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Rule Weight Specification in Fuzzy Rule-Based Classification Systems 
 

Hisao Ishibuchi*, Member, IEEE, and Takashi Yamamoto, Student Member, IEEE 

Department of Industrial Engineering, Osaka Prefecture University 

 

Abstract: This paper shows how the rule weight of each fuzzy rule can be specified in fuzzy rule-

based classification systems. First we propose two heuristic methods for rule weight specification. 

Next the proposed methods are compared with existing ones through computer simulations on 

artificial numerical examples and real-world pattern classification problems. Simulation results show 

that the proposed methods outperform the existing ones in the case of multi-class pattern classification 

problems with many classes. 

 

Index Term: Fuzzy systems, pattern classification, rule generation, rule selection, data mining. 

 

I. INTRODUCTION 

 We have already demonstrated that rule weights have a significant effect on the classification 

performance of fuzzy rule-based systems [1]. In this paper, we examine some heuristic methods for 

rule weight specification. We use fuzzy rules of the following type for an n-dimensional pattern 

classification problem. 

    Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA   

      then Class qC  with qCF ,     (1) 

where )...,,( 1 nxx=x  is an n-dimensional pattern vector, qiA  is an antecedent fuzzy set for the i-th 

attribute, qC  is a consequent class, and qCF  is a certainty grade (i.e., rule weight). Various types of 

fuzzy rules have been used for pattern classification problems. For example, Cordon et al. [2] 

examined three types of fuzzy rules. One has a single consequent class with no rule weight, another is 

the same as (1), and the other has multiple consequent classes. The third type with multiple consequent 

classes is written for M-class pattern classification problems as 

    Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA   

         then Class 1 with 1qCF  and ... and Class M with qMCF ,  (2) 

where qhCF  is a certainty grade for Class h. In this paper, we mainly use fuzzy rules of the form in (1). 

Fuzzy rules with multiple consequent classes in (2) are used only when the three types of fuzzy rules 
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are compared with one another. Fuzzy rules of the form in (2) were also examined in [3] from the 

viewpoint of fuzzy conditional probability.  

 Many studies on fuzzy rule-based classification systems (e.g., [4]-[7]) did not use rule weights. In 

most of those studies, antecedent fuzzy sets were generated and adjusted from numerical data. As 

shown in [8], the learning of rule weights can be replaced by the modification of the membership 

functions of antecedent fuzzy sets. We do not, however, adjust the membership functions of 

antecedent fuzzy sets because their adjustment may degrade the comprehensibility of fuzzy rule-based 

systems. Of course, many approaches have been proposed for finding a good compromise between the 

accuracy of fuzzy rule-based systems and their comprehensibility. Those approaches often use 

constraint conditions on the membership functions of antecedent fuzzy sets (e.g., [9]). 

 This paper is organized as follows. In Section II, we explain two heuristic methods for rule weight 

specification in [2], [10] using the terminology in data mining: confidence and support [11]. We also 

propose different heuristic methods in Section II. Characteristic features of each method are visually 

demonstrated through computer simulations on artificial numerical examples in Section III. In our 

computer simulations, we also compare fuzzy rules of the form in (1) with those in (2). Moreover, we 

compare two fuzzy reasoning methods with each other in Section III: a single winner method and a 

weighted vote method. In Section IV, we examine the classification performance of fuzzy rule-based 

systems designed by each heuristic method through computer simulations on real-world pattern 

classification problems. Finally Section V concludes this paper. 

II. HEURISTIC RULE WEIGHT SPECIFICATION 

A. Rule Evaluation Measures in Data Mining 

 In the field of data mining [11], two measures (i.e., confidence and support) are frequently used to 

evaluate association rules. The fuzzy rule in (1) can be viewed as a fuzzy association rule qq C⇒A  

where )...,,( 1 qnqq AA=A . In this subsection, we briefly explain fuzzy versions [12], [13] of the two 

rule evaluation measures. 

 Let us assume that m labeled patterns )...,,( 1 pnpp xx=x , mp ,...,2,1=  are given from M classes 

for an n-dimensional pattern classification problem. As in our former studies [1], [10], [13], we define 

the compatibility grade of each training pattern px  with the antecedent qA  by the product operation 

as  

    )()()( 11 pnApAp xx
qnqq

µµµ ×⋅⋅⋅×=xA ,     (3) 

where )( ⋅
qiAµ  is the membership function of the antecedent fuzzy set qiA . 

 The confidence of the fuzzy rule qq C⇒A  is written as follows [12], [13]: 
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The confidence can be viewed as measuring the validity of qq C⇒A . It can be also viewed as a 

numerical approximation of the conditional probability [3]. On the other hand, the support of 

qq C⇒A  is written as follows [12], [13]: 
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The support can be viewed as measuring the coverage of training patterns by qq C⇒A . 

 

B. Heuristic Methods for Rule Weight Specification 

 First we explain the determination of the consequent class. Let us assume that a set of antecedent 

fuzzy sets is given for each attribute. The antecedent part of each fuzzy rule (i.e., qA ) is constructed 

by combining antecedent fuzzy sets for n attributes. The consequent qC  of the fuzzy rule qq C⇒A  in 

(1) is determined by finding the class with the maximum confidence for the antecedent qA : 

    },...,2,1|)Class(max{)( MhhcCc qqq =⇒=⇒ AA .    (6) 

When the consequent qC  cannot be uniquely determined in (6), we do not generate any fuzzy rule 

with the antecedent qA . 

 The confidence )( qq Cc ⇒A  can be used as the rule weight qCF  of the fuzzy rule qq C⇒A  as 

in Cordon et al. [2] and Berg et al. [3]. That is, one definition of the rule weight is 

      )(I
qqq CcCF ⇒= A ,      (7) 

where the superscript “I” shows that I
qCF  is the first definition of qCF . In our former studies [1], [10], 

[13], we used a different definition of the rule weight: 

     Ave
II )( cCcCF qqq −⇒= A ,     (8) 

where Avec  is the average confidence over fuzzy rules with the same antecedent qA  but different 

consequent classes from qC : 
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 In this paper, we propose more intuitive definitions of the rule weight. One definition is based on 

the difference between the largest and the second largest confidence. That is,  

     2nd
III )( cCcCF qqq −⇒= A ,     (10) 

where 2ndc  is the second largest confidence for the antecedent qA : 

   };,...,2,1|)Class(max{2nd qq ChMhhcc ≠=⇒= A .     (11) 

 We also propose the following definition: 

     Sum
IV )( cCcCF qqq −⇒= A ,     (12) 

where Sumc  is the sum of the confidence over fuzzy rules with the same antecedent qA  but different 

consequent classes from qC : 
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While qCF  is always positive in the first three definitions, IV
qCF  can be negative. We do not use 

fuzzy rules with negative rule weights in fuzzy rule-based systems. Note that the third and fourth 

definitions in (10) and (12) are the same as the second definition in (8) when our pattern classification 

problem involves only two classes (i.e., when 2=M ). This is because Sum2ndAve ccc ==  holds for 

the case of 2=M  in (9), (11) and (13). 

 For the fuzzy rule with multiple consequent classes in (2), we directly use the confidence as the 

certainty grade for each class [2], [3]: 

    )Class( hcCF qqh ⇒= A , Mh ,...,2,1= .     (14) 

C. Fuzzy Reasoning for Pattern Classification 

 First we explain fuzzy reasoning for fuzzy rules with a single consequent class. Let S be a set of 

fuzzy rules of the form in (1). We use a single winner method [14] for classifying new patterns by the 

rule set S. The single winner rule wR  is determined for a new pattern )...,,( 1 pnpp xx=x  as  
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    }  | )( { max)( SRCFCF qqpwp qw
∈⋅=⋅ xx AA µµ .    (15) 

The new pattern px  is classified as Class wC , which is the consequent class of the winner rule wR . If 

multiple fuzzy rules have the same maximum value but different consequent classes for the new 

pattern px  in (15), the classification of px  is rejected. The classification is also rejected if no fuzzy 

rule is compatible with the new pattern px .  

 Next let us consider fuzzy reasoning by fuzzy rules with multiple consequent classes. In this case, 

the single winner method in (15) is rewritten as  

   },...,2,1,  | )( { max)( * MhSRCFCF qqhpwhp qw
=∈⋅=⋅ xx AA µµ .   (16) 

The new pattern px  is classified as Class h* in (16). It can be easily shown that (16) can be reduced to 

(15) by defining qCF  for each fuzzy rule qR  with multiple consequent classes in (2) as 

     },...,2,1|max{ MhCFCF qhq == .    (17) 

This means that multiple consequent classes are not necessary when we use the single winner method. 

 We also use a weighted vote method [14] for comparison. When we have fuzzy rules with a single 

consequent class, each fuzzy rule casts a vote for its consequent class. The strength of the vote is 

defined by the product of the compatibility grade and the certainty grade. Thus the total strength of the 

vote for each class is calculated as follows: 

    ∑

=
∈

⋅=

hC
SR

qpph

q
q

q
CFV )()(Class xx Aµ ,  Mh ,...,2,1= .   (18) 

The new pattern px  is classified as the class with the maximum total strength of the vote. 

 On the other hand, the total strength of the vote for each class is written in the case of fuzzy rules 

with multiple consequent classes as 

    ∑
∈

⋅=
SR

qhpph
q

q
CFV )()(Class xx Aµ ,  Mh ,...,2,1= .   (19) 

While each fuzzy rule casts a vote for its single consequent class in (18), it votes for all classes in (19). 

 In the single winner method as well as the weighted vote method, we multiply the compatibility 

grade )( pq
xAµ  by the rule weight qCF . Interpretation of this operation is not straightforward. For 

example, the first definition of the rule weight is a numerical approximation of the conditional 

probability of the consequent class. In this case, our fuzzy reasoning methods are viewed as combining 



 - 6 -

two different measures: a linguistic compatibility and a probabilistic validity. In the single winner 

method, we handle the rule weight as the rule strength, which is an expression of the applicability of 

each fuzzy rule. That is, the rule weight is related to the choice of a single winner rule among 

compatible rules. Operationally the multiplication of the compatibility grade by the rule weight is 

equivalent to the modification of the heights of antecedent fuzzy sets [1], [8]. Thus the rule weight can 

be viewed as adjusting the compatibility grade (i.e., applicability) of each fuzzy rule to the current 

input vector. When there is exactly one rule per class in neuro-fuzzy naive Bayes classifiers [15], the 

rule weight and the compatibility grade are explained as being the prior probability of the consequent 

class and the probability density function, respectively. Under this interpretation, the multiplication of 

the compatibility grade by the rule weight becomes natural. In the case of multiple rules per class, this 

interpretation is not directly applicable (i.e., we have to split each class into multiple subclasses).  

 
 

III. ILLUSTRATION OF THE EFFECT OF RULE WEIGHTS 

A. Simulation Results on Single-Dimensional Problems 

 For visually illustrating characteristic features of each definition of rule weights, let us consider a 

two-class pattern classification problem on a single-dimensional pattern space [-2, 2] with the 

homogeneous fuzzy partition by triangular fuzzy sets in Fig. 1. We assume that an infinite number of 

training patterns are uniformly distributed in the interval [-2, 2]. We also assume that each training 

pattern px  belongs to Class 1 or Class 2 depending on its location as shown in Fig. 2. That is, if 

θ≤px  then px  belongs to Class 1, otherwise px  belongs to Class 2. 

 Using the homogeneous fuzzy partition in Fig. 1 and the uniform distribution of training patterns 

in Fig. 2, we can generate the following fuzzy rules: 

   2−qR : If x is 2−qA  then Class 1 with 2−qCF ,     (20) 

   1−qR : If x is 1−qA  then Class 1 with 1−qCF ,     (21) 

   qR :    If x is qA  then Class 1 with qCF ,      (22) 

   1+qR : If x is 1+qA  then Class 2 with 1+qCF ,     (23) 

   2+qR : If x is 2+qA  then Class 2 with 2+qCF .     (24) 

 From Fig. 1 and Fig. 2, we can see that compatible training patterns with 2−qA  and 1−qA  always 

belong to Class 1. Thus the rule weights of 2−qR  and 1−qR  are 12 =−qCF  and 11 =−qCF  independent 

of the choice of their definition. The rule weight 2+qCF  of 2+qR  is also 12 =+qCF  because compatible 

training patterns with 2+qA  always belong to Class 2. 
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Fig. 1. Homogeneous fuzzy partition by triangular fuzzy sets. 
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Fig. 2. Distribution of training patterns in our artificial numerical example. 

 On the other hand, the rule weights of qR  and 1+qR  are calculated from each definition using the 

uniform distribution of training patterns in Fig. 2 as  

   =I
qCF 0.549, =+

I
1qCF 0.999,       (25) 

   =II
qCF 0.098, =+

II
1qCF 0.998.       (26) 

Since our numerical example is a two-class problem (i.e., 2=M ), the second definition is exactly the 

same as the third and fourth definitions of rule weights. In (25) and (26), we can observe a large 

difference in the rule weight qCF  of the fuzzy rule qR  between the first definition and the other 

definitions. From Fig. 2, the confidence is calculated for “ qA  ⇒  Class 1” and “ qA  ⇒  Class 2” as 

    =⇒ )1Class( qAc 0.549,  =⇒ )2Class( qAc 0.451.   (27) 

The difference between these confidence values is small. Thus the rule weight of the fuzzy rule “ qR : 

qA  ⇒  Class 1” is also small in the second definition while it is not so small in the first definition. 

 Using the five fuzzy rules in (20)-(24), let us estimate the class boundary between Class 1 and 
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Class 2. When we use the single winner method in (15), the estimated class boundary θ̂  is calculated 

as =θ̂ 0.355 by the first definition and =θ̂ 0.089 by the second definition from the equation: 

     1)()(
1 +⋅=⋅
+ qAqA CFxCFx

qq
µµ .     (28) 

The estimated class boundary θ̂  has a large error in the case of the first definition while it is almost 

the same as the actual threshold =θ  0.05 in the second definition. The large error by the first 

definition is due to the large rule weight I
qCF  of the fuzzy rule qR .  

 In the same manner, we calculated the estimated class boundary θ̂  for various specifications of 

the threshold value θ : =θ 0.00, 0.02, ..., 1.00. Simulation results are summarized in Fig. 3 where the 

desired result θθ =ˆ  is depicted by the diagonal line in Fig. 3. On the other hand, the dotted line 

corresponding to 5.0ˆ =θ  shows the estimated class boundary in the case of the fuzzy rules with no 

rule weights. The estimated class boundary θ̂  has a large error except for the case where the actual 

class boundary θ  is close to 0.5 (i.e., the crossing point of the membership functions qA  and 1+qA ). 

This observation suggests that the learning of membership functions is necessary when fuzzy rules 

have no rule weights. 
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Fig. 3. Comparison of the two definitions of rule weights for our two-class problem. 

 From Fig. 3, we can see that the estimated class boundary θ̂  is close to the actual threshold θ  

independent of the value of θ  when we use the second definition. On the other hand, the difference 

between θ  and θ̂  is large in the case of the first definition. This observation suggests that the direct 
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use of the confidence as the rule weight (i.e., the first definition) may lead to large classification errors. 

 Since our numerical example in Fig. 2 involves only two classes, exactly the same results are 

obtained from the second, third and fourth definitions. Let us extend our numerical example in Fig. 2 

to an M-class problem ( 2>M ). For simplicity of discussion, we assume that the interval [-2, 2] in Fig. 

2 is a part of a larger pattern space (e.g., [-10, 10]). We also assume that training patterns from the 

other classes (i.e., Class 3, ..., Class M) exist far from the interval [-2, 2] in the pattern space (e.g., 

5−<x  or x<5 ). From these assumptions, we can discuss the specification of rule weights locally in 

the unit interval [-2, 2]. In this situation, the increase in the number of classes has no effect on the first, 

third and fourth definitions of rule weights. On the other hand, the second definition depends on the 

value of M as shown in (9). Thus the second definition is not the same as the third and fourth 

definitions when pattern classification problems involve more than two classes.  

 In the same manner as Fig. 3, we calculated the estimated class boundary θ̂  using the second 

definition for three specifications of M (i.e., 10,5,2=M ). Simulation results are summarized in Fig. 

4. From this figure, we can see that the difference between the actual class boundary θ  and the 

estimated class boundary θ̂  increases as the value of M increases. When =M 5 and =M 10, the 

simulation results by the second definition in Fig. 4 are similar to those by the first definition in Fig. 3. 
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Fig. 4. Simulation results by the second definition of rule weights for M-class problems. 

 For discussing the difference between the third and fourth definitions, let us consider the situation 

where several minor classes exist in the region of Class 2 in Fig. 2 (i.e., 2≤< xθ ). More specifically, 

let us assume that Class 2 patterns in Fig. 2 can be further divided into a single major class (say Class 

2) and several minor classes (say Class 3, 4, ..., M). In this case, the rule weight of “ qR : qA  ⇒  Class 
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1” is calculated by the fourth definition as =IV
qCF 0.098 independent of the subdivision of Class 2 

patterns. On the contrary, the rule weight III
qCF  by the third definition is increased by the subdivision 

of Class 2 patterns. Such an increase in the rule weight may lead to the increase in the estimation error 

similar to Fig. 4. This suggests the possibility that better results are obtained for multi-class pattern 

classification problems by the fourth definition than the other definitions.  

 

B. Simulation Results on Two-Dimensional Problems 

 Let us consider a two-class pattern classification problem with a two-dimensional pattern space 

]2,2[]2,2[ −×− . We assume that each axis of the pattern space is partitioned into five triangular fuzzy 

sets in the same manner as Fig. 1. We also assume that training patterns belong to Class 1 only when 

θ≤+ 21 xx . In the two-dimensional pattern space, we generated 160801 training patterns using the 

401401×  grid where =ix 00.2− , 99.1− , ..., 2.00 for 2,1=i . Each training pattern is assigned to 

Class 1 or Class 2 according to its location (i.e., If θ≤+ 21 xx  then Class 1 otherwise Class 2). We can 

generate 25 fuzzy rules from the training patterns using the five antecedent fuzzy sets on each axis of 

the two-dimensional pattern space. 

 In our computer simulations, we examined eight cases in Table 1. Simulation results are shown in 

Fig. 5 where =θ 0.05. In each figure in Fig. 5, the actual class boundary (i.e., =+ 21 xx 0.05) and the 

estimated class boundary are shown by a dotted line and a thick line, respectively. The thin lines in 

each figure show the 55×  grid by the five antecedent fuzzy sets on each axis. The classification rate 

on the 160801 training patterns is also shown for each figure. 

 

Table 1. Examined combinations of fuzzy rules and fuzzy reasoning methods. 

Case Consequent Rule weight Classification 
Case 1 Single class No rule weight Single winner 
Case 2 Single class No rule weight Weighted vote  
Case 3 Single class 1st definition Single winner 
Case 4 Single class 1st definition Weighted vote 
Case 5 Single class 2nd definition Single winner 
Case 6 Single class 2nd definition Weighted vote 
Case 7 Multiple classes 1st definition Single winner 
Case 8 Multiple classes 1st definition Weighted vote 
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Case 2: 89.78%

Case 4: 93.34% Case 3: 94.59% 

Case 5: 98.97% Case 6: 99.42% 

Case 8: 99.42% Case 7: 94.59% 

Case 1: 90.10% 

 

Fig. 5. Simulation results for the two-dimensional pattern classification problem with =θ 0.05. 

 In Fig. 5, good results were obtained from the second definition of rule weights (i.e., Case 5 and 

Case 6). Good results were not obtained from fuzzy rules with no rule weights (i.e., Case 1 and Case 
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2). This is because fuzzy rules with no rule weights cannot adjust the estimated class boundary. We 

can also see that simulation results by the first definition of rule weights (i.e., Case 3 and Case 4) are 

inferior to those by the second definition (i.e., Case 5 and Case 6). On the other hand, when we used 

the weighted vote method for fuzzy rules with multiple consequent classes, good results were obtained 

from the first definition (i.e., Case 8 in Fig. 5). These observations suggest that the choice of a weight 

specification method strongly depends on the type of fuzzy rules and the fuzzy reasoning method.  

IV. COMPUTER SIMULATIONS ON REAL-WORLD PROBLEMS 

A. Data Sets and Simulation Conditions  

 In this section, we compare the four definitions of rule weights with one another through 

computer simulations on wine data and glass data. These data sets are available from the UC Irvine 

machine learning database (http://www.ics.uci.edu/~mlearn/MLSummary.html). The wine data set is a 

13-dimensional problem with 178 samples from three classes. We chose this data set because it 

involves many continuous attributes. The glass data set is a nine-dimensional problem with 214 

samples from six classes. We chose this data set because it involves many classes. 

 In our computer simulations, we normalized each attribute value into a real number in the unit 

interval ]1,0[ . For calculating the average classification rate on test patterns, we used the leaving-one-

out (LV1) technique where the given samples were divided in a single test pattern and the other 

training patterns. A fuzzy rule-based system designed from training patterns was evaluated by a single 

test pattern. The design-and-test procedure was iterated so that all the given samples were used as test 

patterns once. Thus the number of iterations of the design-and-test procedure was the same as the 

number of the given samples in each data set. 

 In real-world applications of fuzzy rule-based systems, an appropriate fuzzy partition of each 

continuous attribute is not always given. In our computer simulations, we used four fuzzy partitions in 

Fig. 6 because we did not know an appropriate granularity of the fuzzy partition for each attribute. In 

addition to the 14 fuzzy sets in Fig. 6, we also used “don’t care” as an additional antecedent fuzzy set. 

The shape of the membership function of don’t care is the same as the unit interval (i.e., 

=)(' xcaretdonµ 1 for ]1,0[∈x ). The total number of combinations of antecedent fuzzy sets is n15  for 

an n-dimensional pattern classification problem.  

 It is impractical to use all fuzzy rules corresponding to such a huge number of combinations of 

antecedent fuzzy sets. In our computer simulations, we designed fuzzy rule-based systems in the 

following manner. First we generated short fuzzy rules of length three or less. Note that the rule length 

is defined by the number of antecedent conditions (excluding don’t care conditions). The generated 

fuzzy rules were divided into M groups according to their consequent classes (M is three in the wine 

data, and six in the glass data). Fuzzy rules in each group were sorted in a descending order of a rule 



 - 13 -

selection criterion. We used the product of the confidence )( ⋅c  and the support )( ⋅s  as the rule 

selection criterion. When multiple fuzzy rules had the same value of the rule selection criterion, they 

were randomly sorted (i.e., random tiebreak). We constructed a fuzzy rule-based system by choosing 

the first N fuzzy rules from each group (i.e., NM ⋅  rules in total). Using various values of N (i.e., 

=N 1,2,...,5), we examined the classification performance of fuzzy rule-based systems with different 

sizes. 

 We examined the four definitions of rule weights. We also examined the case of no rule weights. 

This case was simulated by assigning the same rule weight to all the generated fuzzy rules (i.e., 

1=qCF  for q∀ ). For comparison, we also examined the classification performance of fuzzy rules 

with multiple consequent classes. When we constructed a fuzzy rule-based system from those fuzzy 

rules, we used the selected NM ⋅  fuzzy rules with a single consequent class whose rule weights were 

specified by the first definition. Each of the selected NM ⋅  fuzzy rules with a single consequent class 

was extended to a fuzzy rule with multiple consequent classes by assigning a certainty grade to each of 

the M classes in the consequent part. In our computer simulations, we used the single winner method 

and the weighted vote method. 
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Fig. 6. Four fuzzy partitions used in our computer simulations. 

B. Simulation Results on Wine Data 

 In Table 2, we show average classification rates on test patterns of the wine data set when the 

single winner method was used. The best result in each row (i.e., each specification of the number of 

fuzzy rules) is shown by boldface. The best result in the table is indicated by “*”. From this table, we 

can see that the classification performance of fuzzy rule-based systems with no rule weights was 

improved in some cases by the use of rule weights. We can also see that the difference in the 

classification performance among the four definitions is small. On the other hand, simulation results 

by the weighted vote method are shown in Table 3. In this case, good results were obtained 

independent of the choice of a rule weight specification method. From the comparison between Table 
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2 and Table 3, we can see that the classification ability of fuzzy rule-based systems was improved by 

the use of the weighted vote method independent of the choice of a rule weight specification method. 

Table 2. Classification rates on test patterns of the wine data set by the single winner method. 

Number 
of rules 

No rule 
weights 

First 
def. 

Second 
def. 

Third 
def. 

Fourth
def. 

Rules  
in (2) 

3 89.89 89.89 89.89 89.33 89.33 89.89 
6 80.34 83.15 85.96 84.83 85.39 83.15 
9 88.76 91.57 92.13 93.26 93.26 91.57 

12 93.26 93.26 92.70 93.26 93.26 93.26 
15 88.76 91.57 91.57   94.38* 93.26 91.57 

Table 3. Classification rates on test patterns of the wine data set by the weighted vote method. 

Number 
of rules 

No rule 
weights 

First 
def. 

Second 
def. 

Third 
def. 

Fourth
def. 

Rules  
in (2) 

3 89.89 89.89 89.89 89.33 89.33 89.89 
6 87.08 87.64 88.76 89.33 88.76 89.89 
9 93.82 93.26 93.26 94.38 93.82 94.38 

12 94.38 94.94 94.38 94.38 93.26 94.38 
15   95.51*   95.51* 94.38 94.38 93.82 94.94 

 

C. Simulation Results on Glass Data 

 Average classification rates on test patterns of the glass data set are shown in Table 4 for the 

single winner method and Table 5 for the weighted vote method. The classification performance of 

fuzzy rule-based systems strongly depends on the choice of a rule weight definition in these tables. 

Good results were obtained only when we used the fourth definition of rule weights. Since the glass 

data set involves six classes (i.e., =M 6), the difference among the four definitions is large. As a 

result, we obtained very different simulation results from the four definitions. 

Table 4. Classification rates on test patterns of the glass data set by the single winner method. 

Number 
of rules 

No rule 
weights 

First 
def. 

Second 
def. 

Third 
def. 

Fourth
def. 

Rules  
in (2) 

6 45.79 49.53 45.79 39.25 58.88 49.53 
12 45.33 48.60 45.79 39.72   67.76* 48.60 
18 45.33 48.60 45.79 39.72 66.82 48.60 
24 45.33 48.60 45.33 40.19 65.89 48.60 
30 39.72 48.13 45.33 40.19 54.21 48.13 



 - 15 -

Table 5. Classification rates on test patterns of the glass data set by the weighted vote method. 

Number 
of rules 

No rule 
weights 

First 
Def. 

Second 
Def. 

Third 
Def. 

Fourth
Def. 

Rules  
in (2) 

6 45.79 49.53 45.79 39.25 58.88 42.99 
12 45.33 48.60 46.26 39.25 67.76 43.93 
18 45.33 47.20 47.20 40.19 68.22* 43.93 
24 45.33 47.20 48.60 40.19 68.22* 43.93 
30 45.79 46.73 47.20 42.06 66.36 44.86 

D. Discussions on Simulation Results 

 Simulation results in Tables 2-5 show that the effect of rule weights is problem-dependent. In 

computer simulations on the wine data set, the choice of a rule weight specification method did not 

have a large effect on the classification performance of fuzzy rule-based systems. One reason for this 

insensitivity is that the wine data set does not have large overlap regions between different classes in 

the pattern space. On the other hand, the performance of fuzzy rule-based systems strongly depended 

on the choice of a rule weight specification method in computer simulations on the glass data set. 

 It should be noted that good results were obtained in Table 4 and Table 5 only from the fourth 

definition. One may think that the difference in classification rates between the fourth definition and 

the other definitions is suspiciously large in those tables. We examined why good results were 

obtained only from the fourth definition. Then we found that different fuzzy rules were used in the 

case of the fourth definition. As we have already mentioned, IV
qCF  by the fourth definition can be 

negative while rule weights by the other definitions are always positive. More specifically IV
qCF  

becomes negative when I
qCF  is smaller than 0.5. Since we did not use fuzzy rules with negative rule 

weights, fuzzy rules with 5.0I <qCF  were not used in the case of the fourth definition while they were 

used in the other definitions. In computer simulations in Table 4, 5.0I <qCF  holds for 2800 rules 

among =×21430 6420 rules generated by the first definition during the execution of the LV1 

procedure. This means that the used fuzzy rules were different between the fourth definition and the 

other definitions in computer simulations on the glass data set. On the other hand, 5.0I <qCF  holds for 

no rule among =×17815 2670 rules generated by the first definition in Table 2 for the wine data set.  

 For evaluating the pure effect of rule weights on the classification performance of fuzzy rule-

based systems for the glass data set, we executed additional computer simulations. We first generated 

a pre-specified number of fuzzy rules using the fourth definition as in Table 4. Then only the rule 

weight of each fuzzy rule was modified using each definition. In this manner, we generated the same 

fuzzy rules (with different rule weights) for all definitions. Simulation results are summarized in Table 

6. We can see from this table that the best results were still obtained from the fourth definition while 
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the difference in classification rates among the four definitions was reduced from Table 4.  

Table 6. Classification rates on test patterns of the glass data set when the single winner method was 

used. Same fuzzy rules (except for rule weights) were used in all the six cases in this table. 

Number 
of rules 

No rule 
weights 

First 
Def. 

Second 
Def. 

Third 
Def. 

Fourth
Def. 

Rules  
in (2) 

6 60.75 60.75 60.28 60.28 58.88 60.75 
12 61.22 61.68 61.22 56.54   67.76* 61.68 
18 60.75 61.68 61.68 56.54 66.82 61.68 
24 60.75 61.68 61.68 56.07 65.89 61.68 
30 58.88 59.81 59.35 55.61 54.21 59.81 

 

 

V. CONCLUSION 

 In this paper, we compared four heuristic specification methods of rule weights with one another. 

We also compared two fuzzy reasoning methods with each other: the single winner method and the 

weighted vote method. We demonstrated through computer simulations on artificial test problems that 

the first definition of rule weights (i.e., the direct use of the fuzzy conditional probability) is not 

appropriate for the single winner method while it is appropriate for the weighted vote method. We also 

demonstrated that the second definition of rule weights, which was used in our former studies [10], 

[13], [14], is  not appropriate for the case of multi-class problems with many classes. In this case, the 

fourth definition worked well. While the differences in classification rates among the four definitions 

were not large in their application to the wine data set with three classes, the superiority of the fourth 

definition was clear in their application to the glass data set with six classes. Simulation results also 

showed that better results were obtained by the weighted vote method than the single winner method 

in many cases. The single winner method, however, is preferable from the viewpoint of the 

comprehensibility of the classification result of each pattern. The use of the single winner method also 

makes it easy to decrease the number of fuzzy rules because only a single winner rule is responsible 

for the classification of each pattern. 
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