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a b s t r a c t

The main advantage of multi-objective genetic fuzzy systems (MoGFS) is that a number of non-domi-
nated fuzzy rule-based systems are obtained along the tradeoff surface among conflicting objectives.
Accuracy maximization, complexity minimization and interpretability maximization have often been
used for multi-objective design of fuzzy rule-based classifiers. A number of non-dominated fuzzy rule-
based classifiers are obtained by a single run of MoGFS. A human decision maker is supposed to choose
a single final classifier from a number of obtained classifiers according to his/her preference. One prob-
lem, which has not been discussed in many studies on MoGFS, is how to choose a single final classifier. In
this paper, we discuss classifier selection with no intervention of the decision maker. Whereas complex-
ity and interpretability are very important factors in classifier selection, we concentrate on the maximi-
zation of generalization ability as the first step towards a more general handling of classifier selection. We
propose the use of repeated double cross-validation (rdCV) to choose a single final classifier and to eval-
uate the generalization ability of the selected classifier. We also discuss how our approach can be applied
to parameter specification, formulation selection and algorithm choice.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Two conflicting objectives are often involved in classifier
design: accuracy maximization and complexity minimization.
These two objectives were combined into a weighted sum fitness
function in genetic fuzzy rule selection in the mid-1990s [1,2]. In
the late-1990s [3–5], they were used as separate objectives in a
two-objective approach. Since the late-1990s, evolutionary multi-
objective optimization (EMO) algorithms [6–8] have been used
for multi-objective design of fuzzy systems [9–11]. This research
area, which is included in a much broader research field called
genetic fuzzy systems (GFS [12–15]), is often referred to as
multi-objective genetic fuzzy systems (MoGFS). This is because
multi-objective genetic algorithms (e.g., NSGA-II [16] and SPEA
[17]) have been mainly used in MoGFS. Recently multi-objective
approaches have also been used for various classifier design such
as neural networks and decision trees [18–22].

In this paper, we use the following simple two-objective formu-
lation to clearly explain an accuracy-complexity tradeoff relation
in a two-dimensional objective space:

Minimize f 1ðSÞ ¼ ErrorðSÞ; f 2ðSÞ ¼ ComplexityðSÞ; ð1Þ

where S is a fuzzy rule-based classifier, Error(S) is a percentage error
rate of S on training data, and Complexity(S) is the number of fuzzy
rules in S.

In MoGFS, we can use multiple complexity measures such as
the number of fuzzy rules and the total number of antecedent
conditions [23–25]. It is also possible to use multiple accuracy
measures such as a true positive rate and a false positive rate
[26,27].

In the EMO community, performance measures such as hyper-
volume and generational distance have been proposed to evaluate
the search ability of EMO algorithms [28]. Those measures can be
also used to evaluate the search ability of MoGFS. However, high
search ability of MoGFS does not always mean high performance
of obtained fuzzy rule-based classifiers. This is because the search
ability of MoGFS is measured by the accuracy on training data
while classifier performance should be measured by the accuracy
on unseen test data.

Fig. 1 illustrates the relation between training data accuracy
and test data accuracy. If high training data accuracy always leads
to high test data accuracy as in Fig. 1(a), good classifiers are ob-
tained from MoGFS with high search ability. However, as in
Fig. 1(b), high search ability of MoGFS does not always mean high
performance of classifiers due to overfitting to training data.

As shown in Fig. 1, a number of non-dominated fuzzy rule-
based classifiers are obtained from a single run of MoGFS. One
problem, which has not been discussed in many studies on MoGFS,
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is how to choose a single final classifier. In MoGFS, a human
decision maker is supposed to choose a single final classifier based
on his/her preference with respect to various factors of fuzzy rule-
based classifiers such as accuracy, complexity and interpretability.
In this paper, we discuss classifier selection with no intervention of
the decision maker. We concentrate on classifier selection for gen-
eralization ability maximization. Of course, complexity and inter-
pretability of fuzzy rule-based classifiers are also important
factors when a single final classifier is chosen by the decision ma-
ker. Thus classifier selection based on those factors is an important
research issue. Interactive classifier selection with the decision ma-
ker is also an important research issue. Those issues are left as fu-
ture research topics. In this paper, we concentrate on classifier
selection for generalization ability maximization as the first step
towards such a more general handling of classifier selection.

A simple classifier selection method with no intervention of the
decision maker in MoGFS is to choose the fuzzy rule-based classi-
fier with the highest training data accuracy. When we use the two-
objective formulation in (1), this method means the selection of
the fuzzy rule-based classifier with the highest complexity (i.e.,
the selection of the right-most open circle in Fig. 1). This method
does not work well in Fig. 1(b) with overfitting while it works well
in Fig. 1(a) with no overfitting. One may think that it is the best
way to choose the fuzzy rule-based classifier with the highest test
data accuracy. The direct use of test data accuracy is unrealistic be-
cause ‘‘unseen’’ test data are not available in the classifier selection
phase. Test data are available only when the selected classifier is
evaluated (i.e., after the classifier selection phase is completed).
In this paper, we propose a classifier selection method for general-
ization ability maximization to choose a single fuzzy rule-based
classifier without using test data accuracy.

Our idea is to use repeated double cross-validation (rdCV) [29]
for classifier selection and classifier evaluation. Our rdCV approach
has a nested structure of two CV loops. The inner CV loop is used to
find the best complexity with the highest validation data accuracy,
which is used for classifier selection. The outer CV loop is used to
evaluate the test data accuracy of the selected classifier in the same
manner as in the standard CV procedure.

This paper is a modified and extended version of our conference
paper [30]. In [30], we proposed the use of rdCV for classifier selec-
tion in MoGFS together with a complicated best complexity esti-
mation method. In this paper, we propose two simple methods
for the best complexity estimation, which are used in rdCV-based
classifier selection in MoGFS. The performance of the proposed
methods are examined through computational experiments on a
number of data sets. We also discuss the use of rdCV for parameter
specification, formulation selection and algorithm choice.

This paper is organized as follows. In Section 2, we explain the
basic idea of classifier selection in MoGFS. In Section 3, we explain
the overall framework of rdCV for classifier selection in MoGFS

together with two classifier selection methods. The performance
of the proposed methods is examined through computational
experiments in Section 4. In Section 5, we discuss how our rdCV-
based classifier selection methods can be applied to parameter
specification, formulation selection and algorithm choice. Finally,
we conclude this paper in Section 6.

2. Classifier selection in MoGFS

We assume that we have a MoGFS algorithm and a set of avail-
able patterns. By applying the MoGFS algorithm to the given data, a
number of non-dominated fuzzy rule-based classifiers are ob-
tained. Our problem is how to choose a single final fuzzy rule-
based classifier with high generalization ability.

In this situation, classifier selection is difficult because we do
not know the generalization ability of each classifier. So we usu-
ally divide the available patterns into training data and validation
data. The training data are used in the MoGFS algorithm to de-
sign non-dominated classifiers while the validation data are used
to evaluate each of the obtained classifiers. A single classifier
with the highest validation data accuracy is selected. One diffi-
culty of this approach is that the selected classifier totally de-
pends on the partition of the available patterns into training
and validation data. Another difficulty is that all the available
patterns are not used in the MoGFS algorithm for classifier de-
sign. If we use almost all patterns as training data for the design
of non-dominated classifiers, we cannot use many patterns to
evaluate the obtained classifiers for classifier selection. However,
the use of many patterns for classifier selection leads to the de-
crease in the size of training data for classifier design by the
MoGFS algorithm.

Our idea for classifier selection is to examine the accuracy-com-
plexity tradeoff relation by iterating the train-validation procedure
using different data partitions. Results from multiple runs of the
train-validation procedure are used to estimate the best complex-
ity with the highest validation data accuracy. The estimated best
complexity is used to choose a single final classifier from non-dom-
inated classifiers that are obtained by applying the MoGFS algo-
rithm to all the available patterns. The basic framework of our
approach can be summarized as follows:

(i) The available patterns are divided into training data and val-
idation data. The MoGFS algorithm is applied to the training
data to design non-dominated fuzzy rule-based classifiers.
The accuracy of each classifier on the validation data is cal-
culated together with its complexity. This train-validation
procedure is iterated using different data partitions.

(ii) Results in (i) are used to estimate the best complexity with
the highest validation data accuracy.

(iii) The MoGFS algorithm is applied to all the available patterns
to design non-dominated fuzzy rule-based classifiers. Using
the estimated best complexity in (ii), a single final classifier
is chosen from the obtained non-dominated classifiers.

The train-validation procedure in (i) is iterated using different
data partitions. Thus the estimated best complexity does not de-
pend on a single data partition. Moreover, all the available patterns
are used to design non-dominated classifiers in (iii).

From each run of the train-validation procedure in (i), we obtain
a number of non-dominated classifiers. Since the train-validation
procedure is iterated using different data partitions, we obtain dif-
ferent sets of non-dominated classifiers in (i). The main problem in
the above-mentioned procedure for classifier selection is how to
estimate the best complexity with the highest validation data
accuracy in (ii) using different sets of non-dominated classifiers
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Fig. 1. Two typical cases of the relation between training data accuracy and test
data accuracy.
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obtained in (i). In this paper, we propose two simple methods for
the best complexity estimation.

One idea for the best complexity estimation is to first estimate
the best complexity with the highest validation data accuracy in
each run of the train-validation procedure. The final estimation is
calculated as the average value of the estimated best complexity
over multiple runs of the train-validation procedure. This method
is referred to as the first-estimate-then-average (FETA) method.
Another idea is to first calculate the average validation data accu-
racy for each complexity over multiple runs of the train-validation
procedure. The final estimation of the best complexity is obtained
as the complexity with the highest average validation data accu-
racy. This approach is referred to as the first-average-then-esti-
mate (FATE) method. These two methods are explained in detail
in the next section.

3. Repeated double CV for classifier selection

3.1. Basic Idea of repeated double cross-validation

When we evaluate the performance of classifiers, we usually
use cross-validation (CV) [31–34]. In k-fold cross-validation
(kCV), available patterns are divided into k subsets of the same size.
One subset is used as test data and the others (k � 1) subsets are
used as training data. A classifier is designed using the training
data. The accuracy of the designed classifier is evaluated using
the test data. This train-test procedure is iterated k times so that
all the k subsets are used as test data. A single execution of kCV
consists of those k iterations. Since the calculated test data accu-
racy depends on the data partition into k subsets, the execution
of kCV is usually iterated several times using different data parti-
tions. We denote t iterations of kCV as t � kCV, which includes tk
runs of the train-test procedure. For example, 5 � 10CV means five
iterations of 10CV.

The performance of the MoGFS algorithm can be evaluated in
the same manner. In each run in t � kCV, the MoGFS algorithm is
applied to the training data to search for non-dominated fuzzy
rule-based classifiers. A single classifier is selected from the ob-
tained ones in each run. The selected classifier is evaluated using
the corresponding test data in each run. This train-test procedure
is iterated t � k times (i.e., t � k runs).

Our idea is to use a cross-validation mechanism for classifier
selection in each of t � k runs of the MoGFS algorithm in t � kCV.
That is, the training data in each run in t � kCV are used as avail-
able patterns in another CV procedure for classifier selection. This
idea leads to the same framework as repeated double Cross-Valida-
tion (rdCV [29]), which has a nested structure of two CV loops (i.e.,
inner and outer CV loops) as shown in Fig. 2. The rdCV has already
been utilized for performance evaluation of classifiers and regres-
sion models [35–37] (for details, see [38,39]). However, at the best
of our knowledge, rdCV has not been used in multi-objective ma-
chine learning including MoGFS.

The outer CV loop is the same as the standard CV for perfor-
mance evaluation of classifiers. We use kOut-fold CV (i.e., kOutCV),
which is iterated tOut times (i.e., tOut � kOutCV). The MoGFS algo-
rithm is executed tOut � kOut times in the outer CV loop (e.g., 10
times in 1 � 10CV in Fig. 2).

The inner CV loop is applied to training data from the outer CV
loop. We use kIn-fold CV (i.e., kInCV), which is iterated tIn times
(i.e., tIn � kInCV). The outer CV training data are divided into kIn

subsets (e.g., kIn = 5 in Fig. 2). One subset is used as validation
data while the other (kIn � 1) subsets are used as inner CV
training data. The MoGFS algorithm is applied to the inner CV
training data to design non-dominated fuzzy rule-based classifi-
ers. The validation data are used to evaluate the accuracy of each

classifier. The train-validation procedure is iterated tIn � kIn times
for the same outer CV training data to estimate the best complex-
ity with the highest validation data accuracy. Using the estimated
best complexity for the current outer CV training data, a single
classifier is chosen from the non-dominated ones obtained by
the MoGFS algorithm for the current outer CV training data.

Since tOut � kOutCV is used in the outer CV loop, the total
number of runs of the MoGFS algorithm in the inner CV loop is
tOut � kOut � tIn � kIn. Thus the total number of runs of the MoGFS
in the outer and inner CV loop is (tOut � kOut + tOut � kOut � tIn �
kIn) = tOut � kOut(1 + tIn � kIn), which is (1 + tIn � kIn) times larger
than the number of runs in the standard CV (i.e., tOut � kOut). For
example, when 5 � 10CV is used in the inner CV loop, the total
number of runes of the MoGFS in our rdCV approach is 51 times
larger than the case of the standard CV approach. Such a computa-
tional overhead is always needed when our rdCV approach is used
for any multiobjective machine learning algorithms.

3.2. Implementation of rdCV for MoGFS

In the inner CV loop, a number of non-dominated fuzzy
rule-based classifiers are obtained from each run of the MoGFS
algorithm on inner CV training data. The error rate on the valida-
tion data is calculated for each classifier. A different set of non-
dominated fuzzy rule-based classifiers is usually obtained from
each of tIn � kIn runs in the inner CV loop since different inner CV
training data are used in each run. Thus, tIn � kIn sets of non-dom-
inated fuzzy rule-based classifiers are obtained together with the
validation data error rate of each classifier. We use those results
to estimate the best complexity with the highest validation data
accuracy for the current outer CV training data. The estimated best
complexity is used to choose a single classifier from the obtained
non-dominated ones by the MoGFS algorithm for the current outer
CV training data.

We propose the following two methods for the best complexity
estimation:

First-estimate-then-average method (FETA): In this methods,
first the best complexity is estimated in each run of the MoGFS
algorithm in the inner CV loop. Then the average value of the
estimated best complexity is calculated over tIn � kIn runs. The
calculated average value is used as the best complexity to choose

Inner CV : Validation Data Training Data
Outer CV : Test Data Training Data

…

Inner CV Loop

Outer CV

Outer CV

Outer CV

Inner CV Loop

Inner CV Loop

Inner CV Loop

Fig. 2. A rdCV procedure with 1 � 10CV in the outer loop and 2 � 5CV in the inner
loop.
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a single final classifier for the current outer CV training data in the
outer CV loop.

First-average-then-estimate method (FATE): In this method,
first the average error rate for each complexity is calculated over
tIn � kIn runs. Then the best complexity is estimated from the cal-
culated average error rate for each complexity. The estimated best
complexity is used to choose a single final classifier for the current
outer CV training data in the outer CV loop.

In the following, we explain each of these methods in details.
Let us assume that four and three non-dominated fuzzy rule-based
classifiers in Fig. 3(a) and (b) are obtained from the first and second
runs of MoGFS in the inner CV loop, respectively. In Fig. 3, we as-
sume that multi-objective classifier design is formulated as the
two-objective minimization problem of the error rate and the
number of fuzzy rules.

In the FETA method, we first estimate the best complexity from
each run. In Fig. 3(a), the smallest validation error rate is obtained
from the classifier with four fuzzy rules. Thus the best complexity
is estimated as four from the first run. From the second run in
Fig. 3(b), the best complexity is estimated as three. In this manner,
the best complexity is estimated from each of the tIn � kIn runs of
the MoGFS algorithm in the inner CV loop. The average value of
the estimated best complexity over the tIn � kIn runs is used
as the estimated best complexity for classifier selection for the cur-
rent outer CV training data in the outer CV loop. It should be noted
that the obtained best complexity is not always an integer value in
the FETA method. For the current outer CV training data in the out-
er CV loop, a single classifier with the most similar complexity to
the estimated best complexity is chosen.

In the FATE method, we first calculate the average error rate on
validation data for each complexity (i.e., each number of fuzzy
rules in Fig. 3). It should be noted that a different set of non-
dominated fuzzy rule-based classifiers is obtained from each of
the tIn � kIn runs of the MoGFS algorithm in the inner CV loop as
illustrated in Fig. 3. This means that fuzzy rule-based classifiers
with a particular complexity (i.e., a particular number of fuzzy
rules) are not always obtained in all the tIn � kIn runs. Thus the cal-
culated average error rate for each complexity is not always the
average over the tIn � kIn runs. When we estimate the best com-
plexity, we use only the average error rates calculated over at least
a% of the tIn � kIn runs (e.g., a = 80). If fuzzy rule-based systems
with a particular complexity are not obtained from at least a% of
the tIn � kIn runs, the complexity is not selected as the best
complexity.

In our former study [30], we used a substitute method for
calculating the average error rate for each complexity over all the
tIn � kIn runs. In the substitute method, a similar classifier with less
complexity was used in the average error rate calculation when a
fuzzy rule-based classifier with a particular complexity was not
obtained. The substitute method in our former study [30] is
illustrated in Fig. 4. In Fig. 4(a), no fuzzy rule-based classifier with

five fuzzy rules is not obtained. So the obtained classifier with four
fuzzy rules is used as a dummy classifier in the average error rate
calculation over classifiers with five fuzzy rules. In Fig. 4(b), the ob-
tained classifiers with one and three fuzzy rules are used as dum-
my classifiers with two and four fuzzy rules, respectively. Due to
the use of dummy classifiers, the average error rate is not always
calculated over fuzzy rule-based classifiers with the same com-
plexity. Thus the estimated best complexity does not correctly
indicate the complexity of fuzzy rule-based classifiers with the
highest validation data accuracy. Thus we do not use such a substi-
tute method in this paper.

After the best complexity is estimated in the inner CV loop, we
go back to the current run of the MoGFS in the outer CV loop where
a number of non-dominated fuzzy rule-based classifiers are ob-
tained by the MoGFS algorithm using the current outer CV training
data. A classifier with the most similar complexity to the estimated
best complexity is chosen among them. The similarity is measured
by the difference in the number of fuzzy rules. When we have two
classifiers with the same similarity to the best complexity, we
choose the simpler one with less complexity. For example, when
the estimated best complexity is 3.5 fuzzy rules, a classifier with
three fuzzy rules is selected rather than that with four fuzzy rules.
After a single classifier is selected, the error rate of the selected
classifier is calculated using test data. A single run of the MoGFS
algorithm in the outer CV loop involves all of these procedures
(i.e., tIn � kIn runs of the MoGFS algorithm for complexity determi-
nation in the inner CV loop, a single run of the MoGFS algorithm to
design non-dominated classifiers in the outer CV loop, classifier
selection using the estimated best complexity, error rate calcula-
tion of the selected classifier on test data).

Here we explain the handling of two special situations. One is
the handling of overlapping classifiers in the objective space, and
the other is the handling of the tiebreak situation in the best com-
plexity determination.

It is possible that multiple non-dominated classifiers with the
same objective vector are simultaneously obtained by a single
run of the MoGFS algorithm. While those classifiers have the same
training data accuracy, they may have different validation data
accuracy in the inner CV loop. This is also the case for test data
accuracy in the outer CV loop. Thus we calculate the average error
rate over the overlapping classifiers. For example, let us assume
that five classifiers with the same complexity and the same train-
ing data accuracy are simultaneously obtained. These five classifi-
ers are overlapping with each other in the objective space. We also
assume that four of them are exactly the same classifier with a val-
idation data error rate of 10% and the other has a validation data
error rate of 20%. In this case, these overlapping classifiers are
handled as a single classifier with a validation data error rate of
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Fig. 3. Two sets of non-dominated fuzzy rule-based classifiers.
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Fig. 4. Illustration of the use of other fuzzy rule-based classifiers with similar
complexity as dummy classifiers for the calculation of the average error rates on
validation data [30].
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12% (i.e., (4 � 10 + 1 � 20)/5). Overlapping classifiers are handled
in this manner in the outer and inner CV loops.

It is also possible that multiple complexity values have the
same best validation data accuracy in the inner CV loop. In this
case, we choose the smallest complexity among them in both the
FETA method and the FATE method.

4. Computational experiments

4.1. Setting of computational experiments

In our computational experiments, we use 17 data sets in
Table 1. All attribute values are normalized into real numbers in
the unit interval [0,1]. That is, each pattern is handled as a point
in the n-dimensional pattern space [0,1]n where n is the number
of attributes in each data set.

For such an n-dimensional classification problem, we use fuzzy
rules of the following type:

Rule Rq : If x1 is Aq1 and . . . and xn is Aqn then Class Cq with CFq;

ð2Þ

where Rq is the label of the qth fuzzy rule, x = (x1, . . . , xn) is an
n-dimensional pattern vector, Aqi is an antecedent fuzzy set
(i = 1, 2 . . . , n), Cq is a class label, and CFq is a rule weight (which
is a real number in [0,1]). We use 45 antecedent fuzzy sets from
fuzzy partitions with granularities 1–9 including ‘‘don’t care’’. Some
of them are shown in Fig. 5(a)–(d) where an integer is attached to
each fuzzy set. The unit interval [0,1] is used as a special antecedent
fuzzy set ‘‘don’t care’’ since all attribute values are real numbers in
[0,1].

As an MoGFS algorithm, we use our multi-objective fuzzy
genetics-based machine learning (MoFGBML) algorithm [25]
which is based on a hybrid FGBML algorithm [41] with a Pitts-
burgh-style algorithm framework and a Michigan-style search
mechanism. Each fuzzy rule is coded by its n antecedent fuzzy sets.
Thus each classifier with N fuzzy rules is coded by a string of length
nN. The integers attached to fuzzy sets in Fig. 5 are used for classi-
fier coding. Our MoFGBML algorithm is applied to the two-objec-
tive problem for minimizing the percentage error rate and the
number of fuzzy rules as explained in Section 1.

The other parameters on our MoFGBML algorithm were the
same as those in [30] except for the number of initial rules (i.e.,
30) and the maximum number of rules (i.e., 60) in a string. The
replacement probability with ‘‘don’t care’’ was also different. We

specified it as (n � 5)/n in this paper. These changes are based on
our preliminary empirical studies.

Our rdCV approach is implemented as 5 � 10CVOut � 5 � 10CVIn

where 10CV is iterated five times for the test data accuracy evalu-
ation in the outer CV loop and five times for the best complexity
estimation in the inner CV loop. The number of runs of our
MoFGBML algorithm is 5 � 10 in the outer CV loop while it is
50 � 5 � 10 in the inner CV loop (i.e., 2550 runs in total). The class
balance is maintained as much as possible in random data partition
into ten subsets for each 10CV. In Moreno-Torres et al. [42], they
discussed data shift and introduced some data partitioning meth-
ods. The comparison with other data partitioning methods would
be an interesting future research topic. There is a possibility that
we can obtain better classifiers with higher generalization ability.
There is also a possibility that we can reduce the number of inner
CV iterations using other data partitioning methods.

4.2. Illustration of our rdCV approach

Before reporting experimental results on the 17 data sets, we
first explain our rdCV approach (i.e., 5 � 10CVOut � 5 � 10CVIn)
using the heart data set with 270 patterns. In the outer CV loop,
the given 270 patterns are divided into ten subsets with 27 pat-
terns for 10CV. In the first run of our MoFGBML algorithm in the
outer CV loop, one of the ten subsets is used as test data. The other
nine subsets are used as training data (i.e., outer CV training data).

The outer CV training data are further subdivided into ten sub-
sets for 10CV in the inner CV loop. One of the ten subsets of the
outer CV training data is used as validation data, and the other nine
subsets are used as training data (i.e., inner CV training data). Our
MoFGBML algorithm is applied to the inner CV training data to
search for non-dominated fuzzy rule-based classifiers. Each of
the obtained classifier is evaluated using the validation data. In this
manner, 5 � 10CV is performed for the same outer CV training data
in the inner CV loop. Then the best complexity is estimated using
the validation error rate of each fuzzy rule-based classifier.

When we use the FETA method, the best complexity is esti-
mated in each run in the 5 � 10CV in the inner CV loop. In Fig. 6,
we show the experimental results of the first two runs. The best
complexity is estimated in each run as 4 in Fig. 6(a) and 7 in
Fig. 6(b). From the 50 runs, we obtain the average value 7.52 of
the estimated best complexity. In Fig. 7, we show the histogram
of the 50 values of the estimated best complexity. We can see that
the estimated best complexity has a large variety over 50 runs.

When we use the FATE method, first the average validation
error rate is calculated for each complexity (i.e., each number of
fuzzy rules) over the 50 runs. Then the best complexity with the
highest validation data accuracy is estimated. In Fig. 8(a), we show

Table 1
Data sets used in this paper (Available from UCI Database and Keel Project [40]).

Data Patterns Attributes Classes

Appendicitis 106 7 2
Australian 690 14 2
Bands 365 19 2
Bupa 345 6 2
Cleveland 297 13 5
Dermatology 358 34 6
Glass 214 9 6
Haberman 306 3 2
Heart 270 13 2
Mammographic 830 5 2
Pima 768 8 2
Saheart 462 9 2
Sonar 208 60 2
Vehicle 846 18 4
Wdbc 569 30 2
Wine 178 13 3
Wisconsin 683 9 2
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0.0 1.0

Don’t Care

11.0

0.0 1.0

2

31.0

0.0 1.0

54 1.0

0.0 1.0

4440 24 344173 83 93

   (a) Granularity 1.   (b) Granularity 2.

   (c) Granularity 3.   (d) Granularity 9.

Fig. 5. Examples of fuzzy partitions used in our computational experiments.
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the average validation error rate for each complexity. Some aver-
age error rates in Fig. 8(a) are calculated over all the 50 runs while
others are calculated over only a few runs. In Fig. 8(b)–(d), we
show the average error rates calculated over at least a% of the 50
runs for a = 50, 80 and 100, respectively. Fig. 8(a) shows all results
obtained from at least one of the 50 runs (i.e., a = 2). Depending on
the value of a, the best complexity is estimated as 32 (a = 2 in
Fig. 8(a)), 20 (a = 50 in Fig. 8(b)), and 7 (a = 80 in Fig. 8(c) and
a = 100 in Fig. 8(d)).

The estimated best complexity is used for choosing a single
classifier in the first run of our MoFGBML algorithm in the outer
CV loop. In Fig. 9(a), we show the results of the first run in the outer
CV loop. One of the obtained 23 fuzzy rule-based classifiers in
Fig. 9(a) is selected using the estimated best complexity. For exam-
ple, when the estimated best complexity is 7.52 (i.e., the results of
the FETA method), one classifier with eight fuzzy rules is selected.
Then the error rate on the test data of the first run in the outer CV
loop is calculated. This completes the first run in the 5 � 10CV in
the outer CV loop. In this manner, 50 runs in the 5 � 10CV are per-
formed in the outer CV loop. In Fig. 9(b)–(d), we show the average
results over the 50 runs in the outer CV loop. As in Fig. 8 (i.e., as in
the inner CV loop), a different set of non-dominated classifiers is
obtained in each of 50 runs of our MoFGBML algorithm in the outer
CV loop. Thus the average results in Fig. 9(b)–(d) are shown in the
same manner as in Fig. 8 (i.e., average results over at least a single
run, 50% runs, and 100% runs).

4.3. Some other methods for classifier selection

As mentioned in Section 1, a simple method for classifier selec-
tion is to choose the classifier with the highest training data accu-
racy. In Fig. 9(a), the right-most classifier with 27 fuzzy rules is
selected. This method is referred to as the highest training data
accuracy method. As shown in Fig. 9(b)–(d), usually fuzzy rule-
based classifiers do not severely overfit to the training data. Thus
the highest training data accuracy method works well in many
cases. Of course, the selected classifier also has the highest
complexity.

Another method mentioned in Section 1 is to choose the classi-
fier with the highest validation data accuracy. In this method, a
part of the training data in the outer CV loop are used as validation
data as in the inner CV loop of our rdCV-based two methods. How-
ever, the validation data accuracy is directly used for choosing the
classifier with the highest validation data accuracy (not for esti-
mating the best complexity). When 10% of the training data are
used as validation data, this method is the same as choosing the
classifier with the highest validation data accuracy in the first
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(a) Results of the first run.   (b) Results of the second run. 

Fig. 6. Results of the first two runs of our MoFGBML algorithm in the inner CV loop.
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Fig. 7. Histogram of the 50 values of the estimated best complexity.
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Fig. 8. Average error rates on validation data in the inner CV loop.
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Fig. 9. Results in the outer CV loop.
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run in the inner CV loop. That is, the classifier with four rules in
Fig. 6(a) is selected. In other words, the first run in the inner CV
loop of our rdCV approach is used as the first run in the outer CV
loop in this approach. Actually, no inner CV loop is needed in this
approach. This approach is referred to as the single train-validation
method. As shown in Fig. 7, classifier selection based on 10% vali-
dation data often chooses totally different classifiers with a large
variety in their complexity. This is because each of the obtained
classifiers is evaluated by only 10% of the training data when a sin-
gle classifier is selected. That is, classifier selection is performed
using only a single validation data set, which is 10% of the training
data. In our rdCV approach, the best complexity estimation is per-
formed using average results over a large number of different val-
idation data sets in the inner CV loop. As a result, the variety of
complexity among the chosen classifiers by our approach is much
smaller than that by classifier selection based on a single validation
data set.

4.4. Experimental results

We compared five classifier selection methods: our rdCV-based
FETA method, our rdCV-based FATE method, the highest training
data accuracy method, the single train-validation method, and
the median complexity method [43].

In the FATE method, the value of a was specified as a = 80. This
means that the average validation data error rate was calculated
only when fuzzy rule-based classifiers are obtained for a particular
complexity from at least 80% runs in the inner CV loop (i.e., 40 out
of 50 runs in the 5 � 10CV in the inner CV loop).

In the single train-validation method, the outer CV training data
were randomly divided into 90% training data and 10% validation
data. A classifier with the highest validation data accuracy was se-
lected from non-dominated classifiers obtained from the 90% train-
ing data. Except for this single train-validation method, all the
outer CV training data were used to design non-dominated classi-
fiers from which a final classifier was selected.

In the median complexity method, a classifier with the median
complexity among the obtained non-dominated classifiers was
chosen (for details, see [43]). Only the two methods of our rdCV ap-
proach have the inner CV loop. The same outer CV loop with
5 � 10CV was used for all the five classifier selection methods.
Average test data error rates are summarized for the 17 data sets
in Table 2.

In Table 2, the lowest error rate is shown by boldface for each
data set. We can see from Table 2, the highest test data accuracy

was obtained for ten data sets from one of our two rdCV-based
methods. For four data sets, the highest test data accuracy was ob-
tained from the highest training data accuracy method. This obser-
vation suggests that our MoFGBML algorithm did not overfit to
training data of those data sets.

We can also see from Table 2 that the difference in the average
test data error rates between the highest training data accuracy
method and the median complexity method is small for most data
sets. This observation suggests that the complexity of highest
training data accuracy classifiers can be decreased without se-
verely deteriorating their generalization ability (e.g., see Fig. 9(b)).

For most data sets, better results were obtained from our
rdCV-based two methods than the single train-validation method.
Especially for small data sets such as the appendicitis, glass, and
sonar data sets, we can observe large differences between our
rdCV-based methods and the single train-validation method. This
observation suggests that multiple runs of the train-validation pro-
cedure with different data partitions in our rdCV methods can
somewhat alleviate the difficulty in the single train-validation clas-
sifier selection method for small data sets.

We perform a Wilcoxon signed-ranks test [44] with the average
error rates for each method. Table 3 shows R+/R�/p-value for each
pairwise comparison. The statistical difference (i.e., p-value < 0.1)
is highlighted in bold face. The statistical test supports that our
rdCV methods outperform alternative methods with respect to test
data accuracy. It also shows our rdCV methods are not statistically
different.

In Table 4, we summarize the average number of fuzzy rules in
the selected fuzzy rule-based classifiers. This table shows that the
size of fuzzy rule-based classifiers selected by our rdCV-based two
methods is about 1/3 of the highest training data accuracy classifi-
ers on average.

In Fig. 10, the five methods are compared in the accuracy-com-
plexity space using the average test data error rate and the average
number of fuzzy rules over the 17 data sets (i.e., the average results
shown in the bottom row of Tables 2 and 4). This figure explains
the characteristic features of each method. For example, we can
see that the highest training data accuracy method finds accurate
classifiers with many fuzzy rules while the median complexity
method finds simpler classifiers. Fig. 10 also shows that our
rdCV-based methods dominate the other three methods in the
accuracy-complexity space.

From Fig. 10, one may think why the median complexity meth-
od was worse than the highest training data accuracy method with
respect to the average test data error rate. Of course, the highest

Table 2
Average error rates on test data.

Our rdCV FETA Our rdCV FATE Single Validation Median Complexity Highest Training

Appendicitis 16.08 17.02 19.96 17.16 18.83
Australian 14.87 14.69 15.29 15.16 15.48
Bands 32.50 32.63 34.80 32.45 32.70
Bupa 34.84 35.12 34.53 34.38 33.90
Cleveland 45.83 46.44 46.80 46.59 45.94
Dermatology 5.17 5.12 6.33 13.81 5.72
Glass 34.28 33.62 37.23 34.54 33.59
Haberman 26.95 26.52 26.39 27.45 27.90
Heart 21.72 22.13 22.08 23.35 23.63
Mammographic 18.26 18.15 18.10 18.56 19.53
Pima 26.13 26.45 26.23 26.70 26.93
Saheart 32.04 31.84 35.21 33.16 33.86
Sonar 25.63 25.45 28.26 25.36 24.86
Vehicle 30.43 31.03 31.30 30.69 30.69
Wdbc 5.73 5.26 6.24 5.76 5.49
Wine 10.60 10.60 10.71 33.35 10.30
Wisconsin 3.84 3.87 4.36 4.15 4.16

Average 22.64 22.70 23.75 24.86 23.15
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training data accuracy method is more likely to suffer from the
overfitting to the training data than the medium complexity meth-
od. In this sense, the medium complexity method can be a good
heuristic to choose a single classifier with high generalization abil-
ity when classifiers with high complexity severely overfits to train-
ing data as explained in Fig. 1(b). However, this heuristics does not
always work well. For example, in Table 4, the average number of
fuzzy rules in the selected classifiers by the medium complexity
method is smaller than the number of classes in the dermatology
and wine data sets. This means that the complexity of the selected
classifiers for these data sets is too small.

4.5. Parameter specifications in our rdCV approach

In our rdCV approach, the best complexity is estimated in the
inner CV loop using tIn � kInCVIn. Thus the performance of our rdCV
approach may strongly depend on the specifications of the two
parameters tIn and kIn. We examined the performance of the FETA
method for the following specifications in the inner CV loop:
5 � 10CV, 4 � 10CV, 3 � 10CV, 2 � 10CV, 1 � 10CV, 5 � 5CV, and
5 � 2CV. Experimental results are shown in Fig. 11(a) and (b).

From Fig. 11(a), we can see that the number of iterations of
10CV (i.e., the specification of tIn in the tIn � kInCVIn) does not have
a large effect on the performance of the FETA method. Actually, the
difference in the experimental results between 1 � 10CV and
5 � 10CV in the inner CV loop is not statistically significant when
we use a Wilcoxon signed-ranks test with a = 0.10. The p-value is
0.687. However, the number of data partitions (i.e., the specifica-
tion of kIn in the tIn � kInCVIn) has a large effect in Fig. 11(b). For
example, when we used 5 � 2CV instead of 5 � 10CV in the inner
CV loop, simpler and less accurate fuzzy rule-based classifiers were
selected. This may be because only 50% of the outer CV training
data were used as training data in the inner 5 � 2CV. That is, there

is a large difference in the size of training data between the inner
and outer CV loops. When 5 � 10CV was used in the inner CV loop,
90% of the outer CV training data were used as training data in the
inner CV loop. In this case, the size of training data is not so differ-
ent between the inner and outer CV loops. Similar observations are
obtained from Fig. 12(b) for our rdCV-based FATE method.

Table 3
Wilcoxon signed-ranks test. Results are presented as R+/R�/p-Value.

Our rdCV
FETA

Our rdCV
FATE

Single
validation

Median
complexity

Highest
training

Our rdCV FETA – 75/61/0.717 137/16/0.004 137/16/0.004 114/39/0.076
Our rdCV FATE 61/75/0.717 – 132/21/0.008 130/23/0.011 112/41/0.092
Single validation 16/137/0.004 21/132/0.008 – 63/90/0.523 47/106/0.163
Median complexity 16/137/0.004 23/130/0.011 90/63/0.523 – 62/74/0.756
Highest training 39/114/0.076 41/112/0.092 106/47/0.163 74/62/0.756 –

Table 4
Average number of fuzzy rules.

Data Our
rdCV
FETA

Our
rdCV
FATE

Single
validation

Median
complexity

Highest
training

Appendicitis 2.46 2.96 1.66 3.30 7.70
Australian 9.00 6.34 10.72 15.52 37.18
Bands 16.56 18.72 14.12 19.48 45.88
Bupa 13.82 12.82 14.42 14.88 39.12
Cleveland 14.24 18.52 8.04 24.86 53.54
Dermatology 6.62 7.30 6.26 4.74 10.56
Glass 14.22 17.90 11.90 13.66 32.74
Haberman 4.34 2.24 3.94 7.32 16.80
Heart 7.26 10.82 6.20 11.52 25.90
Mammographic 4.92 3.84 4.88 8.98 19.74
Pima 15.12 12.38 12.28 21.20 50.34
Saheart 10.62 3.52 54.22 22.74 52.30
Sonar 6.28 8.40 5.52 6.42 13.68
Vehicle 21.40 26.30 18.78 21.10 48.14
Wdbc 4.72 5.76 3.94 4.42 9.88
Wine 3.14 3.34 3.18 2.10 4.68
Wisconsin 4.76 6.50 3.44 6.38 13.86

Average 9.38 9.86 10.79 12.27 28.36
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Fig. 10. The average test data error rate and the average number of fuzzy rules over
the 17 data sets by the five classifier selection methods.

6 7 8 9 10 11 12

22.6

22.8

23.0

23.2

Number of rules

Er
ro

r r
at

e 
(%

)

1x10CV
2x10CV
3x10CV
4x10CV
5x10CV

6 7 8 9 10 11 12

22.6

22.8

23.0

23.2

Number of rules

Er
ro

r r
at

e 
(%

)

5x2CV
5x5CV
5x10CV

(a) Effects of the number of iterations.    (b) Effects of the number of partitions. 

Fig. 11. The average test data error rate and the average number of fuzzy rules over
the 17 data sets by our rdCV-based FETA method.
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Fig. 12. The average test data error rate and the average number of fuzzy rules over
the 17 data sets by our rdCV-based FATE method.
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In our rdCV-based FATE method, we have another important
parameter a. Only when fuzzy rule-based classifiers with a partic-
ular complexity are obtained at least a% runs in the inner CV loop,
the average validation data error rate is calculated for the complex-
ity in this method. In Fig. 13, we show experimental results for five
specifications of a in the inner 5 � 10CV: a = 2% (1 run), 20% (10
runs), 50% (25 runs), 80% (40 runs), 100% (50 runs). We can see
from Fig. 13 that the increase in the value of a decreased the aver-
age number of fuzzy rules in the selected classifiers. This is because
fuzzy rule-based systems with a large number of fuzzy rules were
not obtained in many runs in the inner CV loop (i.e., the average
validation error rate was not calculated for such a large number
of fuzzy rules when the value of a is large).

5. Repeated double CV for other settings in MoGFS

It is not likely that a single algorithm with a fixed parameter
specification always works well on various data sets. A different
algorithm with a different parameter specification may be needed
for a different data set. In this section, we discuss how our rdCV ap-
proach can be used for parameter specification, formulation selec-
tion and algorithm choice.

Our idea is to examine different parameter specifications, differ-
ent formulations and different algorithms in the inner CV loop of
our rdCV approach. It should be noted that we cannot use test data
for these tasks. Only after a single classifier is obtained, test data
are used to evaluate the obtained classifier. Various parameter val-
ues, formulations and algorithms can be compared in the inner CV
loop without using test data. It should be also noted that our rdCV
approach is not used for comparing different MoGFS algorithms
but used for choosing an appropriate MoGFS algorithm for each
data set. A different MoGFS algorithm will be chosen for a different
data set. The inner CV loop plays a role of a manager to utilize a
team of different MoGFS algorithms.

In general, MoGFS algorithms have a number of parameters to
be pre-specified. For example, one important parameter in our
MoFGBML is the range of granularities of fuzzy partitions. In the
previous section, we used fuzzy partitions with granularities 1–9.
This is not necessarily the best specification for all data sets. We
can use other specifications.

In addition to granularities 1–9, let us examine granularities
1–3, 1–5 and 1–7. In our rdCV approach, we can examine each
specification in the inner CV loop. Then we can choose the best
specification together with the best complexity for each run in
the outer CV loop. Let us explain how our rdCV-based FETA method
works for granularities specification through computational exper-
iments on the heart data set with 270 patterns using the FETA
method.

As in the previous section, we use 5 � 10CV in the outer CV loop
and 5 � 10CV in the inner CV loop. The inner CV loop is used to
choose one of the three specifications together with the best com-
plexity. For each run of our MoFGBML algorithm in the outer CV
loop, the 5 � 10CV in the inner CV loop is applied to the outer CV
training data in the same manner as in the previous section for
each of the three specifications: 1–3, 1–5 and 1–7. In each run in
the inner CV loop, the best error rate on validation data and the
best complexity are identified as shown in the previous section.
The estimated validation data accuracy is obtained by calculating
the average value of the best error rate over 50 runs in the inner
CV loop for each specification. Using the estimated validation data
accuracy for each specification, the best specification can be se-
lected (i.e., the specification with the highest estimated validation
data accuracy is selected). In this manner, one of the three specifi-
cations is selected for each of 50 runs in the outer CV loop.

Among 50 runs of our MoFGBML in the outer CV loop, granular-
ities 1–3, 1–5, 1–7 and 1–9 are selected in 39, 7, 1 and 3 runs,
respectively. When we use granularities 1–3, 1–5, 1–7 and 1–9 in
all the 50 runs, the average error rate on test data is calculated
as 19.91%, 22.00%, 20.63% and 21.72%, respectively. We can see
from these results that our approach selects granularities with
lower error rates more often. It should be noted that we cannot
use test data error rates for parameter specifications.

Since the estimated validation data accuracy is obtained
together with the estimated best complexity for each of different
settings, we can choose the best setting with the best validation
data accuracy. This idea can be used for various specifications in
MoGFS (e.g., the specification of the shape of membership
functions, the choice of an EMO algorithm, the specification of a
termination condition of MoGFS, the choice of a multiobjective
formulation of classifier design).

6. Conclusions

In this paper, we discussed classifier selection from a number of
non-dominated fuzzy rule-based classifiers obtained by a MoGFS
algorithm. For classifier selection and test data accuracy evalua-
tion, we proposed the use of repeated double Cross-Validation
(rdCV). In the inner CV loop of our rdCV approach, the MoGFS
algorithm was applied to the training data to design a number of
non-dominated fuzzy rule-based classifiers. The validation data
accuracy and the complexity of each non-dominated classifier
were examined. This train-validation procedure was iterated for
different data partitions. We proposed two methods for specifying
the best complexity with the highest validation data accuracy
using experimental results in the inner CV loop with multiple runs
of the train-validation procedure. The main characteristic of our
rdCV-based approach is to use validation data accuracy for com-
plexity determination instead of classifier selection. As a result,
multiple runs can be performed in the inner CV loop for complexity
determination.

We examined the performance of our rdCV-based two methods
for classifier selection through computational experiments on 17
data sets. Our rdCV-based two methods were compared with the
highest training data accuracy method, the single train-validation
method and the median complexity method. For ten data sets
out of the 17 data sets, the best test data accuracy was obtained
from one of our rdCV-based two methods. One future research
issue is the handling of three-objective formulations (e.g.,
[23,45,46]) in our rdCV approach. Examination of our rdCV ap-
proach in more advanced MoGFS algorithms with various tuning
mechanisms (e.g., [43]) is also an interesting future research issue.
In our rdCV approach, classifier selection was performed for gener-
alization ability maximization with no intervention of the decision
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Fig. 13. Results of our rdCV-based FATE method with different specifications of a.
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maker. Classifier selection based on the decision maker’s prefer-
ence is an interesting and promising future research issue where
we should take into account not only the generalization ability of
fuzzy rule-based classifiers but also their complexity and
interpretability.
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