2. 
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Fig. 3.  Nonlinear function obtained from the three fuzzy if-then rules in (2)-(4) using the standard 

interpolation-based fuzzy reasoning method in (8).  

 

 In general, fuzzy reasoning for function approximation is based on 

interpolation. That is, the estimated output value )(ˆ xy  is calculated by 

interpolating the consequent parts of compatible fuzzy if-then rules with the input 

vector x . This interpolation nature is, however, contradictory to the preference for 

more specific rules. Let us consider the calculation of the estimated output )(ˆ xy  

for a small 1x  and a small 2x . For such an input vector, we intuitively infer the 

output value y as large from the three fuzzy if-then rules in (2)-(4) as we have 

already explained in Section 1. The estimated output by the fuzzy reasoning 

method in (8), however, is not large but medium in Fig. 3.  

 Such a counterintuitive result is obtained not only from the fuzzy 

reasoning method in (8) but also from many other reasoning methods. Let =x (0, 

0) be the input vector to the fuzzy rule base with the three fuzzy if-then rules in 

(2)-(4). Since the membership function of the linguistic value small is 1 at the 

input value 0 (i.e., 1)0( =smallµ ), all the three rules are fully compatible with the 

input vector x independent of the choice of a t-norm (e.g., minimum and product):  

=== )()()( xxx CRBRAR µµµ 1.0.       (10) 

Thus the estimated output is calculated by the interpolation of the consequent 

linguistic values of the three fuzzy if-then rules. In Fig. 4, we show the 

membership function of each consequent linguistic value. We can see that the 

union of the three membership functions in Fig. 4 is symmetric with respect to the 

output value 0.5. Thus the estimated output )(ˆ xy  is calculated as 0.5 independent 
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of the choice of a defuzzification method (e.g., center of gravity). This discussion 

shows that the estimated output )(ˆ xy  is calculated as 0.5 (i.e., medium) for the 

input vector =x (0, 0) from the three fuzzy if-then rules in (2)-(4) by almost all 

fuzzy reasoning methods for function approximation. On the contrary, we 

intuitively infer the output value as large (not medium) for a small 1x  and a small 

2x  from the three fuzzy if-then rules.  
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Fig. 4.  Membership functions of the consequent linguistic values: small, medium, and large. 

 

2.2  

Non-standard inclusion-based fuzzy reasoning 

For implementing the preference for more specific rules, we have suggested an 

idea of inclusion-based fuzzy reasoning (Ishibuchi (1999a, 1999b)). First, we 

define an inclusion relation between fuzzy if-then rules. Let us consider the 

following two fuzzy if-then rules kR  and qR :  

kR : If 1x  is 1kA  and ... and nx  is knA  then y  is kB ,    (11) 

qR : If 1x  is 1qA  and ... and nx  is qnA  then y  is qB .    (12) 

When kiqi AA ⊆  for i∀  and kiqi AA ≠  for i∃ , we say that qR  is strictly included 

in kR  (i.e., kq RR ⊂ ). 

 When only the two rules kR  and qR  with the inclusion relation kq RR ⊂  

are compatible with the input vector x , the specific rule qR  is mainly used in 

fuzzy reasoning. That is, the weight of the general rule kR  is discounted. Our idea 
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is to determine the amount of the discount for kR  using the compatibility grade 

)(xqµ  of the specific rule qR  with the input vector x. More specifically, the 

weight of kR  is defined as ))(1( xqµ− . When the specific rule qR  is fully 

compatible with the input vector x, the weight of the general rule kR  is zero. This 

means that kR  has no effect on the calculation of the estimated output value )(ˆ xy . 

On the other hand, when the compatibility grade of qR  with x is very small, the 

amount of the discount for kR  is also very small. In this case, kR  has almost the 

same weight as qR . Since the general rule kR  may include multiple rules, its 

weight is defined as  

∏ −=
⊂
=

N

kRqR
q

qkRw
1

))(1(),( xx µ .        (13) 

When no fuzzy if-then rule is included in kR , ),( xkRw  is specified as 

1),( =xkRw  because the weight of kR  should not be discounted in this case. It 

should be noted that the weight of each rule depends on the compatibility grades 

of other rules with the input vector x. This means that the weight is context-

dependent. Different weights are assigned to the same rule for different input 

vectors. Moreover, the same rule may have different weights for the same input 

vector in different rule bases because the weight of each rule depends on other 

rules. 

 Using the rule weight ),( xkRw  of each fuzzy if-then rule kR , our 

inclusion-based fuzzy reasoning method is written as  

∑ ⋅

∑ ⋅⋅
=

=

=
N

k
kk

N

k
kkk

Rw

bRw
y

1

1

)(),(

)(),(
)(ˆ

xx

xx
x

µ

µ
.       (14) 

 Let us illustrate this fuzzy reasoning method using the three fuzzy if-then 

rules AR , BR  and CR  in (2)-(4). Since the inclusion relation ABC RRR ⊂⊂  

holds, the weight ),( xkRw  of each rule is calculated as  

))(1())(1(),( xxx CBARw µµ −×−= ,       (15) 

)(1),( xx CBRw µ−= ,         (16) 
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1),( =xCRw .          (17) 

For a small 1x  and a small 2x , all the three rules are applicable. Thus the weights 

of AR  and BR  become small due to (15) and (16). As a result, the most specific 

rule CR  is mainly used in our inclusion-based fuzzy reasoning method. On the 

other hand, BR  is mainly used when 1x  is small and 2x  is not small. When 1x  is 

not small, only the most general rule AR  is used because no other rules are 

applicable to this situation. In Fig. 5, we show the shape of the estimated 

nonlinear function using our inclusion-based fuzzy reasoning method. We can see 

from Fig. 5 that our method successfully implements the preference for more 

specific rules through the weighting scheme in (13)-(14). The estimated nonlinear 

function in Fig. 5 is more consistent with our intuition than Fig. 3. 
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Fig. 5.  Nonlinear function obtained from the three fuzzy if-then rules in (2)-(4) using our non-

standard inclusion-based fuzzy reasoning method.  

 

2.3  

Discussions and extensions 

Our idea can be applied to not only the fuzzy reasoning method in (8) but also 

other methods. Many fuzzy reasoning methods for function approximation can be 

classified into two categories (Cordon et al. (1997), Emami et al. (1999)): FITA 

(first-infer-then-aggregate) and FATI (first-aggregate-then-infer). The fuzzy 



14 

reasoning method in (8) is one example of FITA models. In FITA models, first a 

crisp output value (e.g., kb  in (8)) from each fuzzy if-then rule is calculated by a 

defuzzification procedure. Then the final estimation )(ˆ xy  is calculated by 

aggregating the crisp output values from compatible fuzzy if-then rules (e.g., 

using a weighted average in (8)). Our idea is directly applicable to FITA models. 

That is, the compatibility grade )(xkµ  is multiplied by the weight ),( xkRw  as in 

(14). This is executed in the second phase (i.e., aggregation phase) of FITA 

models. The Takagi-Sugeno (TS) model (Takagi & Sugeno (1985)) can be viewed 

as an example of FITA models. In the TS model, a linear function )(xky  is used 

in the consequent part of each fuzzy if-then rule instead of the consequent 

linguistic value kB  in (1). Thus our inclusion-based fuzzy reasoning method in 

(14) can be directly applied to the TS model by replacing the representative real 

number kb  with the linear function )(xky . 

 In FATI models, first an aggregated fuzzy set is constructed from the 

consequent linguistic values kB ’s of compatible fuzzy if-then rules. Then the final 

estimation )(ˆ xy  is calculated by a defuzzification procedure. In the first phase of 

FATI models, the consequent linguistic value kB  is modified to a fuzzy set *
kB  by 

the compatibility grade )(xkµ  for constructing the aggregated fuzzy set. Our idea 

is also applicable to FATI models while we cannot directly use (14). As in the 

application of our idea to FITA models, the compatibility grade )(xkµ  is 

multiplied by the weight ),( xkRw  in the aggregation phase (i.e., the first phase of 

FATI models). More specifically, the modified fuzzy set *
kB  is generated from the 

consequent linguistic value kB  using )(),( xx kkRw µ⋅  instead of )(xkµ . Two 

examples of the modified fuzzy set *
kB  are shown in Fig. 6 for the case of 

=kB medium, =)(xkµ 0.5 and =),( xkRw 0.8. The membership function of *
kB  is 

calculated by the minimum and product operations in Fig. 6 (a) and (b), 

respectively. 
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(a) Minimum operation.    (b) Product operation. 

Fig. 6.  Examples of *
kB  obtained from medium when =)(xkµ 0.5 and =),( xkRw 0.8. 

 

 The multiplication of the compatibility grade )(xkµ  by the weight 

),( xkRw  can be also viewed as modifying the membership function )( iki xµ  of 

each antecedent fuzzy set kiA  so that the compatibility grade becomes 

)(),( xx kkRw µ⋅ . For example, the membership function )( iki xµ  is modified as 

)(),( iki
n

k xRw µ⋅x  when the product operation is used for calculating the 

compatibility grade as in (9). On the other hand, when the minimum operation is 

used, )( iki xµ  is modified as )(),( ikik xRw µ⋅x . In this interpretation, our idea 

does not change fuzzy reasoning but modify fuzzy if-then rules. Thus our idea is 

applicable to any fuzzy reasoning methods. For example, let us consider an 

implication statement “If V is A then U is B” where A and B are fuzzy subsets of 

base sets X and Y, respectively. In the logical implication, this statement is 

handled as the relation BAD U=  on YX × . When we have a piece of 

information in the form of “V is C”, the inference result is the projection of 

)()( CBCA IUI  on the base set Y. The inference result is “U is B” when 

φ=)( CA I  holds. On the other hand, we cannot infer anything (i.e., the 

inference result is “U is unknown”) when )( CA I  is a normal fuzzy set (i.e., its 

maximum membership value is 1). Let us apply the logical implication to the 

three fuzzy if-then rules AR , BR  and CR  in (2)-(4) for inferring the output value 

for the input vector )0,0(),( 21 == xxx  using our idea. In this case, we can infer 

from the three fuzzy if-then rules that “y is large”. This is explained as follows. 

Since CR  is the most specific rule, its weight is always 1. Thus “y is large” is 
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inferred from CR  because the compatibility grade of )0,0(=x  with the 

antecedent part of CR  is 1. On the other hand, the inference result from BR  is “y 

is unknown” for =x (0, 0) because its antecedent part (small, don’t care) is 

modified such that 0)( =xBRµ  for =x (0, 0) by the weight =),( xBRw 0. From 

the same reason, the inference result for =x (0, 0) from AR  is also “y is 

unknown”. Thus we can infer that “y is large” for =x (0, 0) from the three fuzzy 

if-then rules in (2)-(4). The inconsistency among those rules for =x (0, 0) is 

resolved by the proposed weighting scheme in (13).  

 The validity of each fuzzy if-then rule as a local approximator of the 

nonlinear function can be evaluated by a measure called confidence in the field of 

data mining (Agrawal et al. (1996)). Let us assume that we have m input-output 

pairs ),( pp yx , =p 1, 2, ..., m from the nonlinear function. The confidence of the 

fuzzy if-then rule kR  is defined as follows (Hong et al. (2001), Ishibuchi et al. 

(2001b)): 

∑

⋅∑
=

=

=
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p
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x

µ

µµ
,      (18) 

where )( pk xµ  is the compatibility grade of the antecedent part of kR  with the 

input vector px , and )( pk yµ  is the compatibility grade of the consequent part of 

kR  with the output value py . The denominator in (18) corresponds to the number 

of input-output pairs that are compatible with the antecedent part. The numerator 

corresponds to the number of input-output pairs that are compatible with both the 

antecedent and consequent parts. 

 Let us examine the validity of our interpolation-based fuzzy reasoning 

method using the confidence measure. First we generate 441 input-output pairs 

),,( 21 ppp yxx , =p 1, 2, ..., 441 where =pix  0.00, 0.05, ..., 1.00 for =i 1, 2 from 

the nonlinear function in Fig. 3 depicted by the standard interpolation-based fuzzy 

reasoning method. That is, 441 input-output pairs are generated using the 

uniformly partitioned 2121×  grid of the two-dimensional input space 

]1,0[]1,0[ × . Then we calculate the confidence values of the three fuzzy if-then 

rules in (2)-(4): 



17 

AR : y is small (Confidence: 0.82),       (19) 

BR : If 1x  is small then y  is medium (Confidence: 0.11),    (20) 

CR : If 1x  is small and 2x  is small then y  is large (Confidence: 0.00).   (21) 

While the most general rule AR  has a high confidence value, the confidence 

values of the other rules are small. The zero confidence of CR  means that no 

input-output pairs are compatible with this rule. That is, CR  does not correctly 

describe the nonlinear function in Fig. 3. From these results, we can see that the 

standard interpolation-based fuzzy reasoning method is not appropriate for 

estimating the output value from the three fuzzy if-then rules. 

 In the same manner, we calculate the confidence values for the nonlinear 

function in Fig. 5 depicted by our inclusion-based fuzzy reasoning method. The 

confidence value of each rule is calculated as  

AR : y is small (Confidence: 0.79),       (22) 

BR : If 1x  is small then y  is medium (Confidence: 0.49),    (23) 

CR : If 1x  is small and 2x  is small then y  is large (Confidence: 0.23).   (24) 

We can see that the confidence values for Fig. 5 are higher than those for Fig. 3 

on the average. This observation suggests that our inclusion-based fuzzy 

reasoning method in Fig. 5 is more appropriate than the standard interpolation-

based fuzzy reasoning method in Fig. 3 for estimating the output value from the 

three fuzzy if-then rules. 

 The magnitude of the preference for more specific rules in our inclusion-

based fuzzy reasoning method can be adjusted by introducing an additional non-

negative parameter β  to (14) as  

( )

( )∑ ⋅

∑ ⋅⋅
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.       (25) 

Our inclusion-based fuzzy reasoning method in (25) is reduced to the standard 

interpolation-based method when 0=β . The original formulation of our 

inclusion-based fuzzy reasoning method in (14) corresponds to the case of 1=β . 

The larger the value of β  is, the larger the magnitude of the preference for 

specific rules is. In Fig. 7, we show the three-dimensional graphic depicted from 
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the above three fuzzy if-then rules using (25) with 10=β . From the comparison 

between Fig. 5 with 1=β  and Fig. 7 with 10=β , we can see that the preference 

for more specific rules is strengthened in Fig. 7 by a large value of β . For the 

nonlinear function in Fig. 7, the confidence values are calculated as  

AR : y is small (Confidence: 0.76),       (26) 

BR : If 1x  is small then y  is medium (Confidence: 0.73),    (27) 

CR : If 1x  is small and 2x  is small then y  is large (Confidence: 0.87).   (28) 

These confidence values show that the validity of each fuzzy if-then rule as a local 

approximator is increased by the use of our inclusion-based fuzzy reasoning 

method with a large value of β . The negative effect of a large value of β  is that 

the change of the estimated output value becomes abrupt as shown in Fig. 7. 
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Fig. 7.  Nonlinear function obtained from the three fuzzy if-then rules in (2)-(4) using the non-

standard inclusion-based fuzzy reasoning method with 10=β . 

  

 Our inclusion-based fuzzy reasoning method is based on the strict 

inclusion relation kq RR ⊂  defined by kiqi AA ⊆  for i∀  and kiqi AA ≠  for i∃ . 

When no inclusion relation holds, our method is reduced to standard interpolation-

based fuzzy reasoning. There may be, however, many cases where general rules 

do not perfectly but partially include specific rules. For handling such a case, we 

generalize our inclusion-based method to a preference order-based method in the 

next section where we assume the existence of a preference order-based rule 

hierarchy among fuzzy if-then rules. Another possible extension is the use of a 
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kind of inclusion grade between fuzzy if-then rules (i.e., a fuzzy relation over 

fuzzy if-then rules) instead of the crisp inclusion (or preference) relation. The 

weight of a general rule is discounted by a specific rule depending on the 

inclusion grade between them. Such an extension to our inclusion-based method is 

not discussed in this paper (i.e., it is left for future research). This is because the 

connection between the inclusion grade and the magnitude of the preference for 

more specific rules is not clear in the case of partially overlapping fuzzy if-then 

rules.  

 

3  

Extension to the case of partially overlapping rules 

3.1  

Motivation 

In our inclusion-based fuzzy reasoning method, the preference for more specific 

rules is implemented by discounting the weights of general rules when they 

include specific rules. Our method, however, does not discount the weights of 

general rules when they partially overlap with specific rules. Let us consider the 

following three fuzzy if-then rules for a nonlinear function with three inputs: 

Rule aR : y is small,         (29) 

Rule bR : If 1x  is small then y is medium,      (30) 

Rule cR : If 2x  is large and 3x  is large then y is large.    (31) 

 The weight of the most general rule aR  is discounted for any input vector 

x  with a small 1x  because such an input vector is compatible with the second rule 

bR . The weight of aR  is also discounted using the compatibility grade of the most 

specific rule cR  when 2x  is large and 3x  is large. The weight of the second rule 

bR  is, however, never discounted for any input vector while bR  is more general 

than cR . This is because no inclusion relation holds between bR  and cR .  
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 In Fig. 8, we show the three-dimensional graphic of the nonlinear function 

estimated from the three fuzzy if-then rules in (29)-(31) using our inclusion-based 

fuzzy reasoning method with 5=β . This figure is the projection of the estimated 

nonlinear function with three input variables to the )--( 32 yxx  space by fixing 

the value of 1x  as 01 =x . Since the second rule bR  is fully compatible with any 

input vector with 01 =x , the weight of the most general rule aR  is always zero in 

Fig. 8. The output is medium in a large region of the input space from the same 

reason. Only when both 2x  and 3x  are large, the output is not medium. In this 

case, the output is about 0.75, which is the result of the interpolation between the 

consequent linguistic value medium of bR  and large of cR . One may think that 

the output should be large for a large 2x  and a large 3x  because the most specific 

rule cR  is fully compatible with the input vector. 
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Fig. 8.  Projection to the )--( 32 yxx  space of the nonlinear function obtained by the inclusion-

based fuzzy reasoning method.    

  

3.2  

Preference order-based fuzzy reasoning 

Since our inclusion-based fuzzy reasoning method uses the preference order 

defined by the strict inclusion relation, it cannot take into account the difference in 
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specificity levels of fuzzy if-then rules when no inclusion relation holds among 

them. In this subsection, we extend our method to the case of an arbitrarily given 

preference order. For this purpose, we assume the existence of a rule hierarchy in 

our rule base. The inclusion relation is an example of the preference order that 

specifies the rule hierarchy. 

 Let us denote the preference order between fuzzy if-then rules by “p ” 

where qk RR p  means that qR  is preferred to kR  (i.e., qR  dominates kR ) in fuzzy 

reasoning. Note that qk RR p  corresponds to qk RR ⊃  in the inclusion-based fuzzy 

reasoning method in Section 2 where specific rules is preferred to general rules. 

The transitivity should hold for the preference order “p ”: If 21 RR p  and 32 RR p  

then 31 RR p . Using the preference order, we define the rule weight of each fuzzy 

if-then rule kR  for the input vector x  as 

∏ −=
=

N

qRkR
q

qkRw
p

1
))(1(),( xx µ .        (32) 

In this formulation, the weight of kR  is discounted when the input vector x  is 

compatible with other rules qR ’s that are preferred to kR . When there is no rule 

that is preferred to kR , the weight ),( xkRw  is defined as 1),( =xkRw  because 

the weight of kR  should not be discounted. The estimated output )(ˆ xy  is 

calculated in the same manner as in Section 2 (i.e., by (25)). 

 For illustrating our preference order-based fuzzy reasoning method, let us 

consider the fuzzy if-then rules in (29)-(31) again. Among these rules, the 

inclusion relations ba RR ⊃  and ca RR ⊃  hold, but no inclusion relation holds 

between bR  and cR . Thus ba RR p  and ca RR p  were used in our inclusion-based 

fuzzy reasoning method for depicting Fig. 8. If we use the rule hierarchy 

cba RRR pp , the estimated output )(ˆ xy  is calculated from the three fuzzy if-then 

rules by our preference order-based fuzzy reasoning method with 5=β  as shown 

in Fig. 9. In this figure, the estimated output )(ˆ xy  is large for a small 1x , a large 

2x  and a large 3x . This is because the most specific rule cR  in (31) is most 

preferred in fuzzy reasoning. As shown by Fig. 9, our preference order-based 
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fuzzy reasoning method can calculate the estimated output value from the fuzzy 

if-then rules based on the given rule hierarchy.  

 

0.5

0.5
1.0

1.0

0.5

0.0

1.0

0.0

small

small 

small 

large

large 

large 

y 

x2
x3

 

Fig. 9.  Projection to the )--( 32 yxx  space of the nonlinear function obtained by the preference 

order-based fuzzy reasoning method.    

  

 

4  

Fuzzy rule generation from numerical data 

Fuzzy if-then rules are usually obtained from human experts as linguistic 

knowledge or from numerical data through inductive learning algorithms. When a 

tabular form (e.g., Fig. 1) is used in rule generation for low-dimensional 

problems, no inclusion relation holds among fuzzy if-then rules. For high-

dimensional problems, clustering-based methods are often used for fuzzy rule 

extraction from numerical data. No inclusion relation holds among extracted rules 

because each rule is located at a different position from other rules by clustering 

algorithms. When decision tree-based methods are used, the input space is divided 

into some fuzzy subspaces with a tree structure. In this case, no inclusion relation 

holds, either. As we can see from these discussions, usually there exists no 

inclusion relation among fuzzy if-then rules generated by existing inductive 

learning algorithms. This means that our inclusion-based fuzzy reasoning method 

has no effect on fuzzy reasoning (i.e., it is reduced to standard interpolation-based 

fuzzy reasoning). 
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 In this section, we propose a genetics-based machine learning (GBML) 

algorithm with our inclusion-based fuzzy reasoning method for finding a small 

number of fuzzy if-then rules with different specificity levels from numerical data. 

In our GBML algorithm, some fuzzy if-then rules may have many don’t care 

conditions and others may have only a few (or no) don’t care conditions. The use 

of don’t care conditions is essential for finding a small number of fuzzy if-then 

rules. This trick was used in some GBML algorithms (Castillo et al. (2001), 

Castro et al. (2001), Ishibuchi et al. (2001a)) for handling high-dimensional 

pattern classification problems. In those algorithms, the preference for more 

specific rules was not explicitly taken into account. 

 

4.1  

Problem formulation 

Let us assume that we have m input-output pairs ),( pp yx , mp 1,2,...,=  obtained 

from an unknown nonlinear function )(xyy =  with n input variables where 

)...,,,( 21 pnppp xxx=x . For simplicity of explanation, the input and output 

spaces are assumed to be an n-dimensional unit cube n]1,0[  and a unit interval 

]1,0[ , respectively. We also assume that a set of linguistic values is given for 

describing each input (and output) variable. We explain our GBML algorithm 

using the five linguistic values in Fig. 1. Our task is to find a compact rule set S 

for linguistically describing the unknown nonlinear function )(xyy = . 

 The performance of the rule set S is measured by its approximation ability, 

its compactness, and the simplicity of fuzzy rules in S. We evaluate the 

approximation ability of the rule set S by the total squared error for the given 

input-output pairs: 

∑ −=
=

m

p
pp yySf

1

2
1 2/})(ˆ{)( x ,        (33) 

where )(ˆ py x  is the estimated output by the rule set S for the input vector px . 

When the estimated output )(ˆ py x  cannot be calculated (i.e., when there is no 

compatible fuzzy if-then rule with the input vector px ), a pre-specified penalty 
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value is used as the difference between the estimated output )(ˆ py x  and the target 

output py . In our computational experiments, the penalty value is specified as  

1|)(ˆ| =− pp yy x ,         (34) 

when )(ˆ py x  cannot be calculated. This penalty value is equal to the width of the 

output space ]1,0[ .  

 It is a troublesome task for human users to manually examine a large 

number of fuzzy if-then rules. It is much easier to understand a compact rule set 

with a few rules than a large rule set with many rules. Let )(2 Sf  be the number of 

fuzzy if-then rules in the rule set S. The compactness of S is evaluated by )(2 Sf .  

 It is not easy for human users to intuitively understand long fuzzy if-then 

rules with many antecedent conditions. The number of antecedent conditions in 

each fuzzy if-then rule is referred to as the rule length. The simplicity of each 

fuzzy if-then rule is evaluated by the rule length. Let )(3 Sf  be the total length of 

fuzzy if-then rules in the rule set S. The simplicity of fuzzy if-then rules in S is 

measured by )(3 Sf . 

 Thus our rule extraction problem is formulated as follows: 

Minimize )(1 Sf , )(2 Sf , )(3 Sf .       (35) 

 

4.2  

GBML Algorithm 

Our GBML algorithm simultaneously minimizes the three objectives in (35). Due 

to the existence of tradeoff, there is no absolutely optimal solution with respect to 

all the three objectives. We use the following scalar fitness function for handling 

our three-objective rule extraction problem in the framework of single-objective 

optimization: 

)()()()( 332211 SfwSfwSfwSfitness ⋅−⋅−⋅−= ,     (36) 

where 1w , 2w  and 3w  are non-negative real numbers. The weights 1w , 2w  and 

3w  should be specified according to the preference of human users with respect to 
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the three objectives. We assume that the weight values are given by human users. 

When the weight values are not given, our problem will be handled in the 

framework of multi-objective optimization. In this case, a three-objective GBML 

algorithm will be used for finding a number of non-dominated rule sets with 

respect to the three objectives. 

 In our fuzzy GBML algorithm, the fuzzy if-then rule kR  in (1) is coded by 

its n antecedent and a single consequent linguistic values as 

=kR kknkk BAAA ⋅⋅⋅21 . A rule set S is denoted by a concatenated string where each 

substring of the length )1( +n  corresponds to a single fuzzy if-then rule in S. 

Initial rules are generated by randomly assigning an antecedent linguistic value 

(or don’t care) to kiA  and a consequent linguistic value to kB . Let us denote the 

five linguistic values in Fig. 1 by five integers as 1: small, 2: medium small, 3: 

medium, 4: medium large, and 5: large. We also use 0 for denoting don’t care 

(i.e., 0: don’t care). Thus the antecedent linguistic value kiA  is denoted by one of 

the six integers {0, 1, 2, 3, 4, 5} while the consequent linguistic value kB  is one 

of the five integers {1, 2, 3, 4, 5}. 

 From the current population, two parent strings are selected according to 

their fitness values. We use the roulette wheel selection with the linear scaling for 

specifying the selection probability )(SP  of each string S: 

∑ Ψ−
Ψ−

=

Ψ∈S
fSfitness

fSfitnessSP
))()((

)()()(
min

min ,        (37) 

where Ψ  is the current population and )(min Ψf  is the smallest fitness value of 

rule sets in the current population Ψ .  

 Since the number of fuzzy if-then rules should be minimized in our fuzzy 

GBML algorithm, the string length is not fixed. The number of fuzzy if-then rules 

is modified by a crossover operation, which generates a new string whose length 

is different from its parent strings. We use a kind of one-point crossover with 

different cutoff points illustrated in Fig. 10 where kR  denotes a substring of the 

length )1( +n . One of the two children in Fig. 10 is randomly selected as an 

offspring. This crossover operation is applied to each pair of selected parents with 

a pre-specified crossover probability. When the crossover operation is not 

executed, one of the two parents is randomly chosen and handled as an offspring.  
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Parent 1 

Parent 2 

R1 R2 R3 R4 R5 R6

RA RB RC RD RE RF

Child R1 R2 R6RA RB RC R3 R4 R5 RD RE RF or  
 
Fig. 10.  A kind of one-point crossover with different cutoff points. 

 

 The crossover operation generates a new combination of existing fuzzy if-

then rules as shown in Fig. 10. The modification of each fuzzy if-then rule is 

performed by a mutation operation. Our mutation operation randomly replaces 

each antecedent (and consequent) linguistic value with another one. After the 

crossover operation, this mutation operation is applied to each linguistic value 

with a pre-specified mutation probability. We also use a different kind of 

mutation, which randomly removes fuzzy if-then rules from each string. This 

mutation operation is applied to each rule with a pre-specified mutation 

probability.  

 The selection, crossover, and mutation operations are iterated for 

generating a new population. Let popN  be the population size (i.e., the number of 

strings in each population). The genetic operations are iterated in each generation 

)1( pop −N  times for generating )1( pop −N  new strings as a new population. The 

best string with the largest fitness value in the previous population is added to the 

new population with no modifications as an elite individual. The genetic 

operations are applied to the new population in the same manner. The generation 

update is iterated until a pre-specified stopping condition is satisfied. Outline of 

our GBML algorithm is written as follows: 

Step 1: Randomly generate a number of rule sets as an initial population. 

Step 2: Repeat the following procedures for generating a new population. 

(a) Select a pair of parent strings from the current population. 

(b) Generate a new string from the selected pair of parents by a crossover 

operation. 

(c) Apply two mutation operations to the generated strings by the 

crossover operation. 
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Step 3: Add the best string in the previous population to the newly generated 

population. 

Step 4: If a pre-specified stopping condition is not satisfied, return to Step 2. 

 

4.3  

Results of computational experiments 

As a test problem, we used the nonlinear function in Fig. 2. In the same manner as 

Section 2, we generated 441 input-output pairs ),,( 21 ppp yxx , =p 1, 2, ..., 441 

where =pix  0.00, 0.05, ..., 1.00 for 21,=i . Our GBML algorithm with the 

inclusion-based fuzzy reasoning method was applied to this test problem using the 

following parameter specifications: 

Weights in the fitness function: =),,( 321 www (50, 1, 1), 

Population size: 100, 

The number of fuzzy if-then rules in each initial string: 10, 

Crossover probability: 0.8, 

Mutation probability for replacing each linguistic value with another one: 0.1, 

Mutation probability for removing each fuzzy if-then rule: 0.1, 

Termination condition: 10000 generations, 

Parameter in the inclusion-based fuzzy reasoning method: =β 1.  

 This computational experiment was iterated 20 times using different initial 

populations. In all the 20 trials, our GBML algorithm found the rule set of the 

three fuzzy if-then rules AR , BR  and CR  in (2)-(4). The nonlinear function in Fig. 

2 is approximated by the three fuzzy if-then rules very well: =)(1 Sf 0.054. As 

mentioned in Section 1 and Section 2, the three fuzzy if-then rules AR , BR  and 

CR  in (2)-(4) are consistent with our intuitive understanding of the three-

dimensional graphic in Fig. 2. 

 For comparison, we also applied our GBML algorithm with the standard 

interpolation-based fuzzy reasoning method to the same test problem 20 times. In 

19 out of 20 trials, our GBML algorithm found the rule set of the following five 

fuzzy if-then rules: 
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y is small,           (38) 

If 1x  is small then y is large,        (39) 

If 1x  is medium small then y is small,      (40) 

If 1x  is small and 2x  is small then y is large,     (41) 

If 1x  is small and 2x  is small then y is large.     (42) 

While the nonlinear function in Fig. 2 is approximated well by these five fuzzy if-

then rules using the standard interpolation-based fuzzy reasoning method (i.e., 

=)(1 Sf 0.078), the second rule in (39) is not consistent with the actual three-

dimensional shape of the nonlinear function in Fig. 2. Moreover the last two rules 

are exactly the same. This rule was selected twice by our GBML algorithm for 

realizing the preference for more specific rules in the framework of the standard 

interpolation-based fuzzy reasoning method. 

 In the same manner, we also applied our GBML algorithm to the nonlinear 

function in Fig. 3 using the standard interpolation-based fuzzy reasoning method 

20 times. In all the 20 trials, our GBML algorithm found the rule set of the three 

fuzzy if-then rules AR , BR  and CR  in (2)-(4). While the nonlinear function in Fig. 

3 is perfectly approximated by the three fuzzy if-then rules using the standard 

interpolation-based fuzzy reasoning method, the extracted knowledge about the 

nonlinear function is misleading. For example, the fuzzy if-then rule CR  says that 

“If 1x  is small and 2x  is small then y is large”. As we have already explained 

using the confidence measure in Section 2, this rule is not consistent with the 

actual three-dimensional shape of the nonlinear function in Fig. 3. The actual 

output is medium when 1x  is small and 2x  is small in Fig. 3. This result suggests 

that misleading knowledge can be obtained from numerical data when general and 

specific rules are simultaneously obtained from numerical data using standard 

interpolation-based fuzzy reasoning.  

 We also performed the same computational experiment using the 

inclusion-based fuzzy reasoning method 20 times. Our GBML algorithm found 

the following three fuzzy if-then rules for the nonlinear function in Fig. 3 in all the 

20 trials. 

y is small,          (43) 

If 1x  is small then y is medium small,      (44) 
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If 1x  is small and 2x  is medium then y is medium.     (45) 

We can see that these fuzzy if-then rules are consistent with our intuitive 

understanding of the three-dimensional graphic in Fig. 3. That is, intuitively 

acceptable knowledge was extracted from the nonlinear function in Fig. 3 using 

the inclusion-based fuzzy reasoning method while counterintuitive (or misleading) 

knowledge was obtained for the same task using standard interpolation-based 

fuzzy reasoning.  

 

4.4  

Some heuristics in our GBML algorithm 

In our computational experiments in the previous subsection, the total number of 

possible fuzzy if-then rules was 1805)15()15( =×+×+  because we used the five 

linguistic values and don’t care for the two input variables and the five linguistic 

values for the output variable. Thus the task of our GBML algorithm can be 

viewed as choosing a small number of fuzzy if-then rules from the 180 candidate 

rules. The number of candidate fuzzy if-then rules exponentially increases with 

the dimensionality of the input space. For example, the total number of fuzzy if-

then rules is =×565 38880 in the case of five input variables. In this case, the 

total number of rule sets is 1170438880 101.12 ×≅ . Since our GBML algorithm has 

such a huge search space in its application to high-dimensional problems, some 

heuristics are required for efficiently finding a small number of fuzzy if-then 

rules. In this subsection, we describe such heuristics. 

 While initial fuzzy if-then rules were randomly generated in the previous 

subsection, they can be also generated from input-output pairs. When we generate 

N initial rules, we randomly choose N input-output pairs. A single fuzzy if-then 

rule is generated from each input-output pair by choosing the most compatible 

linguistic value with each input (and output) value. For generating more general 

rules, each antecedent linguistic value is replaced with don’t care using a pre-

specified replacement probability (e.g., 0.5 in our computational experiments). 

 Our task is to find a small number of fuzzy if-then rules. So we give an 

upper bound to the number of fuzzy if-then rules included in each string (e.g., 20 



30 

in our computational experiments). When more fuzzy if-then rules are included in 

a string than the upper bound, excess rules are removed from the right side of the 

string until the number of rules becomes the same as the upper bound. This 

procedure is applied to all strings after the crossover operation. 

 Since genetic operations do not take into account the given input-output 

pairs, generated fuzzy if-then rules do not always have appropriate consequent 

linguistic values. So we replace the consequent linguistic value of each fuzzy if-

then rule with more appropriate one using the information on the given input-

output pairs. More specifically, we replace the consequent linguistic value kB  of 

the fuzzy if-then rule kR  with iB  using the following probability: 
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where kA  is the antecedent part of the fuzzy if-then rule kR , iB  is one of the five 

consequent linguistic values, and )( i
k BConfidence ⇒A  is the confidence value 

of the fuzzy if-then rule with the antecedent part kA  and the consequent linguistic 

value iB . This procedure is applied to each linguistic rule with a pre-specified 

probability (e.g., 0.5 in our computational experiments) after the two mutation 

operations. 

 The heuristic procedure for generating initial fuzzy if-then rules can be 

also used in the generation update phase. For each rule set, we first identify the 

input-output pair with the maximum error. Then we generate a fuzzy if-then rule 

from the identified input-output pair in the same manner as the heuristic procedure 

for generating initial rules. This procedure is applied to each rule set with a pre-

specified probability (e.g., 0.5 in our computational experiments) after the above-

mentioned replacement procedure. 

 For examining the effect of the four heuristics (i.e., heuristic initial 

population, upper bound on the number of rules, replacement of consequent 

linguistic values, and heuristic generation of new rules) on the search ability of 

our GBML algorithm, we applied it to a function approximation problem with 

five input variables. This test problem was generated by adding three dummy 

variables 3x , 4x  and 5x  to the 441 input-output pairs generated from Fig. 2. The 
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value of each dummy variable was randomly specified in the unit interval ]1,0[ . 

Thus we have 441 input-output pairs in the form of ),...,,( 51 ppp yxx  where 

=pix 0.00, 0.05, ..., 1.00 for 21,=i  and pix  is a random real number in ]1,0[  for 

=i 3,4,5. Our task is to extract a small number of fuzzy if-then rules from the 

given input-output pairs with the three dummy variables. 

 For this task, we used fuzzy if-then rules of the following form: 

If 1x  is 1kA  and 2x  is 2kA   ...  and 5x  is 5kA  then y  is kB .    (47) 

In the same manner as the previous subsection, we applied our GBML algorithm 

with the four heuristics to the test problem with the five input variables 20 times. 

In all the 20 trials, our GBML algorithm found the rule set of the three fuzzy if-

then rules AR , BR  and CR  in (2)-(4). The three dummy input variables 3x , 4x  

and 5x  were always identified correctly. We also performed the same 

computational experiments with no heuristics. The rule set of the three fuzzy if-

then rules in (2)-(4) was correctly found in 13 out of 20 trials. For comparing the 

search ability of our GBML algorithm with/without the four heuristics, we 

examined when the optimal rule set of the three fuzzy if-then rules in (2)-(4) was 

found during the execution of our GBML algorithm in each trial. Table 1 shows 

the relation between the number of generations and the number of successful trials 

where the optimal rule set was found. For example, the optimal rule set was found 

in 12 out of 20 trials during the first 2000 generations when we used the four 

heuristics. From Table 1, we can see that the use of the four heuristics 

significantly improved the search ability of our GBML algorithm. 

 

 
Table 1.  The number of successful trials where the optimal rule set was found during the specified 

number of generations. 

 

Number of generations 2000 4000 6000 8000 10000 
With heuristics 12 19 20 20 20 

Without heuristics 3 5 11 13 13 
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5  

Fuzzy reasoning for fuzzy number-valued function 
approximation 

We have already explained the inclusion-based fuzzy reasoning method for 

approximately realizing nonlinear functions by a small number of fuzzy if-then 

rules. In this section, we discuss the approximate realization of fuzzy number-

valued nonlinear functions. A fuzzy number-valued nonlinear function )(~~ xyy =  

maps an n-dimensional non-fuzzy input vector x to a fuzzy number y~ . For 

describing the fuzzy number-valued nonlinear function )(~~ xyy = , we use the 

following fuzzy if-then rules: 

Rule kR : If 1x  is 1kA  and ... and nx  is knA  then y  is kB ,  Nk ,...,2,1= .  (48) 

These fuzzy if-then rules are the same as those used for describing the real 

number-valued nonlinear function )(xyy =  in the previous sections.  

 

5.1  

Interpolation-based fuzzy reasoning for fuzzy number-
valued function approximation 

The standard interpolation-based fuzzy reasoning method in (8) can be directly 

extended for approximately realizing the fuzzy number-valued nonlinear function 

)(~~ xyy =  as  
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This formulation was referred to as “weighted average of fuzzy sets” and 

examined in Uehara (1994). This formulation involves fuzzy arithmetic 

(Kaufmann & Gupta (1985)) on linguistic values. While the numerical calculation 

of fuzzy arithmetic is performed by interval arithmetic (Moore (1979), Alefeld & 
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Herzberger (1983)) on level sets of fuzzy numbers in general, it is easily 

performed when the consequent linguistic values have membership functions of a 

special form (e.g., triangular and trapezoidal).  

 For illustrating the interpolation-based fuzzy reasoning method in (49), we 

calculated a fuzzy number-valued nonlinear function realized by the 25 fuzzy if-

then rules in Fig. 1. The estimated fuzzy output )(~̂ xy  is shown in Fig. 11 for 

=x (0, 0), (0.05, 0.05), ..., (0.25, 0.25). When =x (0, 0), the estimated fuzzy 

output is large as shown in Fig. 11. This corresponds to the bottom-left fuzzy if-

then rule in Fig. 1. As the input vector increases from (0, 0) to (0.25, 0.25), the 

estimated fuzzy output decreases from large to small as shown in Fig. 11. 

 

1.0 

0.0 
0.0 1.0

M
em

be
rs

hi
p 

)()(~̂ yy xµ

x =(0, 0) 

x =(0.05, 0.05) x =(0.15, 0.15)

x =(0.1, 0.1)x =(0.2, 0.2)

x =(0.25, 0.25)

Output value 

y  

 

Fig. 11.  Estimated fuzzy outputs from the 25 fuzzy if-then rules in Fig. 1 using the interpolation-

based fuzzy reasoning method. 

 

 As in the case of the approximate realization of real number-valued 

nonlinear functions in Subsection 2.1, the interpolation-based fuzzy reasoning 

method in (49) leads to counterintuitive results. Let us consider the three fuzzy if-

then rules AR , BR  and CR  in (2)-(4) again. The estimated fuzzy output for the 

input vector =x (0, 0) is calculated by the interpolation of the consequent 

linguistic values small, medium and large of the three fuzzy if-then rules because 

they are fully compatible with the input vector x. As a result, the estimated fuzzy 

output is not large but similar to medium. In Fig. 12, we show the estimated fuzzy 

outputs for =x (0, 0), (0.05, 0.05), ..., (0.25, 0.25).   
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Fig. 12.  Estimated fuzzy outputs from the three fuzzy if-then rules in (2)-(4) using the 

interpolation-based fuzzy reasoning method. 

 

5.2  

Inclusion-based fuzzy reasoning for fuzzy number-valued 
function approximation 

Our inclusion-based fuzzy reasoning method in Section 2 (and the preference 

order-based fuzzy reasoning method in Section 3) can be used for approximately 

realizing fuzzy number-valued nonlinear functions. Our formulation is modified 

as  
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where the weight ),( xkRw  is specified in the same manner as in Section 2 and 

Section 3.  

 Let us apply our inclusion-based fuzzy reasoning method to the three 

fuzzy if-then rules in (2)-(4). The estimated fuzzy output is calculated as large for 

the input vector =x (0, 0). In Fig. 13, we show the estimated fuzzy outputs for 

=x (0, 0), (0.05, 0.05), ..., (0.25, 0.25) using our inclusion-based fuzzy reasoning 

method with =β 1. From the comparison between Fig. 11 and Fig. 13, we can see 

that almost the same results were obtained in those figures. This observation 

shows that the three fuzzy if-then rules in (2)-(4) play almost the same role in our 

inclusion-based fuzzy reasoning method as the 25 fuzzy if-then rules in Fig. 1. 
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Fig. 13.  Estimated fuzzy outputs from the three fuzzy if-then rules in (2)-(4) using the inclusion-

based fuzzy reasoning method. 

 

6  

Concluding remarks 

In this paper, we proposed an inclusion-based fuzzy reasoning method for 

describing nonlinear functions using a small number of fuzzy if-then rules. The 

motivation for our proposal is that counterintuitive results are often obtained from 

standard interpolation-based fuzzy reasoning when our fuzzy rule base is a 

mixture of general and specific rules. Our proposal is based on the preference for 

more specific rules, which is a widely accepted idea in the field of default 

reasoning. We demonstrated that intuitively acceptable results were obtained from 

our inclusion-based fuzzy reasoning method. Our method is applicable to various 

fuzzy reasoning models. We combined our method with a simplified version of 

the Takagi-Sugeno (TS) model because it has been frequently used in the 

literature. The magnitude of the preference for more specific rules can be 

controlled by a user-definable parameter β  in our method. When 0=β , our 

method is reduced to standard interpolation-based fuzzy reasoning. The larger the 

value of β  is, the larger the magnitude of the preference for specific rules is. That 

is, specific rules play a dominant role in our fuzzy reasoning method when β  is 

very large. 

 For handling partially overlapping rules with different specificity levels, 

we generalized our inclusion-based method to a preference order-based method. 



36 

When a general rule does not perfectly include a specific rule, the preference for 

the specific rule over the general rule is not implemented in our inclusion-based 

method. For handling this situation, we assumed the existence of a rule hierarchy 

among fuzzy if-then rules in our preference order-based method. Such a rule 

hierarchy can be constructed by the specificity level of each rule (i.e., the length 

of the antecedent part of each rule). Partially overlapping rules are also handled in 

the framework of our inclusion-based method if we can appropriately define an 

inclusion grade between fuzzy if-then rules and appropriately combine it with our 

method. Such an extension of our method, which is left for future research, may 

be able to handle fuzzy if-then rules with different specificity levels more flexibly 

than the preference order-based fuzzy reasoning method. This is because the 

inclusion grade-based method uses a fuzzy relation over fuzzy if-then rules while 

the preference order-based method uses a pre-specified crisp relation. 

 We also described a genetics-based machine learning (GBML) algorithm 

for generating a small number of fuzzy if-then rules with different specificity 

levels from numerical data. This algorithm can simultaneously minimize the 

approximation error, the number of fuzzy if-then rules, and the number of 

antecedent conditions in each rule. Thus we can obtain a small number of simple 

fuzzy if-then rules with high comprehensibility as well as high approximation 

ability. Finally, we discussed the approximation of fuzzy number-valued 

nonlinear functions using fuzzy if-then rules. Our inclusion-based fuzzy reasoning 

method is applicable to the approximate realization of fuzzy number-valued 

nonlinear functions. Through computation experiments, we demonstrated that 

intuitively acceptable results were obtained from our inclusion-based method 

while standard fuzzy reasoning led to counterintuitive results. 

 The main advantage of our inclusion-based fuzzy reasoning method over 

traditional interpolation-based schemes is its consistency with our intuition: 

Intuitively acceptable reasoning results are always obtained even when our fuzzy 

rule-based system is a mixture of general and specific fuzzy rules overlapping 

with each other. This was discussed in this paper through illustrative examples 

where counterintuitive results were obtained from traditional interpolation-based 

schemes. Another advantage is the possibility to significantly decrease the number 

of fuzzy rules by using general rules. This was also discussed in this paper 

through illustrative examples. For example, a non-linear function in Fig. 2 
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generated by 25 fuzzy rules in Fig. 1 can be represented by only three fuzzy rules. 

One important future research topic is to examine the performance of our 

inclusion-based fuzzy reasoning method through computational experiments on 

real-world test problems in terms of the approximation ability and the 

generalization ability of fuzzy rule-based systems. For such a computational 

experiment, some test problems are available in the literature (for example, see 

Roubos & Babuska (2003) and Cordon & Herrera (2003)). 
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