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Abstract. One advantage of evolutionary multiobjective optimization (EMO) 
algorithms over classical approaches is that many non-dominated solutions can 
be simultaneously obtained by their single run. In this paper, we propose an 
idea of using EMO algorithms for constructing an ensemble of fuzzy rule-based 
classifiers with high diversity. The classification of new patterns is performed 
based on the vote of multiple classifiers generated by a single run of EMO 
algorithms. Even when the classification performance of individual classifiers 
is not high, their ensemble often works well. The point is to generate multiple 
classifiers with high diversity. We demonstrate the ability of EMO algorithms 
to generate various non-dominated fuzzy rule-based classifiers with high 
diversity by their single run. Through computational experiments on some well-
known benchmark data sets, it is shown that the vote of generated fuzzy rule-
based classifiers leads to high classification performance on test patterns. 

1  Introduction 

A promising approach to the design of reliable classifiers is to combine multiple 
classifiers into a single one [2], [6]. Several methods have been proposed for 
generating multiple classifiers such as bagging [3] and boosting [8]. In the bagging 
(bootstrap aggregating) algorithm of Breiman [3], different data sets are generated by 
bootstrapping (i.e., random sampling with replacement from the whole data set) for 
the design of multiple classifiers. Thus the design of multiple classifiers can be 
performed in parallel. On the other hand, multiple classifiers are sequentially 
designed in boosting methods such as the AdaBoost (Adaptive Boosting) algorithm 
of Freund & Schapire [8]. After one classifier is designed, the weight of each training 
pattern is updated based on the classification result (i.e., correct classification or 
misclassification) in the AdaBoost algorithm. The training patterns with the updated 
weights are used for designing another classifier. The design of a classifier and the 
weight update of training patterns are iterated for generating multiple classifiers. 
Classifier aggregation has been studied in various fields [19], [21]. For example, 
evolutionary computation is used for generating multiple classifiers [20], [22]. In the 
field of neural networks, the aggregation of multiple classifiers is often referred to as 



  

“mixture of local experts [17], [18]”. Classifier aggregation has also been studied in 
the field of fuzzy logic [4], [12].  
 The point in classifier aggregation is to generate an ensemble of classifiers with 
high diversity. Ideally the classification errors by each classifier should be 
uncorrelated. In this paper, we propose the use of evolutionary multiobjective 
optimization (EMO) algorithms for generating an ensemble of classifiers with high 
diversity. In our computational experiments, we apply the NSGA-II algorithm of Deb 
et al. [5] to a three-objective rule selection problem [13] for generating a number of 
non-dominated fuzzy rule-based classifiers with respect to the classification accuracy 
on training patterns, the number of fuzzy rules, and the total length of fuzzy rules. Of 
course, we can apply other EMO algorithms to our task. We use the NSGA-II because 
its implementation is relatively easy and its high performance is well-known [5]. 
 One advantage of EMO algorithms over classical approaches is that many non-
dominated solutions (i.e., classifiers in the context of this paper) can be obtained by 
their single run. That is, multiple classifiers are obtained by applying an EMO 
algorithm to training patterns just once. Through computational experiments on some 
well-known benchmark data sets, it is shown that high classification performance on 
test patterns (i.e., high generalization ability) can be obtained from the vote of non-
dominated fuzzy rule-based classifiers. That is, we can design a high-performance 
aggregated fuzzy rule-based classifier using an EMO algorithm for generating 
multiple classifiers and the majority rule for classifying new patterns. 
 In this paper, we first briefly describe fuzzy rule-based classifiers in Section 2. 
Then we explain our two-stage approach [15], [16] to the design of fuzzy rule-based 
classifiers in Section 3. In the first stage, a pre-specified number of fuzzy rules are 
extracted as candidate rules from training patterns using a data mining technique. In 
the second stage, a number of non-dominated rule sets are found from the candidate 
rules by the NSGA-II algorithm. Experimental results on some well-known 
benchmark data sets are reported in Section 4 where the generalization ability of an 
ensemble of obtained non-dominated rule sets for each data set is examined using the 
majority rule for classifying new patterns. Finally Section 5 summarizes this paper. 

2  Fuzzy Rule-Based Classifiers 

Let us assume that we have m training patterns x ,  
from M classes where  is the attribute value of the p-th training pattern for the i-th 
attribute ( ). For our n-dimensional M-class pattern classification problem, 
we use fuzzy rules of the following form: 
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vector,  is an antecedent fuzzy set, C  is a class label, and CF  is a rule weight. 
We define the compatibility grade of each training pattern x  with the antecedent 
part  of the fuzzy rule  in (1) using the product operator as  

qiA

(q =

q

q

R

)2p

q
p

)...,,1 qnq AAA

()( 1Ap q

q

µµ ⋅=xA p ,1=

)( ⋅Aµ

hClass

⇒q h)Class pq (xA )(A h 1=

)( ⋅
qC

Class Cqq ⇒

⇒= qc(A

)( CFwp

}M(A

q

px

w

q ⇒

q

c
1

(A

) CF

q

q⋅=⋅xAµ

px

  )(...()1 2 pnAAp xxx qnq µµ ⋅⋅ ,  m...,,2 ,   (2) 

where  is the membership function of .  qiAqi
 For determining the consequent class C  and the rule weight CF , we first 
calculate the confidence of the fuzzy association rule “ ” for each class 
h by extending its original definition for non-fuzzy association rules [1] as 

q q
q ⇒A

  ∑∑
=∈

=
m

p
p

h
q

p 1Class
() xA

x
µµc ,  M...,,2, .  (3) 

The confidence c  can be viewed as a fuzzy conditional probability of Class h. The 
consequent class  is specified as the class with the maximum confidence: 
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The rule weight of each fuzzy rule has a large effect on the classification ability of 
fuzzy rule-based classifiers [11]. 
 Let S be a fuzzy rule-based classifier (i.e., a set of fuzzy rules). When an input 
pattern  is to be classified, a single winner rule  is chosen from the rule set S as wR

  }|(max{ SRqpq ∈xAµ .         (6) 

The input pattern  is assigned to the consequent class C  of the winner rule .  w wR
 In this paper, we use multiple fuzzy rule-based classifiers. An input pattern is 
classified by each individual classifier using the single winner-based method as 
shown in (6). Then the final classification is performed through the majority rule (i.e., 
simple majority vote scheme) based on the classification result by each individual 
classifier (see [12] for various voting methods for fuzzy rule-based classification). 

3  Heuristic Rule Extraction and Genetic Rule Selection 

Genetic rule selection was proposed for designing fuzzy rule-based classifiers with 
high accuracy and high comprehensibility in [14] where a scalar fitness function was 
defined as a weighted sum of two objectives: to maximize the number of correctly 
classified training patterns and to minimize the number of fuzzy rules. A two-



  

objective genetic algorithm was used in [10] for finding non-dominated rule sets with 
respect to these two objectives. Genetic rule selection was further extended to the 
following three-objective optimization problem in [13]: 

  Maximize f , minimize , and minimize ,       (7) )(1 S )(2 Sf )(3 Sf

where S is a subset of candidate rules,  is the number of correctly classified 
training patterns by the rule set S,  is the number of fuzzy rules in S, and 

 is the total rule length of fuzzy rules in S. The number of antecedent 
conditions of each fuzzy rule is referred to as the rule length. It should be noted that 
the third objective  is not the average rule length but the total rule length. 
While we use the average rule length for describing each rule set in some parts of this 
paper, its use as  leads to many meaningless non-dominated rule sets [13]. 
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 A two-stage approach to the three-objective fuzzy rule selection problem in (7) 
was proposed for handling high-dimensional classification problems in [15], [16]. 
This approach is briefly explained in this section (for details, see [15], [16]).  

3.1  Heuristic Rule Extraction 

When we use K linguistic values and “don’t care” as antecedent fuzzy sets for each of 
n attributes, the total number of possible combinations of those ( )1+K  antecedent 
fuzzy sets is ( . Among those combinations, a pre-specified number of 
candidate rules are generated in a heuristic manner using a data mining criterion. In 
the field of data mining, association rules are often evaluated by two rule evaluation 
criteria: support and confidence. In the same manner as the fuzzy version of the 
confidence in (3), the definition of the support [1] is also extended as  
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The support  can be viewed as measuring the coverage of training patterns by the 
fuzzy rule. We use the following rule evaluation criterion in this paper: 
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This is a modified version of a rule evaluation criterion used in an iterative fuzzy 
GBML (genetics-based machine learning) algorithm called SLAVE [9]. 
 In our heuristic rule extraction, a pre-specified number of candidate rules with the 
largest values of the SLAVE criterion are found for each class. For designing fuzzy 
rule-based classifiers with high comprehensibility, only short fuzzy rules are 
examined as candidate rules. This restriction on the rule length is consistent with the 
third objective (i.e., the total rule length) of our three-objective rule selection problem. 



  

3.2  Genetic Rule Selection 

Let us assume that N fuzzy rules have been extracted as candidate rules using the 
SLAVE criterion. A subset S of the N candidate rules is handled as an individual in 
EMO algorithms, which is represented by a binary string of the length N as 

  ,                    (10) NsssS ⋅⋅⋅= 21

where  and  mean that the j-th candidate rule is included in S and 
excluded from S, respectively. 

1=js 0=js

 As in our former studies [15], [16], we use two problem-specific heuristic tricks 
together with the NSGA-II [5] for efficiently finding non-dominated rule sets. One 
trick is the biased mutation where a larger probability is assigned to the mutation from 
1 to 0 than that from 0 to 1. This is for efficiently decreasing the number of fuzzy 
rules in each rule set. The other trick is the removal of unnecessary rules, which is a 
kind of local search. Since we use the single winner-based method for classifying 
each pattern by the rule set S, some fuzzy rules in S may be chosen as winner rules for 
no training patterns. We can remove those fuzzy rules without degrading the first 
objective (i.e., the number of correctly classified training patterns). At the same time, 
the second objective (i.e., the number of fuzzy rules) and the third objective (i.e., the 
total rule length) are improved by removing unnecessary rules. Thus we remove all 
fuzzy rules that are not selected as winner rules for any training patterns from the rule 
set S. The removal of unnecessary rules is performed after the first objective is 
calculated for each rule set and before the second and third objectives are calculated.  

4  Computational Experiments 

4.1  Data Sets 

We use six data sets with many numerical attributes: Wisconsin breast cancer, 
Diabetes, Glass, Cleveland heart disease, Sonar, and Wine. These data sets are 
available from the UCI ML repository (http://www.ics.uci.edu/~mlearn/). In our 
former study [16], we examined the performance of individual non-dominated rule 
sets (i.e., individual fuzzy rule-based classifiers) on each data set. In this paper, we 
examine the performance of their ensemble (i.e., their aggregation using the simple 
majority vote scheme). We evaluate the performance of the aggregated classifier on 
each data set by comparing it with the reported results on the same data set in Elomaa 
& Rousu [7] where six variants of the C4.5 algorithm [23] were examined. The 
performance of each variant was evaluated by ten independent iterations (with 
different data partitions) of the whole ten-fold cross-validation (10-CV) procedure 
(i.e., 10 ) in [7]. We use the same performance evaluation procedure as [7]. CV-10×
 Incomplete patterns with missing values are included in the Wisconsin beast 



  

cancer data set and the Cleveland heart disease data set. Those patterns were not used 
in our computational experiments as in [16]. See UCI ML repository and [16] for 
details of each data set.  

4.2  Experimental Conditions 

As in Elomaa & Rousu [7] and our former study [16], we iterated the whole 10-CV 
procedure ten times using different data partitions into ten subsets. Since the whole 
10-CV procedure consisted of ten iterations of the design of a classifier ensemble and 
its performance evaluation, the NSGA-II was employed 100 times for each data set. A 
number of non-dominated rule sets were simultaneously obtained from each run of 
the NSGA-II. Among those non-dominated rule sets, too small rule sets were 
excluded from the classifier ensemble. More specifically, we used the number of 
classes as the lower bound on the number of fuzzy rules. That is, we excluded non-
dominated rule sets with less than M fuzzy rules for an M-class classification problem. 
After the classifier ensemble was designed, each pattern was independently classified 
by each individual non-dominated rule set in the ensemble. Then the majority class 
was chosen as the final classification result of that pattern by the classifier ensemble. 
 Our computational experiments in this paper were performed in the same manner 
as in our former study [16] where the performance of individual non-dominate rule 
sets was examined. Here we briefly describe the experimental conditions (for details, 
see [16]). All attribute values of each data set were normalized into real numbers in 
the unit interval [0, 1]. As antecedent fuzzy sets, we used “don’t care” and 14 
triangular fuzzy sets generated from four fuzzy partitions with different granularities 
in Fig. 1. We generated 300 fuzzy rules for each class as candidate rules in a greedy 
manner using the SLAVE criterion. Thus the total number of candidate rules was 
300M where M is the number of classes. The upper bound on the length of candidate 
rules was two for the Sonar data set and three for the other data sets.  
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Fig. 1. Four fuzzy partitions used in our computer simulations. 



  

 The NSGA-II was employed for finding non-dominated rule sets from 300M 
candidate rules. We used the following parameter values in the NSGA-II:   

  Population size: 200 strings, 
  Crossover probability: 0.8, 
  Biased mutation probabilities: p M300/1)10(m =→   and  0.1, =→ )01(mp
  Stopping condition: 5000 generations.  

4.3  Experimental Results 

Wisconsin Breast Cancer Data Set: Average error rates by our classifier ensembles 
on training patterns and test patterns are shown by the solid lines in Fig. 2 (a) and Fig. 
2 (b), respectively. They were 2.32% on training patterns in Fig. 2 (a) and 3.75% on 
test patterns in Fig. 2 (b). Average error rates of individual classifiers (i.e., individual 
non-dominated rule sets) are shown by closed and open circles in each figure. Closed 
circles are used for indicating individual classifiers with low error rates on training 
patterns. As shown in Fig. 2 (and other figures in this paper), individual classifiers 
with low error rates on training patterns did not always have low error rates on test 
patterns. This makes it very difficult to choose a single classifier from multiple 
alternative ones. The aggregation of many classifiers using a voting scheme avoids 
this difficult task (i.e., the choice of a single classifier). The performance of individual 
classifiers (i.e., closed and open circles) was examined in our former study [16]. For 
the Wisconsin breast cancer data set, the best and worst error rates among the six 
variants of the C4.5 algorithm were reported as 5.1% and 6.0% by Elomaa & Rousu 
[7], respectively. Those results are shown by the two dotted lines in Fig. 2 (b).  
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Fig. 2. Experimental results on the Wisconsin breast cancer data set. 



  

 From Fig. 2 (b), we can see that the performance of our classifier ensembles was 
much better than the best result of the C4.5 algorithm in [7]. We can also see that the 
performance of our classifier ensembles was better than many individual classifiers 
while it was slightly inferior to the best individual classifier in Fig. 2 (b). 
 Diabetes Data Set: In the same manner as Fig. 2, experimental results on the 
diabetes data set are summarized in Fig. 3. As in Fig. 2 (b), we can observe a positive 
effect of aggregating multiple non-dominated rule sets in Fig. 3 (b). That is, the 
performance of our classifier ensembles (i.e., 25.5% error rate) was better than many 
individual classifiers. We can also see that the performance of our classifier 
ensembles was close to the reported best result in [7] by the C4.5 algorithm (i.e., 
25.0% error rate) and much better than the worst result (i.e., 27.2% error rate).  
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Fig. 3. Experimental results on the diabetes data set. 

 Glass Data Set: Experimental results on the glass data set are summarized in Fig. 
4. Since the performance of our classifier ensembles was significantly inferior to the 
reported results of the C4.5 algorithm in [7], the best result (27.3%) of the C4.5 
algorithm is not shown in Fig. 4 (b). To the best of our knowledge, good results have 
not been reported on the glass data set by descriptive fuzzy rules of the form in (1). 
Thus we feel that descriptive fuzzy rules with homogeneous fuzzy partition are not 
suitable for the glass data set. Further studies may be required for improving the 
performance of descriptive fuzzy rules on the glass data set. 
 Cleveland Heart Disease Data Set: Experimental results on the Cleveland heart 
disease data set are summarized in Fig. 5. The average error rate of our classifier 
ensembles on test patterns in Fig. 5 (b) was 46.6%. The best and worst reported 
results of the C4.5 algorithm in [7] were 46.3% and 47.9%, respectively.  
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Fig. 4. Experimental results on the glass data set. 
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Fig. 5. Experimental results on the Cleveland heart disease data set. 

 Sonar Data Set: Experimental results on the sonar data set are summarized in Fig. 
6. The reported worst result (35.8%) of the C4.5 algorithm in [7] is not shown in Fig. 
6 (b) because it is out of the range of the figure. In Fig. 6 (b), the average error rate of 
our classifier ensembles was 22.74%, which outperformed almost all the individual 
classifiers and the best result (24.6%) of the C4.5 algorithm in [7]. 
 Wine Data Set: Experimental results on the wine data set are summarized in Fig. 
7. The best and worst results of the C4.5 algorithm reported in [7] were 5.6% and 
8.8%, respectively. The average error rate of our classifier ensembles on test patterns 
was 4.21%, which was better than the reported best result of the C4.5 algorithm. In 



  

Fig. 7 (b), the performance of our classifier ensembles was better than many 
individual classifiers while it was slightly inferior to the best individual classifier. 
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Fig. 6. Experimental results on the sonar data set. 
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Fig. 7. Experimental results on the wine recognition data set. 

5  Concluding Remarks 

We proposed an idea of using EMO algorithms for designing an ensemble of 
classifiers with high diversity. EMO algorithms seem to be suitable for this task 



  

because a number of classifiers can be simultaneously obtained from their single run. 
Moreover, many EMO algorithms have some mechanisms for maintaining the 
diversity of populations (i.e., maintaining the diversity of classifiers). In our 
computational experiments, we generated a number of non-dominated fuzzy rule-
based classifiers by applying the NSGA-II algorithm to the three-objective fuzzy rule 
selection problem. Of course, other EMO algorithms are applicable to our classifier 
generation task. Experimental results on six well-known benchmark data sets showed 
that the performance of classifier ensembles was better than many individual 
classifiers. It was also shown that the performance of classifier ensembles was 
comparable with or superior to the reported best results of the C4.5 algorithm in [7] 
for five benchmark data sets (except for the glass data set).  
 Our experimental results in this paper suggest that the use of EMO algorithms is a 
promising approach to the design of classifier ensembles. Moreover, the aggregation 
of non-dominated classifiers avoids the difficult task of choosing a single classifier 
from multiple alternatives. As shown in many figures in this paper (and discussed in 
our former study [16]), low error rates of classifiers on training patterns do not always 
mean low error rates on test patterns. On the contrary, the minimization of the error 
rate on training patterns often leads to the deterioration in the error rate on test 
patterns due to the overfitting to training patterns. Thus it is very difficult to choose a 
single classifier from multiple alternatives based on their classification performance 
on training patterns. The proposed idea avoids this difficulty. The proposed idea can 
be also used as a simple performance measure of EMO algorithms for classification 
problems because the performance of many non-dominated classifiers can be 
summarized as an aggregated scalar measure (i.e., the average error rate of their 
ensemble).  
 Our experimental results can be further improved in several manners because we 
used very simple settings for generating classifier ensembles and classifying new 
patterns. For example, careful selection of classifiers from non-dominated rule sets 
may improve the performance of classifier ensembles. Adjustment of rule weights 
and/or membership functions in each individual classifier may also improve the 
performance of classifier ensembles. We can also use a weighted vote scheme (or 
other voting schemes [19], [21]) instead of the simple majority vote scheme for 
improving the performance of ensembles.  
 The authors would like to thank the financial support from Japan Society for the 
Promotion of Science (JSPS) through Grand-in-Aid for Scientific Research (B): 
KAKENHI (14380194). 
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