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Abstract 

 This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based classifiers 

using a multiobjective fuzzy genetics-based machine learning (GBML) algorithm. Our GBML 

algorithm is a hybrid version of Michigan and Pittsburgh approaches, which is implemented in 

the framework of evolutionary multiobjective optimization (EMO). Each fuzzy rule is 

represented by its antecedent fuzzy sets as an integer string of fixed length. Each fuzzy 

rule-based classifier, which is a set of fuzzy rules, is represented as a concatenated integer string 

of variable length. Our GBML algorithm simultaneously maximizes the accuracy of rule sets 

and minimizes their complexity. The accuracy is measured by the number of correctly classified 

training patterns while the complexity is measured by the number of fuzzy rules and/or the total 

number of antecedent conditions of fuzzy rules. We examine the interpretability-accuracy 

tradeoff for training patterns through computational experiments on some benchmark data sets. 

A clear tradeoff structure is visualized for each data set. We also examine the 

interpretability-accuracy tradeoff for test patterns. Due to the overfitting to training patterns, a 

clear tradeoff structure is not always obtained in computational experiments for test patterns. 

Keywords: Classification, Fuzzy systems, Fuzzy data mining, Multiobjective optimization, 

Genetic algorithms, Genetics-based machine learning. 
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1. Introduction 

 

 There are two main goals in the design of fuzzy rule-based systems: One is the accuracy 

maximization and the other is the complexity minimization. In the 1990s, emphasis was placed 

on the accuracy maximization. Various approaches have been proposed to improve the accuracy 

of fuzzy rule-based systems using learning algorithms of neural networks and optimization 

techniques in evolutionary computation (e.g., see Cordon et al. [1] for a review on various 

evolutionary optimization techniques for the design of fuzzy rule-based systems). Those 

approaches usually improve the accuracy of fuzzy rule-based systems at the cost of their 

interpretability. That is, the complexity of fuzzy rule-based systems usually increases as a result 

of the accuracy maximization. Some researchers tried to simultaneously perform the accuracy 

maximization and the complexity minimization in order to design fuzzy rule-based systems with 

high accuracy and high interpretability [2]-[4]. It is, however, impossible to simultaneously 

optimize these two objectives. Thus the existence of the accuracy-complexity tradeoff in the 

design of fuzzy rule-based systems has been realized [5], [6]. Recently, the accuracy 

maximization and the complexity minimization have been often discussed as multiobjective 

optimization problems [5]-[9]. The accuracy-complexity tradeoff has been also studied for the 

design of neural networks [10], [11]. In the field of fuzzy rule-based systems, the 

accuracy-complexity tradeoff is often referred to as the interpretability-accuracy tradeoff. This is 

because high interpretability is the main advantage of fuzzy rule-based systems over other 

nonlinear systems such as neural networks.  

 One of the first attempts to simultaneously perform the accuracy maximization and the 

complexity minimization of fuzzy rule-based classifiers was GA-based rule selection of 

Ishibuchi et al. [12], [13] in the mid-1990s. They used the following fitness function for fuzzy 

rule selection: 

   )()()( 2211 SfwSfwSfitness ⋅−⋅= ,      (1) 

where S is a set of fuzzy rules (i.e., S is a fuzzy rule-based classifier), )(1 Sf  is the number of 

correctly classified training patterns by S, )(2 Sf  is the number of fuzzy rules in S, and 1w  

and 2w  are prespecified positive constants. A standard single-objective genetic algorithm was 
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used to maximize the fitness function in (1). The GA-based rule selection method was extended 

to two-objective rule selection in [14] where a simple multiobjective genetic algorithm was used 

to find a large number of non-dominated rule sets with respect to the following two objectives: 

   Maximize )(1 Sf  and minimize )(2 Sf . (2) 

 This formulation was further extended to three-objective rule selection in [15], [16] as 

follows: 

   Maximize )(1 Sf , minimize )(2 Sf , and minimize )(3 Sf , (3) 

where )(3 Sf  is the total number of antecedent conditions (excluding “don’t care” conditions) 

of fuzzy rules in S. Since the number of antecedent conditions of each fuzzy rule is often 

referred to as the rule length, )(3 Sf  can be viewed as the total rule length. While only the 

number of fuzzy rules was considered as a complexity measure in the two-objective formulation 

in (2), the length of each fuzzy rule was also taken into account in the three-objective 

formulation in (3). 

 GA-based rule selection in [12]-[16] consists of two stages: heuristic generation of 

candidate rules and genetic rule selection. In the handling of low-dimensional problems such as 

the iris data set with four attributes, all possible fuzzy rules can be used as candidate rules 

[12]-[14]. Heuristic prescreening of candidate rules, however, is necessary in the candidate rule 

generation stage [15], [16] when a GA-based rule selection method is to be applied to 

high-dimensional problems such as the wine data set with 13 attributes and the sonar data set 

with 60 attributes. A data mining technique was used in [16] to generate a prespecified number 

of promising candidate rules. Genetic algorithms were used in the rule selection stage where 

each rule set was coded as a binary string. The string length is the same as the number of 

candidate rules. 

 A number of fuzzy genetics-based machine learning (GBML) algorithms have already been 

proposed in the literature [1] where fuzzy rule-based systems are generated from numerical data 

through genetic operations. Fuzzy GBML algorithms are usually classified into two categories 

as in the case of standard non-fuzzy GBML algorithms: Michigan approach and Pittsburgh 

approach. A single rule is handled as an individual in the Michigan approach while a rule set is 



 

 -4-

handled as an individual in the Pittsburgh approach. As a result, the evolution of fuzzy 

rule-based systems is indirectly driven by the fitness evaluation of each fuzzy rule in the 

Michigan approach while it is directly driven by the fitness evaluation of each rule set in the 

Pittsburgh approach. There is another category of fuzzy GBML algorithms: Iterative rule 

learning approach where a single rule is obtained from each execution of a GBML algorithm. A 

fuzzy rule-based system is constructed by its iterative execution (for details, see [1]). 

 In our former studies [17], [18], we showed that fuzzy rule-based classifiers can be 

generated for high-dimensional problems with many attributes by a Michigan-style GBML 

algorithm even when we use simple grid fuzzy partitions of the pattern space. Those studies 

demonstrated the necessity of the use of “don’t care” conditions in the handling of 

high-dimensional problems. We also combined the Michigan and Pittsburgh approaches into a 

single hybrid algorithm [19]. In this paper, we extend the hybrid fuzzy GBML algorithm to the 

case of multiobjective optimization. Through computational experiments using a hybrid 

multiobjective fuzzy GBML algorithm on six benchmark data sets in the UCI Machine Learning 

Repository (http://www.ics.uci.edu/~mlearn/), we examine the interpretability-accuracy tradeoff 

in the design of fuzzy rule-based classifiers. 

 This paper is organized as follows. First we explain some basic concepts in multiobjective 

optimization in Section 2. We also explain the NSGA-II algorithm of Deb et al. [20] in Section 2. 

Next we explain fuzzy rule-based classifiers, three formulations of their multiobjective design, 

and our hybrid multiobjective fuzzy GBML algorithm in Section 3. Our GBML algorithm is 

implemented in the framework of the NSGA-II algorithm. Then we examine the 

interpretability-accuracy tradeoff in fuzzy rule-based classifiers in detail through computational 

experiments on benchmark data sets in Section 4. We also compare the three formulations of 

multiobjective fuzzy rule-based classifier design with each other in Section 4. Our GBML 

algorithm is compared with the multiobjective fuzzy rule selection method in Section 5. Finally 

we conclude this paper in Section 6. 

 

2. Evolutionary multiobjective optimization 

 

 Evolutionary multiobjective optimization (EMO) is one of the most active research areas in 
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the field of evolutionary computation [21]-[24]. In this section, we briefly explain some basic 

concepts in multiobjective optimization and one of the most well-known and frequently-used 

EMO algorithms: NSGA-II of Deb et al. [20]. 

 

2.1. Multiobjective optimization problems 

 Let us consider the following k-objective maximization problem: 

   Maximize ))(...,),(),(()( 21 xxxxf kfff=  subject to Xx∈ , (4) 

where )(xf  is the objective vector, )(xif  is the i-th objective to be maximized, x is the 

decision vector, and X is the feasible region in the decision space. 

 When the following two conditions are satisfied, a feasible solution Xx∈  is said to be 

dominated by another feasible solution Xy∈  (i.e., y dominates x: y is better than x): 

   i∀ , )()( yx ii ff ≤   and  j∃ , )()( yx jj ff < . (5) 

If there is no feasible solution y that dominates x, x is said to be a Pareto-optimal solution of the 

multiobjective optimization problem in (4). The set of all Pareto-optimal solutions is the 

Pareto-optimal solution set. The image of the Pareto-optimal solution set onto the objective 

space is the Pareto front. The Pareto dominance relation in (5) can be also applied to a solution 

set (i.e., a population). If there is no solution y in a population that dominates x, x is said to be a 

non-dominated solution in that population.  

 

2.2. Evolutionary multiobjective optimization algorithms 

 The task of evolutionary multiobjective optimization (EMO) algorithms is to find 

well-distributed Pareto-optimal or near Pareto-optimal solutions as many as possible. The main 

advantage of EMO algorithms over other multiobjective optimization methods is that many 

non-dominated solutions can be simultaneously obtained by their single run. A number of EMO 

algorithms have been proposed in the literature [21]-[24]. The NSGA-II algorithm of Deb et al. 

[20] is one of the most well-known and frequently-used EMO algorithms in the literature. 

 As in other evolutionary algorithms, first the NSGA-II algorithm generates an initial 

population. This is usually performed randomly. Then an offspring population is generated from 
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the current population by selection, crossover and mutation. The next population is constructed 

from the current and offspring populations. The generation of an offspring population and the 

construction of the next population are iterated until a prespecified stopping condition is 

satisfied. The NSGA-II algorithm has two features, which make it a high-performance EMO 

algorithm. One is the fitness evaluation of each solution based on Pareto ranking and a 

crowding measure, and the other is an elitist generation update procedure. 

 Each solution in the current population is evaluated in the following manner. First, Rank 1 

is assigned to all non-dominated solutions in the current population. All solutions with Rank 1 

are tentatively removed from the current population. Next, Rank 2 is assigned to all 

non-dominated solutions in the reduced current population. All solutions with Rank 2 are 

tentatively removed from the reduced current population. This procedure is iterated until all 

solutions are tentatively removed from the current population (i.e., until ranks are assigned to all 

solutions). As a result, a different rank is assigned to each solution. Solutions with smaller ranks 

are viewed as being better than those with larger ranks. Among solutions with the same rank, an 

additional criterion called a crowding measure is taken into account. The crowding measure for 

a solution calculates the distance between its adjacent solutions with the same rank in the 

objective space (for details, see [20], [21]). Less crowded solutions with larger values of the 

crowding measure are viewed as being better than more crowded solutions with smaller values 

of the crowding measure. A pair of parent solutions are selected from the current population by 

binary tournament selection based on the Pareto ranking and the crowding measure.  

 When the next population is to be constructed, the current and offspring populations are 

combined into a merged population. Each solution in the merged population is evaluated in the 

same manner as in the selection phase of parent solutions using the Pareto ranking and the 

crowding measure. The next population is constructed by choosing a prespecified number (i.e., 

population size) of the best solutions from the merged population. Elitism is implemented in the 

NSGA-II algorithm in this manner. 

 An outline of the NSGA-II algorithm is written as follows: 

[NSGA-II Algorithm] 

Step 1: Generate an initial population with popN  solutions where popN  is the population size. 

Step 2: Generate an offspring population by iterating the following procedures popN  times: 
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(1) Choose a pair of parent solutions from the current population using binary 

tournament selection. 

(2) Generate an offspring from the selected parent solutions by crossover and mutation. 

Step 3: Combine the current population and the offspring population into a merged one. Then 

choose the best popN  solutions from the merged population to construct the next 

population. 

Step 4: If a prespecified stopping condition is not satisfied, return to Step 2. Otherwise terminate 

the execution of the algorithm. In the latter case, we choose all the non-dominated 

solutions in the merged population in Step 3 as the final solutions. 

 

3. Multiobjective design of fuzzy rule-based classifiers 

 

 In this section, we explain fuzzy rule-based classifiers, three formulations of their 

multiobjective design, and a hybrid multiobjective fuzzy GBML algorithm. 

 

3.1. Fuzzy rule-based classifiers 

 Let us assume that we have m training patterns )...,,( 1 pnpp xx=x , mp ...,,2,1=  from 

M classes where pix  is the attribute value of the p-th training pattern for the i-th attribute 

( ni ...,2,1,= ). We also assume that the n-dimensional pattern space has already been 

normalized into the n-dimensional unit hyper-cube n]1,0[ . That is, we assume that we have an 

M-class pattern classification problem with m training patterns in the n-dimensional pattern 

space n]1,0[ . For this problem, we use fuzzy rules of the following form: 

 Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  then Class qC  with qCF , (6) 

where qR  is the label of the q-th rule, )...,,( 1 nxx=x  is an n-dimensional pattern vector, 

qiA  is an antecedent fuzzy set, qC  is a class label, and qCF  is a rule weight.  

 We define the compatibility grade of each training pattern px  with the antecedent part 

)...,,( 1 qnqq AA=A  of the fuzzy rule qR  in (1) using the product operator as 

   mpxxx pnqnApqApqApq ...,,2,1),(...)()()( 2211 =⋅⋅⋅= µµµµ xA , (7) 
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where )( ⋅qiAµ  is the membership function of qiA .  

 To determine the consequent class qC  and the rule weight qCF , we first calculate the 

confidence of the fuzzy rule “ hq Class⇒A ” for each class h as follows (see the textbook on 

fuzzy data mining [25] for fuzzy versions of some basic concepts in data mining such as 

confidence and support): 

   ∑∑=⇒
=∈

m

p
pq

hp
pqq hc

1Class
)()()Class( xxA A

x
A µµ , Mh ...,,2,1= . (8) 

The consequent class qC  is specified as the class with the maximum confidence: 

   }...,2,1,|)Class({max)Class( MhhcCc qqq =⇒=⇒ AA . (9) 

Rule weights have a significant effect on the classification accuracy of a fuzzy rule-based 

classifier [26]. Several methods were examined to determine the rule weight of each fuzzy rule 

in [27] where good results were obtained from the following specification: 

   ∑ ⇒−⇒=

≠
=

M

qCh
h

qqqq hcCcCF
1

)Class()Class( AA . (10) 

We use the above definition in this paper. When the rule weight is not positive, we do not 

generate the corresponding fuzzy rule. 

 Let S be a fuzzy rule-based classifier (i.e., a set of fuzzy rules). When an input pattern px  

is to be classified by the fuzzy rule-based classifier S, a single winner rule wR  is chosen from S 

as follows: 

   }|)(max{)( SRCFCF qqpqwpw ∈⋅=⋅ xx AA µµ . (11) 

The input pattern px  is assigned to the consequent class wC  of the winner rule wR . When 

multiple rules with different consequent classes have the same maximum value in (11), the 

classification of the input pattern px  is rejected. The classification of px  is also rejected 

when there is no compatible fuzzy rules with positive compatibility grades for px . In this case, 

all fuzzy rules have the same maximum value of zero in the right-hand side in (11). For other 

types of fuzzy rules and fuzzy reasoning in fuzzy rule-based classifiers, see [28], [29]. 
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3.2. Multiobjective formulations of fuzzy rule-based classifier design 

 As we have already explained in Section 1, the following three objectives have been 

considered in fuzzy rule selection [12]-[16]: 

)(1 Sf : The number of correctly classified training patterns by S, 

)(2 Sf : The number of fuzzy rules in S, 

)(3 Sf : The total number of antecedent conditions of fuzzy rules (i.e., total rule length) in S. 

It should be noted that “don’t care” conditions are not counted in the calculation of the third 

objective.  

 In this paper, we use the following three formulations of multiobjective optimization 

problems (MOPs) for the interpretability-accuracy tradeoff analysis: 

MOP-1: Maximize )(1 Sf  and minimize )(2 Sf , 

MOP-2: Maximize )(1 Sf  and minimize )(3 Sf , 

MOP-3: Maximize )(1 Sf , minimize )(2 Sf , and minimize )(3 Sf . 

 For comparison, we also use the following three formulations of single-objective 

optimization problems (SOPs): 

SOP-1: Maximize )()( 2211 SfwSfw ⋅−⋅ , 

SOP-2: Maximize )()( 3311 SfwSfw ⋅−⋅ , 

SOP-3: Maximize )()()( 332211 SfwSfwSfw ⋅−⋅−⋅ , 

where 1w , 2w  and 3w  are prespecified non-negative weights. 

 The Pareto dominance relation in (5) in Section 2 is modified when it is applied to each of 

the three multiobjective optimization problems. For example, the Pareto dominance relation is 

modified for MOP-3 as follows: A rule set xS  is said to be dominated by another rule set yS  

(i.e., yS  dominates xS : yS  is better than xS ) when all the following inequalities hold: 

   )()( 11 yx SfSf ≤ , )()( 22 yx SfSf ≥ , )()( 33 yx SfSf ≥ , (12) 

and at least one of the following inequalities holds: 
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   )()( 11 yx SfSf < , )()( 22 yx SfSf > , )()( 33 yx SfSf > . (13) 

Roughly speaking, when a rule set xS  has lower classification accuracy and higher complexity 

than another rule set yS , xS  is said to be dominated by yS  in all the three multiobjective 

optimization problems. 

 

3.3. Hybrid multiobjective fuzzy GBML algorithm 

 We use a hybrid multiobjective fuzzy GBML algorithm to efficiently find a large number 

of non-dominated rule sets (i.e., fuzzy rule-based classifiers) of the three multiobjective 

optimization problems: MOP-1, MOP-2, and MOP-3. Our GBML algorithm can be viewed as a 

Pittsburgh-style algorithm except that a Michigan-style algorithm is applied to each rule set as a 

kind of mutation. Our GBML algorithm is implemented in the framework of the NSGA-II 

algorithm as follows: 

[Hybrid Multiobjective Fuzzy GBML Algorithm] 

Step 1: Generate an initial population of popN  rule sets where popN  is the population size. 

Step 2: Generate an offspring population by iterating the following procedures popN  times: 

(1) Select a pair of parent rule sets from the current population using binary tournament 

selection. 

(2) Generate an offspring from the selected pair of parent rule sets by crossover and 

mutation. 

(3) Apply a single iteration of a Michigan-style GBML algorithm to the offspring rule 

set with a prespecified probability (0.5 in our computational experiments). 

Step 3: Combine the current population and the offspring population into a merged one. Then 

choose the best popN  rule sets from the merged population to construct the next 

population. 

Step 4: If a prespecified stopping condition is not satisfied, return to Step 2. Otherwise terminate 

the execution of the algorithm. In the latter case, we choose all the non-dominated rule 

sets in the merged population in Step 3 as the final solutions. 

 

 Each rule set is evaluated based on the Pareto ranking and the crowding measure as 
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explained in Section 2 in the same manner as the NSGA-II algorithm. Our GBML algorithm has 

high search ability of Michigan approach to efficiently find good fuzzy rules as well as direct 

optimization ability of Pittsburgh approach to optimize rule sets. In the following, we explain 

our GBML algorithm in detail. 

 Each fuzzy rule is represented by its antecedent part qA  as an integer string of length n 

where n is the dimensionality of the pattern space (i.e., n is the number of attributes). The 

consequent class and the rule weight of each fuzzy rule are specified from training patterns as 

described in Subsection 3.1. For each attribute, we use 14 antecedent fuzzy sets in Fig. 1. We 

also use “don’t care” as an additional antecedent fuzzy set. The membership value of this special 

antecedent fuzzy set is always unity for any input values ( x∀ , 1)(' =xcaretdonµ ). We use 15 

symbols (e.g., 0, 1, ..., 9, a, b, c, d, e) to represent don’t care and the 14 antecedent fuzzy sets in 

Fig. 1. For example, an integer string “0102d0” denotes the fuzzy rule “If 2x  is 2S  and 4x  

is 2L  and 5x  is 5ML  then Class qC  with qCF ” where don’t care conditions on 1x , 3x  

and 6x  represented by 0s in the string are omitted. It should be noted that the number of 

antecedent conditions (i.e., rule length) of this rule is three because don’t care conditions are not 

counted. The total number of possible combinations of the antecedent part qA  is n15  for our 

n-dimensional pattern classification problem. 
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Fig. 1. Four fuzzy partitions used in our computational experiments. The superscript of each 

fuzzy set means the granularity of the fuzzy partition. Each of the 14 fuzzy sets is represented 

by one of the 14 symbols (i.e., 1, 2, ..., 9, a, b, c, d, e) as shown in this figure. 
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 A rule set S is handled as an individual and coded as a concatenated integer string where 

each substring of length n represents a single fuzzy rule. It should be noted that the number of 

fuzzy rules in each rule set is not fixed in our hybrid multiobjective fuzzy GBML algorithm. 

 It was shown in [16], [17] that the search ability of Michigan-style fuzzy GBML 

algorithms was drastically improved by directly generating initial fuzzy rules from training 

patterns in a heuristic manner. We use a similar heuristic method to generate an initial 

population of rule sets in Step 1 of our GBML algorithm. First we randomly select a 

prespecified number of training patterns (say, ruleN  training patterns). Next we generate a 

fuzzy rule qR  from each training pattern )...,,( 1 pnpp xx=x  by probabilistically choosing an 

antecedent fuzzy set qiA  for each attribute value pix  from the 14 candidate fuzzy sets kB  

( =k 1, 2, ..., 9, a, b, c, d, e) in Fig. 1. Each candidate fuzzy set kB  has the following selection 

probability for the attribute value pix : 

   =)( kBP
∑
=

e

1
)(

)(

j
pijB

pikB

x

x

µ

µ
, =k 1, 2, ..., 9, a, b, c, d, e. (14) 

That is, the antecedent part )...,,( 1 qnqq AA=A  is specified from )...,,( 1 pnpp xx=x  so that 

qiA  has a large compatibility grade with pix . Then each antecedent fuzzy set of the generated 

fuzzy rule is replaced with don’t care using a prespecified probability caretdonP ' . In this manner, 

ruleN  initial fuzzy rules are generated. An initial rule set consists of these fuzzy rules. By 

iterating this procedure, we generate popN  initial rule sets (i.e., an initial population). 

 In Step 2 (1) of our GBML algorithm, a pair of parent rule sets are selected from the 

current population by binary tournament selection based on the Pareto ranking and the crowding 

measure as in the NSGA-II algorithm. Let the selected rule sets be 1S  and 2S . Some fuzzy 

rules are randomly selected from each parent to construct a new rule set by crossover in Step 2 

(2). The number of fuzzy rules to be inherited from each parent to the new rule set is randomly 

specified. Let 1N  and 2N  be the number of fuzzy rules to be inherited from 1S  and 2S , 

respectively. We randomly specify 1N  and 2N  in the intervals |]|,1[ 1S  and |]|,1[ 2S , 

respectively, where || iS  is the number of fuzzy rules in the rule set iS . In order to generate a 

new fuzzy rule, 1N  and 2N  fuzzy rules are randomly chosen from 1S  and 2S , respectively. 

The generated new rule set has )( 21 NN +  fuzzy rules. This crossover operation is applied to 
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the selected pair of parent rule sets using a prespecified crossover probability CP . When the 

crossover operation is not applied, one of the two parent rule sets is viewed as an offspring. 

Each antecedent fuzzy set of the newly generated offspring rule set is randomly replaced with a 

different antecedent fuzzy set using a prespecified mutation probability MP . 

 The point of our crossover operation is that the string length is not fixed. In our 

computational experiments, we use an upper limit on the number of fuzzy rules in each rule set 

to find compact rule sets with high interpretability. The upper limit is specified as 40 in this 

paper. When the number of fuzzy rules is more than 40 in the generated rule set (i.e., 

4021 >+ NN ), we randomly select 40 fuzzy rules and remove the other rules from the rule set. 

 After the crossover and mutation operations in Step 2 (2), a single iteration of the following 

Michigan-style algorithm is applied to the newly generated offspring rule set in Step 2 (3): 

[Single Iteration of Michigan-Style Fuzzy GBML Algorithm] 

Step 1: An offspring rule set S is given by the main part of our GBML algorithm. 

Step 2: Classify each training pattern by the rule set S. The fitness value of each rule is the 

number of correctly classified training patterns by that rule. 

Step 3: Generate replaceN  fuzzy rules from the existing rules in S by genetic operations and 

from misclassified and/or rejected training patterns. 

Step 4: Replace the worst replaceN  fuzzy rules in S with the newly generated replaceN  rules. 

Step 5: Return the updated rule set S to the main part of our GBML algorithm. 

 

 The fitness of each fuzzy rule qR  (i.e., )( qRfitness ) is the number of correctly classified 

training patterns by qR  in Step 2 of our Michigan-style algorithm. Since we use the single 

winner-based fuzzy reasoning method (i.e., since a single fuzzy rule is responsible for the 

classification of each training pattern), the following relation always holds: 

   ∑=
∈SqR

qRfitnessSf )()(1 . (15) 

 In Step 3 of our Michigan-style algorithm, replaceN  fuzzy rules are to be newly generated. 

We generate at least a half of new fuzzy rules (i.e., at least 2/replaceN  rules) by genetic 

operations from the existing rules in S. The probabilistic specification of each antecedent fuzzy 

set by (14) and the replacement with don’t care using the probability caretdonP '  are also used to 
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generate new fuzzy rules. Let MRN  be the sum of the number of misclassified and rejected 

training patterns by the rule set S. When MRN  is less than or equal to 2/replaceN , all the 

MRN  training patterns are used to generate new fuzzy rules. In this case, MRN  fuzzy rules 

are generated from the MRN  training patterns. Other fuzzy rules (i.e., )( MRreplace NN −  

rules) are generated by genetic operations. On the other hand, when MRN  is larger than 

2/replaceN , 2/replaceN  training patterns are randomly chosen from the MRN  training 

patterns. Then 2/replaceN  fuzzy rules are directly generated from the chosen patterns. Other 

fuzzy rules are generated by genetic operations.  

 The number of replaced fuzzy rules (i.e., replaceN ) is specified as ⎡ ⎤||2.0 S×  for each 

rule set S where ⎡ ⎤||2.0 S×  is the minimum integer not smaller than ||2.0 S× . For example, 

one fuzzy rule is replaced when the number of fuzzy rules in S is less than or equal to five. In 

this case, the heuristic rule generation procedure and the genetic operation-based procedure are 

randomly evoked with the same probability when at least one training pattern is misclassified or 

rejected by the rule set S. 

 When we generate a new fuzzy rule by genetic operations, first a pair of parent fuzzy rules 

are selected from the rule set S using binary tournament selection. Then the standard uniform 

crossover operation is applied to the selected pair to generate a new fuzzy rule. Finally the same 

mutation operation as in the main part of our GBML algorithm is applied to each antecedent 

fuzzy set of the newly generated fuzzy rule. This procedure is iterated to generate a required 

number of new fuzzy rules. 

 A new rule set is generated in our GBML algorithm by selection, mutation, crossover and a 

single iteration of the Michigan-style algorithm. When a new rule set includes meaningless 

fuzzy rules with non-positive rule weights, those fuzzy rules are removed from the rule set. This 

procedure is iterated popN  times to generate an offspring population of popN  rule sets. The 

next population is constructed from the merged population of the current and offspring 

populations in the same manner as the NSGA-II algorithm. When a prespecified stopping 

condition is satisfied, our GBML algorithm returns all the non-dominated rule sets in the 

merged population. 

 When our GBML algorithm is applied to the single-objective optimization problems (i.e., 

SOP-1, SOP-2, and SOP-3), each rule set is evaluated by the scalar fitness function (i.e., 
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weighted sum of multiple objectives) instead of the Pareto ranking and the crowding measure in 

the main part of our GBML algorithm. Except for this change in the fitness evaluation of each 

rule set, our GBML algorithm can be applied to each single-objective optimization problem 

with no modifications.  

 

4. Computational experiments 

 

 In this section, we examine the interpretability-accuracy tradeoff of fuzzy rule-based 

classifiers through computational experiments on six benchmark data sets.  

 

4.1. Conditions of computational experiments 

 We use six data sets with many numerical attributes: Wisconsin breast cancer, Diabetes, 

Glass, Cleveland heart disease, Sonar, and Wine, which are available from the UCI Machine 

Learning Repository (http://www.ics.uci.edu/~mlearn/). Table 1 shows the number of attributes, 

the number of patterns, and the number of classes in each data set. Some data sets include 

incomplete patterns with missing values. Those patterns are not used in our computational 

experiments. This is because the performance of classification methods usually depends on the 

choice of a handling method of missing values.  

 

Table 1. Data sets used in our computer simulations. 

C4.5 in Elomaa & Rousu [30]Data set Number of 
attributes (n) 

Number of 
patterns (m)

Number of 
classes (M)     Best         Worst 

Breast W  9  683* 2  5.1  6.0 
Diabetes  8 768 2 25.0 27.2 

Glass  9 214 6 27.3 32.2 
Heart C 13  297* 5 46.3 47.9 
Sonar 60 208 2 24.6 35.8 
Wine 13 178 3  5.6  8.8 

  * Incomplete patterns with missing values are not included. 

 

 In the last two columns of Table 1, we show benchmark results on these data sets. They are 

error rates reported in Elomaa and Rousu [30] where six variants of the C4.5 algorithm [31], 
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[32] were examined. The six variants were different from each other in their discretization 

methods of continuous attributes. The performance of each variant was evaluated by ten 

independent iterations (with different data partitions) of the whole ten-fold cross-validation 

(10-CV) procedure (i.e., ×10 10-CV) in [30]. We use the same performance evaluation 

procedure (i.e., ten independent iterations of the whole 10-CV procedure) in our computational 

experiments when the interpretability-accuracy analysis is performed for test patterns. 

 We use the following parameter specifications in our GBML algorithm: 

Number of fuzzy rules in each initial rule set: 20 rules, 

Probability of don’t care ( caretdonP ' ): 0.95 (Sonar data set) and 0.8 (the other data sets), 

Population size: 200 rule sets, 

Crossover probability in the main part: 0.9, 

Crossover probability in the Michigan-style part: 0.9, 

Mutation probability in the main part: n/1 , 

Mutation probability in the Michigan-style part: n/1 , 

Stopping condition: 5000 generations. 

These parameter specifications mean that the multiobjective evolution of rule sets is performed 

for 5000 generations from an initial population of 200 rule sets with 20 rules. During a single 

run of our GBML algorithm, 1,000,000 (i.e., 5000200× ) rule sets are examined to find 

non-dominated rule sets. The relation between the number of generations and the performance 

of our GBML algorithm is discussed through computational experiments later. 

 When our GBML algorithm is applied to the single-objective optimization problems (i.e., 

SOP-1, SOP-2 and SOP-3), we specify the weight values as 101 =w  and == 32 ww 1. The 

dependency of the performance of our GBML algorithm on the choice of weight values is also 

discussed through computational experiments later. 

 

4.2. Illustrative computational experiments 

 Before performing the interpretability-accuracy analysis of fuzzy rule-based classifiers in 

detail, we demonstrate how our GBML algorithm works for the single-objective and 

multiobjective optimization problems through illustrative computational experiments on the 
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diabetes data set. For illustration purpose, we randomly divided the 768 patterns of this data set 

into 384 training patterns and 384 test patterns. This setting of computational experiments is to 

easily show the error rates of each non-dominated fuzzy rule-based classifier on training 

patterns and test patterns. In the next subsection, we show experimental results based on the 

10-fold cross-validation (10-CV) technique. 

 Our GBML algorithm was applied to each of the six formulations (SOP-1 ~ MOP-3) of 

fuzzy rule-based classifier design using the 384 training patterns of the diabetes data set. After 

5000 generations in each trial, multiple non-dominated rule sets were obtained from each of the 

three multiobjective formulations. This is because our GBML algorithm was executed for each 

multiobjective formulation in the framework of evolutionary multiobjective optimization where 

a number of non-dominated solutions (i.e., non-dominated rule sets) were obtained as a result of 

optimization. On the other hand, a single rule set was obtained from each of the three 

single-objective formulations. This is because our GBML algorithm was executed for each 

single-objective formulation in the framework of evolutionary single-objective optimization 

where a single optimal solution (i.e., optimal rule set) with respect to the corresponding 

weighted sum scalar fitness function was obtained as a result of optimization. 

 The obtained non-dominated rule sets from MOP-1 with )(1 Sf  and )(2 Sf  are shown in 

Fig. 2 (a) together with the three rule sets obtained from the three single-objective formulations. 

The vertical axis of Fig. 2 (a) is the error rate on the training patterns. In Fig. 2 (a), the rejection 

of classification is counted as an error. Strictly speaking, the vertical axis is the sum of the error 

rate and the rejection rate. It should be noted that multiple non-dominated rule sets denoted by 

open circles in Fig. 2 (a) were obtained by a single run of our GBML algorithm. This result 

clearly demonstrates that our multiobjective GBML algorithm can find a number of 

non-dominated rule sets by its single run. One of the obtained non-dominated rule sets from 

MOP-1 includes only a single fuzzy rule (i.e., 1)(2 =Sf ), which is not shown in Fig. 2 (a) 

because its error rate is out of the range of the vertical axis (i.e., 31.78% on the training 

patterns). 

 Fig. 2 (b) shows the error rates on the test patterns of the obtained rule sets in Fig. 2 (a). 

For comparison, the reported results in [30] by the C4.5 algorithm are also shown in Fig. 2 (b). 
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 2. Experimental results of a single run of our GBML algorithm on the diabetes data set. Our 

GBML algorithm was applied to MOP-1 with 50% training patterns and 50% test patterns. For 

comparison, experimental results from the three single-objective optimization problems are also 

shown. 

 

 We can observe a clear interpretability-accuracy tradeoff structure between the number of 

fuzzy rules and the error rate on the training patterns in Fig. 2 (a). That is, small rule sets with a 

few fuzzy rules are interpretable but not accurate. Fig. 3 shows the obtained rule set with two 

fuzzy rules, which has a 18.35% error rate on the training patterns in Fig. 2 (a). The rule set in 

Fig. 3 is interpretable but does not have high accuracy on the training patterns. On the other 

hand, larger rule sets with more fuzzy rules in Fig. 2 (a) are more accurate but not interpretable. 
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Fig. 3. An obtained non-dominated rule set with two fuzzy rules of MOP-1. 
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 The interpretability-accuracy tradeoff structure of fuzzy rule-based classifiers is not so 

clear in Fig. 2 (b) with respect to their error rates on the test patterns. For example, the two 

fuzzy rules in Fig. 3 have high generalization ability (i.e., a 26.51% error rate on the test 

patterns) in Fig. 2 (b) while they have the worst error rate on the training patterns in Fig. 2 (a). 

The generalization ability (i.e., error rates on the test patterns) is somewhat degraded by the 

increase in the number of fuzzy rules due to the overfitting to the training patterns in Fig. 2 (b).  

 Fig. 4 shows experimental results by MOP-2 with )(1 Sf  and )(3 Sf . The horizontal axis 

is the total rule length (i.e., the total number of antecedent conditions of fuzzy rules) in Fig. 4 

while it was the number of fuzzy rules in Fig. 2. We can observe a clear 

interpretability-accuracy tradeoff structure in Fig. 4 (a) with respect to error rates on the training 

patterns. On the other hand, such a tradeoff structure is not clear in Fig. 4 (b) with respect to 

error rates on the test patterns. From the comparison between Fig. 2 and Fig. 4, we can see that 

more non-dominated rule sets were obtained from MOP-2 than MOP-1. 

 Fig. 5 shows experimental results by MOP-3 with )(1 Sf , )(2 Sf , and )(3 Sf . The 

horizontal axis in Fig. 5 is the number of fuzzy rules as in Fig. 2. Since we use both )(2 Sf  and 

)(3 Sf  as complexity measures in MOP-3, some non-dominated rule sets have the same 

number of fuzzy rules. Those rule sets are different from each other in the total rule length. For 

example, the total rule length is 1 in the simplest non-dominated rule set with two fuzzy rules 

(with a 26.87% error rate on the training patterns, which is out of the range of Fig. 5 (a)) while it 

is 6 in the most complicated non-dominated rule set with two fuzzy rules (with a 19.64% error 

rate on the training patterns in Fig. 5 (a)). The best rule set among those with the same number 

of fuzzy rules is depicted by a closed circle in Fig. 5 (a). The same rule set is also depicted by a 

closed circle in Fig. 5 (b). Whereas the lowest error rates on the test patterns are also obtained 

by the closed circles in Fig. 5 (b), this is not always the case as we will show later (see Fig. 18). 

That is, high accuracy on the training patterns among rule sets with the same number of fuzzy 

rules does not always mean high accuracy on the test patterns. 
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 4. Experimental results from MOP-2, SOP-1, SOP-2, and SOP-3. 
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 5. Experimental results from MOP-3, SOP-1, SOP-2, and SOP-3. 

 Experimental results in Fig. 2, Fig. 4, and Fig. 5 also show that rule sets from the 

single-objective formulations do not always have high accuracy on the test patterns in the right 

plot of each figure while their accuracy is high on the training patterns in the left plot. Since 

only a single rule set can be obtained from a single run for a single-objective formulation, 

multiple runs with different weight specifications are required for the interpretability-accuracy 

tradeoff analysis of fuzzy rule-based classifiers. On the other hand, we can perform the 

interpretability-accuracy tradeoff analysis using experimental results from a single run for a 
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multiobjective formulation. This is the main advantage of multiobjective formulations of fuzzy 

rule-based classifier design over single-objective formulations. 

 

4.3. Interpretability-accuracy analysis for each data set 

 Since the number of fuzzy rules is an intuitively acceptable criterion to measure the 

interpretability of fuzzy rule-based classifiers, we performed the interpretability-accuracy 

analysis using MOP-1 with )(1 Sf  and )(2 Sf . That is, we applied our GBML algorithm to 

MOP-1. Our GBML algorithm was also applied to the three single-objective formulations for 

comparison. We used the 10-fold cross-validation (10-CV) method to evaluate the 

generalization ability of fuzzy rule-based classifiers for test patterns. Each data set was 

randomly divided into 10 subsets of the same size in the 10-CV method. Nine subsets were used 

as training patterns while one subset was used as test patterns. This training-test procedure was 

iterated 10 times so that each subset was used as test patterns once. We iterated the whole 

10-CV procedure 10 times (i.e., ×10 10-CV). That is, our GBML algorithm was executed 100 

times for each data set.  

 When our GBML algorithm was applied to one of the three single-objective formulations, 

a single rule set was obtained from a single run. Thus the average result was simply calculated 

over 100 rule sets from 100 runs for each data set. On the other hand, multiple rule sets were 

obtained from a single run when our GBML algorithm was applied to MOP-1 as shown in Fig. 2. 

Different rule sets were usually obtained from different runs because different training patterns 

were used in each run of the 10-CV procedure and because our GBML algorithm is a stochastic 

search algorithm. The number of obtained rule sets from each run was not always the same over 

100 runs, either. Thus the calculation of average results is not straightforward in the case of 

multiobjective design of fuzzy rule-based classifiers. We calculated the average error rate over 

rule sets with the same number of fuzzy rules when MOP-1 was used. For example, 100 rule 

sets with two fuzzy rules were obtained from 100 runs of our GBML algorithm on MOP-1 for 

the diabetes data set. The average error rate was calculated over those 100 rule sets. Other 

average error rates were also calculated for other values of the number of fuzzy rules. When rule 

sets with a particular number of fuzzy rules were obtained only from 50 or less runs, the average 

error rate over those rule sets is not reported in this paper since such an average result is not 
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reliable. That is, reported average error rates in this paper were always calculated over more 

than 50 runs. 

 Over ten independent runs of the whole 10-CV procedure, we calculated average error 

rates on training patterns as well as on test patterns. Experimental results were summarized in 

Figs. 6-11. Left plots are results on training patterns while right plots are results on test patterns. 

From these figures, we can see that the six data sets have similar interpretability-accuracy 

tradeoff structures for training patterns in Figs. 6-11 (a). The six data sets, however, have totally 

different tradeoff structures for test patterns in Figs. 6-11 (b). 

 In Figs. 6-11 (a), rule sets with high accuracy on training patterns were obtained from the 

single-objective formulations for all the six data sets. Good rule sets in terms of generalization 

ability, however, were not always obtained from the single-objective formulations in Figs. 6-11 

(b). This observation suggests an advantage of multiobjective formulations of fuzzy rule-based 

classifier design over single-objective formulations for some data sets.  
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 6. Experimental results on the Wisconsin breast cancer data set. 
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 7. Experimental results on the diabetes data set. 

Number of fuzzy rules

Er
ro

r r
at

e 
on

 tr
ai

ni
ng

 p
at

te
rn

s (
%

)

MOP-1
SOP-1
SOP-2
SOP-3

5 10 15 20 25 3015

20

25

30

35

40

   Number of fuzzy rules

Er
ro

r r
at

e 
on

 te
st 

pa
tte

rn
s (

%
) MOP-1

SOP-1
SOP-2
SOP-3

5 10 15 20 25 30

36

38

40

42

44

 

  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 8. Experimental results on the glass data set. 
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 9. Experimental results on the Cleveland heart disease data set. 
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 10. Experimental results on the sonar data set. 
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 11. Experimental results on the wine data set. 

 

4.4. Comparison among three multiobjective formulations 

 In order to compare the three multiobjective formulations (i.e., MOP-1, MOP-2 and 

MOP-3) with each other, we also executed the whole 10-CV procedure 10 times for each data 

set using MOP-2 and MOP-3. In Table 2, we summarized the average number of obtained 

non-dominated rule sets from each formulation where bold face shows the largest average 

number for each data set. From this table, we can see that more non-dominated rule sets were 

obtained from MOP-2 and MOP-3 than MOP-1. That is, the use of the total rule length as a 

complexity measure increased the number of obtained non-dominated rule sets.  

 

 

Table 2. Average number of obtained non-dominated rule sets.  

Data set MOP-1 MOP-2 MOP-3 
Breast W 12.09 13.32 12.25 
Diabetes 9.71 15.80 17.06 

Glass 13.98 16.49 27.09 
Heart C 11.56 22.17 18.59 
Sonar 10.01 20.47 17.66 
Wine 11.45 9.96 11.81 
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 Table 3 summarizes the average value of the best error rate on training patterns among the 

obtained non-dominated rule sets from each run of our GBML algorithm over ten independent 

executions of the whole 10-CV procedure. For comparison, we also show the average result for 

each of the three single-objective formulations. From Table 3, we can see that the best results on 

training patterns were obtained by SOP-1 for all the six data sets. On the other hand, Table 4 

summarizes the average value of the best error rate on test patterns among the obtained 

non-dominated rule sets from each run. Table 4 clearly demonstrates a potential advantage of 

multiobjective formulations over single-objective ones for some data sets with respect to the 

generalization ability of obtained fuzzy rule-based classifiers. We can also see from Table 4 that 

good results were obtained from different formulations for different data sets.  

 

 

Table 3. Average best error rates on training patterns among the obtained rule sets from each 

formulation. 

Data set MOP-1 MOP-2 MOP-3 SOP-1 SOP-2 SOP-3 
Breast W 1.59 1.71 1.74 1.08 1.44 1.51 
Diabetes 19.48 19.79 19.59 17.74 18.37 18.41 

Glass 25.11 27.08 25.94 17.81 21.92 22.36 
Heart C 33.43 35.05 34.59 25.72 29.65 29.98 
Sonar 8.55 8.69 8.42 3.55 5.89 5.82 
Wine 0.01 0.10 0.03 0.00 0.00 0.00 

 

 

Table 4. Average best error rates on test patterns among the obtained rule sets from each 

formulation. 

Data set MOP-1 MOP-2 MOP-3 SOP-1 SOP-2 SOP-3 
Breast W 2.93 2.74 2.66 3.88 3.69 3.56 
Diabetes 23.27 22.32 21.80 25.26 25.00 24.20 

Glass 35.55 33.93 34.05 35.76 39.21 38.36 
Heart C 42.57 42.85 42.64 44.83 45.80 45.44 
Sonar 23.18 17.32 17.51 24.04 23.47 24.29 
Wine 3.99 3.65 3.04 7.30 6.49 6.52 
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 The three multiobjective formulations are compared with each other in terms of error rates 

on test patterns in Figs. 12-17. The horizontal axis is the number of fuzzy rules in the left plot of 

each figure while it is the total rule length in the right plot. The same experimental results were 

shown in the left and right plots of each figure using different coordinates. In the case of MOP-2, 

the average error rate on test patterns was calculated for rule sets with the same total rule length 

over 100 runs. When rule sets with a particular value of the total rule length were not obtained 

from more than 50 runs, the average error rate is not reported for that total rule length. In the 

case of MOP-3, the average error rate on test patterns was calculated for rule sets with the same 

number of fuzzy rules and the same total rule length over 100 runs. Only when rule sets with a 

particular combination of the number of fuzzy rules and the total rule length were obtained from 

more than 50 runs, the average error rate is reported as a result of MOP-3. 

 From Figs. 12-17 (as well as Table 4), we can see that good results were obtained from 

different formulations for different rule sets. The best rule sets with respect to the generalization 

ability were obtained from MOP-3 for three data sets in Figs. 12-17 (see Table 4). This 

observation suggests a potential usefulness of the use of both complexity measures (i.e., the 

number of fuzzy rules and the total rule length) as a safeguard against the overfitting of fuzzy 

rule-based classifiers to training patterns. 
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Fig. 12. Experimental results on the Wisconsin breast cancer data set. 
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Fig. 13. Experimental results on the diabetes data set. 
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Fig. 14. Experimental results on the glass data set. 
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Fig. 15. Experimental results on the Cleveland heart disease data set. 
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Fig. 16. Experimental results on the sonar data set. 
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Fig. 17. Experimental results on the wine data set. 

 One advantage of the three-objective formulation MOP-3 over the two-objective 

formulations MOP-1 and MOP-2 is that MOP-3 enables us to examine the relation between the 

generalization ability and the average rule length among multiple rule sets with the same 

number of fuzzy rules. In Fig. 18, we show an example of such tradeoff analysis on the 

Cleveland heart disease data set. Fig. 18 is generated from Fig. 15 by concentrating on rule sets 

with two fuzzy rules and three fuzzy rules. 
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     (a) Rule sets with two rules.      (b) Rule sets with three rules. 

Fig. 18. Experimental results on the Cleveland heart disease data set. 

 

4.5. Parameter specifications 

 In this subsection, we briefly discuss the specification of two parameters: the total number 

of generations in our GBML algorithm and the weight vector in each single-objective 

formulation. In our computational experiments, the total number of generations was specified as 

5000. As we will show in Section 5, our GBML algorithm has a huge search space. Thus we 

may need more computation to obtain near-optimal non-dominated rule sets. In Fig. 19 and Fig. 

20, we show experimental results of a single run on the diabetes data set after 20000 generations 

and 50000 generations, respectively. The corresponding results after 5000 generations were 

shown in Fig. 2 in Subsection 4.2. From Fig. 2 (a), Fig. 19 (a), and Fig. 20 (a), we can see that 

error rates on training patterns were improved further by increasing the number of generations. 

This means that 5000 generations were not enough to obtain near-optimal non-dominated rule 

sets. This also suggests the necessity to improve the search ability of our GBML algorithm 

while it is based on the state-of-the-art EMO algorithm: NSGA-II. On the other hand, we can 

see from Fig. 2 (b), Fig. 19 (b) and Fig. 20 (b) that the improvement in error rates on training 

patterns did not always lead to the improvement in error rates on test patterns (i.e., the 

improvement in the generalization ability of fuzzy rule-based classifiers).  
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 19. Experimental results of a single run of our GBML algorithm on the diabetes data set 

after 20000 generations. Corresponding results after 5000 generations were shown in Fig. 2. 
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  (a) Error rates on training patterns.       (b) Error rates on test patterns. 

Fig. 20. Experimental results of a single run of our GBML algorithm on the diabetes data set 

after 50000 generations. 

 

 The weight values in the single-objective formulations were specified as =1w 10, =2w 1, 

and =3w 1 in our computational experiments. In general, obtained solutions strongly depend on 

weight values when we use the weighted sum of multiple objectives as a scalar fitness function 

to solve multi-objective optimization problems as single-objective ones. In Tables 5-7, we show 
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the dependency of experimental results by SOP-1 on the specification of the weight vector 

),( 21 ww=w . In these tables, we examined six combinations of the weight values 1w  and 2w  

using 10 independent executions of the whole 10-CV procedure (i.e., ×10 10-CV) as in Tables 

2-4. From these figures, we can see that totally different results were obtained from different 

specifications of the weight values. We can also see from these tables that the weight vector (10, 

1) seems to be a good compromise between the accuracy and the complexity. 

 

Table 5. Average number of fuzzy rules. 

Data set (1000, 1) (100, 1) (10, 1) (1, 1) (1, 10) (1, 100) 
Breast W 22.84 22.84 5.13 3.37 2.00 2.00 
Diabetes 31.53 32.97 9.43 6.56 2.13 1.00 

Glass 28.32 28.32 9.06 7.09 3.02 1.00 
Heart C 28.37 28.65 8.91 7.33 1.04 1.00 
Sonar 30.23 29.67 6.81 5.40 2.03 1.01 
Wine 4.80 4.70 4.34 3.50 3.00 1.00 

 
 

Table 6. Average best error rates on training patterns among the obtained rule sets. 

Data set (1000, 1) (100, 1) (10, 1) (1, 1) (1, 10) (1, 100) 
Breast W 1.01 1.01 1.51 1.87 2.67 2.69 
Diabetes 17.86 17.78 18.41 18.79 22.12 34.90 

Glass 17.91 17.91 22.36 23.77 35.19 64.98 
Heart C 26.02 26.00 29.98 31.67 45.95 46.13 
Sonar 3.75 3.56 5.82 6.49 18.02 46.34 
Wine 0.00 0.00 0.00 0.49 1.60 60.11 

 
 

Table 7. Average best error rates on test patterns among the obtained rule sets. 

Data set (1000, 1) (100, 1) (10, 1) (1, 1) (1, 10) (1, 100) 
Breast W 3.87 3.87 3.56 3.83 4.03 4.14 
Diabetes 24.86 25.16 24.20 25.03 25.50 34.97 

Glass 37.03 37.03 38.36 38.52 42.93 73.66 
Heart C 46.06 45.79 45.44 46.10 46.48 46.25 
Sonar 24.84 24.01 24.29 23.58 29.59 47.41 
Wine 7.02 7.02 6.52 7.99 8.71 61.01 
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4.6. Choice of a single fuzzy rule-based classifier 

 As we have already explained, multiple fuzzy rule-based classifiers are obtained from a 

single run of our GBML algorithm when we use one of the three multiobjective formulations. In 

a real-world application of our GBML algorithm, we usually have to choose a single fuzzy 

rule-based classifier as a final solution from our GBML algorithm. In this case, our GBML 

algorithm may be used in the following manner. 

 First we divide the available training patterns into two subsets. One subset is used to 

generate multiple fuzzy rule-based classifiers by our GBML algorithm. The other subset is used 

to evaluate the generalization ability of each fuzzy rule-based classifier. By iterating this 

training-and-testing procedure several times using different partitions of the available training 

patterns, we can visualize the interpretability-accuracy tradeoff structure for test patterns. Next 

we choose an appropriate complexity level of fuzzy rule-based classifiers using the visualized 

tradeoff structure. In this stage, we can take into account both the interpretability and the 

generalization ability of fuzzy rule-based classifiers. Then our GBML algorithm is used to 

generate multiple non-dominated fuzzy rule-based classifiers using all the available training 

patterns. Finally one fuzzy rule-based classifier whose complexity is similar to the specified 

appropriate complexity level is chosen as the final solution from the obtained non-dominated 

fuzzy rule-based classifiers. In this manner, we can choose a single fuzzy rule-based classifier 

using the visualized interpretability-accuracy tradeoff structure for test patterns. 

 

5. Comparison with multiobjective fuzzy rule selection 

 

 In our GBML algorithm, each fuzzy rule for an n-dimensional classification problem is 

represented as an integer string of length n using 15 antecedent fuzzy sets. The total number of 

such strings is n15 . Each rule set with r fuzzy rules is represented by an integer string of length 

rn ⋅ . The total number of such strings is rn⋅15 . In our computational experiments, we specified 

the upper bound on the number of fuzzy rules as 40. Thus the size of the search space is 

calculated as ∑ =
⋅40

115r
rn , which depends on the dimensionality of the pattern space (i.e., n). 

 On the other hand, first a prespecified number of candidate fuzzy rules are generated from 

training patterns in multiobjective fuzzy rule selection [15], [16]. Then an evolutionary 
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multiobjective optimization (EMO) algorithm is used to find non-dominated rule sets from the 

candidate fuzzy rules. Let N be the number of candidate fuzzy rules. In this case, each rule set is 

represented by a binary string of length N. Thus the size of the search space in multiobjective 

fuzzy rule selection is N2 , which depends on the number of candidate fuzzy rules (i.e., N).  

 In Table 8, we compare the size of the search space between the two approaches to 

multiobjective design of fuzzy rule-based classifiers. We can see from Table 8 that the size of 

the search space exponentially increases with the dimensionality of the pattern space (i.e., n) in 

our GBML algorithm while it exponentially increases with the number of candidate fuzzy rules 

(i.e., N) in multiobjective fuzzy rule selection. We can also see from Table 8 that the size of the 

search space in multiobjective fuzzy rule selection is much smaller than that in our GBML 

algorithm for high-dimensional pattern classification problems. 

 
 

Table 8. Comparison in the search space size between the two approaches to multiobjective 

design of fuzzy rule-based classifiers. 

Multiobjective GBML Approach 
Dimensionality (n) 10 20 40 60 80 100 
Search Space Size 470107.2 ×  940105.7 × 1881106.5 × 2822102.4 × 3763101.3 ×  4704103.2 ×

Multiobjective Fuzzy Rule Selection 
Candidate Rules (N) 100 200 400 600 800 1000 
Search Space Size 30103.1 ×  60106.1 × 120106.2 × 180101.4 × 240107.6 ×  301101.1 ×

 

 

 The difference in the size of the search space between the two approaches in Table 8 

suggests the difficulty in searching for good fuzzy rule-based classifiers by our GBML 

algorithm. Experimental results in this paper, however, showed that good fuzzy rule-based 

classifiers were obtained by our GBML algorithm (whereas further improvement in the search 

ability of our GBML algorithm is required as shown in Subsection 4.5). As demonstrated in [19] 

for single-objective design of fuzzy rule-based classifiers, the search ability of fuzzy GBML 

algorithms strongly depends on the heuristic generation procedure of initial rules from training 

patterns. Since we used good initial rules generated from training patterns in a heuristic manner, 
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our GBML algorithm could efficiently find good fuzzy rule-based classifiers. If we use 

randomly generated initial fuzzy rules, it is very difficult to find good fuzzy rule-based 

classifiers in the huge search space (see [19]). In our computational experiments for the three 

single-objective formulations, we used the same generation update procedure as the NSGA-II 

algorithm. That is, the best rule sets were selected from the current and offspring populations. 

Slightly better results were obtained in this paper than Ishibuchi et al. [19] where the generation 

update procedure was based on a single elite solution. 

 On the other hand, the performance of non-dominated rule sets obtained from 

multiobjective rule selection strongly depends on the quality of candidate fuzzy rules. When the 

quality of candidate fuzzy rules is not high, it is very difficult for any EMO algorithms to find 

good non-dominated rule sets with high classification performance. Thus the smaller search 

space size in multiobjective rule selection does not always mean better non-dominated rule sets 

than the case of our GBML algorithm with the larger search space size.  

 

6. Concluding remarks 

 

 In this paper, we examined the interpretability-accuracy tradeoff of fuzzy rule-based 

classifiers through computational experiments on some benchmark data sets using a hybrid 

multiobjective fuzzy GBML algorithm. Experimental results showed that there exists a clear 

interpretability-accuracy tradeoff structure in each data set with respect to error rates on training 

patterns. Such a tradeoff structure is not always clear with respect to error rates on test patterns. 

That is, our interpretability-accuracy tradeoff analysis showed that each data set has a different 

relation between the complexity of fuzzy rule-based classifiers and their generalization ability 

for test patterns. Our experimental results also suggested potential advantages of multiobjective 

formulation over single-objective ones. That is, the use of the number of fuzzy rules and/or the 

total rule length as a complexity measure worked well as a safeguard against the overfitting of 

fuzzy rule-based classifiers to training patterns. 

 In some computational experiments (e.g., Fig. 2 (a)), lower error rates were obtained from 

the single-objective formulations than the multiobjective ones. This observation suggests the 

necessity of the improvement in the search ability of our GBML algorithm. As shown in [33], it 
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is not easy for EMO algorithms to find a variety of Pareto-optimal (or near Pareto-optimal) 

solutions with a wide range of objective values of large-scale multiobjective combinatorial 

optimization problems. Multiobjective design of fuzzy rule-based classifiers is an example of 

such a large-scale multiobjective combinatorial optimization problem. It is left for future 

research to improve the search ability of EMO algorithms to find a variety of fuzzy rule-based 

classifiers with a wide range of objective values (especially to find fuzzy rule-based classifiers 

with high accuracy on training patterns). 
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