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Abstract - The main advantage of multi-objective genetic fuzzy systems (MoGFS) is that a number of 

non-dominated fuzzy rule-based systems are obtained along the tradeoff surface among conflicting 

objectives. Accuracy maximization, complexity minimization and interpretability maximization have 

often been used for multi-objective design of fuzzy rule-based classifiers. A number of non-dominated 

fuzzy rule-based classifiers are obtained by a single run of MoGFS. A human decision maker is supposed 

to choose a single final classifier from a number of obtained classifiers according to his/her preference. 

One problem, which has not been discussed in many studies on MoGFS, is how to choose a single final 

classifier. In this paper, we discuss classifier selection with no intervention of the decision maker. 

Whereas complexity and interpretability are very important factors in classifier selection, we concentrate 

on the maximization of generalization ability as the first step towards a more general handling of 

classifier selection. We propose the use of repeated double cross-validation (rdCV) to choose a single 

final classifier and to evaluate the generalization ability of the selected classifier. We also discuss how our 

approach can be applied to parameter specification, formulation selection and algorithm choice. 

Index Terms – Fuzzy rule-based classifiers, multi-objective genetic fuzzy systems, evolutionary multi-

objective optimization, multi-objective genetics-based machine learning, repeated double cross-validation. 

 

1. Introduction 

 Two conflicting objectives are often involved in classifier design: accuracy maximization and 

complexity minimization. These two objectives were combined into a weighted sum fitness function in 

genetic fuzzy rule selection in the mid-1990s [1,2]. In the late-1990s [3-5], they were used as separate 

objectives in a two-objective approach. Since the late-1990s, evolutionary multi-objective optimization 

(EMO) algorithms [6-8] have been used for multi-objective design of fuzzy systems [9-11]. This research 
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area, which is included in a much broader research field called genetic fuzzy systems (GFS [12-15]), is 

often referred to as multi-objective genetic fuzzy systems (MoGFS). This is because multi-objective 

genetic algorithms (e.g., NSGA-II [16] and SPEA [17]) have been mainly used in MoGFS. Recently 

multi-objective approaches have also been used for various classifier design such as neural networks and 

decision trees [18-22].  

 In this paper, we use the following simple two-objective formulation to clearly explain an accuracy-

complexity tradeoff relation in a two-dimensional objective space:  

   Minimize  f1(S) = Error(S),  f2(S) = Complexity(S),               (1) 

where S is a fuzzy rule-based classifier, Error(S) is a percentage error rate of S on training data, and 

Complexity(S) is the number of fuzzy rules in S.  

 In MoGFS, we can use multiple complexity measures such as the number of fuzzy rules and the total 

number of antecedent conditions [23-25]. It is also possible to use multiple accuracy measures such as a 

true positive rate and a false positive rate [26,27]. 

 In the EMO community, performance measures such as hypervolume and generational distance have 

been proposed to evaluate the search ability of EMO algorithms [28]. Those measures can be also used to 

evaluate the search ability of MoGFS. However, high search ability of MoGFS does not always mean 

high performance of obtained fuzzy rule-based classifiers. This is because the search ability of MoGFS is 

measured by the accuracy on training data while classifier performance should be measured by the 

accuracy on unseen test data.  

 Fig. 1 illustrates the relation between training data accuracy and test data accuracy. If high training 

data accuracy always leads to high test data accuracy as in Fig. 1 (a), good classifiers are obtained from 

MoGFS with high search ability. However, as in Fig. 1 (b), high search ability of MoGFS does not always 

mean high performance of classifiers due to overfitting to training data.  

 As shown in Fig. 1, a number of non-dominated fuzzy rule-based classifiers are obtained from a single 

run of MoGFS. One problem, which has not been discussed in many studies on MoGFS, is how to choose 

a single final classifier. In MoGFS, a human decision maker is supposed to choose a single final classifier 

based on his/her preference with respect to various factors of fuzzy rule-based classifiers such as accuracy, 

complexity and interpretability. In this paper, we discuss classifier selection with no intervention of the 

decision maker. We concentrate on classifier selection for generalization ability maximization. Of course, 
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complexity and interpretability of fuzzy rule-based classifiers are also important factors when a single 

final classifier is chosen by the decision maker. Thus classifier selection based on those factors is an 

important research issue. Interactive classifier selection with the decision maker is also an important 

research issue. Those issues are left as future research topics. In this paper, we concentrate on classifier 

selection for generalization ability maximization as the first step towards such a more general handling of 

classifier selection. 
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      (a) No overfitting.         (b) Clear overfitting. 

Figure 1.  Two typical cases of the relation between training data accuracy and test data accuracy. 

 

 A simple classifier selection method with no intervention of the decision maker in MoGFS is to 

choose the fuzzy rule-based classifier with the highest training data accuracy. When we use the two-

objective formulation in (1), this method means the selection of the fuzzy rule-based classifier with the 

highest complexity (i.e., the selection of the right-most open circle in Fig. 1). This method does not work 

well in Fig. 1 (b) with overfitting while it works well in Fig. 1 (a) with no overfitting. One may think that 

it is the best way to choose the fuzzy rule-based classifier with the highest test data accuracy. The direct 

use of test data accuracy is unrealistic because “unseen” test data are not available in the classifier 

selection phase. Test data are available only when the selected classifier is evaluated (i.e., after the 

classifier selection phase is completed). In this paper, we propose a classifier selection method for 

generalization ability maximization to choose a single fuzzy rule-based classifier without using test data 

accuracy. 

 Our idea is to use repeated double cross-validation (rdCV) [29] for classifier selection and classifier 
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evaluation. Our rdCV approach has a nested structure of two CV loops. The inner CV loop is used to find 

the best complexity with the highest validation data accuracy, which is used for classifier selection. The 

outer CV loop is used to evaluate the test data accuracy of the selected classifier in the same manner as in 

the standard CV procedure.  

 This paper is a modified and extended version of our conference paper [30]. In [30], we proposed the 

use of rdCV for classifier selection in MoGFS together with a complicated best complexity estimation 

method. In this paper, we propose two simple methods for the best complexity estimation, which are used 

in rdCV-based classifier selection in MoGFS. The performance of the proposed methods are examined 

through computational experiments on a number of data sets. We also discuss the use of rdCV for 

parameter specification, formulation selection and algorithm choice.  

 This paper is organized as follows. In Section 2, we explain the basic idea of classifier selection in 

MoGFS. In Section 3, we explain the overall framework of rdCV for classifier selection in MoGFS 

together with two classifier selection methods. The performance of the proposed methods is examined 

through computational experiments in Section 4. In Section 5, we discuss how our rdCV-based classifier 

selection methods can be applied to parameter specification, formulation selection and algorithm choice. 

Finally, we conclude this paper in Section 6. 

 

2. Classifier selection in MoGFS 

 We assume that we have a MoGFS algorithm and a set of available patterns. By applying the MoGFS 

algorithm to the given data, a number of non-dominated fuzzy rule-based classifiers are obtained. Our 

problem is how to choose a single final fuzzy rule-based classifier with high generalization ability.  

 In this situation, classifier selection is difficult because we do not know the generalization ability of 

each classifier. So we usually divide the available patterns into training data and validation data. The 

training data are used in the MoGFS algorithm to design non-dominated classifiers while the validation 

data are used to evaluate each of the obtained classifiers. A single classifier with the highest validation 

data accuracy is selected. One difficulty of this approach is that the selected classifier totally depends on 

the partition of the available patterns into training and validation data. Another difficulty is that all the 

available patterns are not used in the MoGFS algorithm for classifier design. If we use almost all patterns 

as training data for the design of non-dominated classifiers, we cannot use many patterns to evaluate the 

obtained classifiers for classifier selection. However, the use of many patterns for classifier selection 
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leads to the decrease in the size of training data for classifier design by the MoGFS algorithm.  

 Our idea for classifier selection is to examine the accuracy-complexity tradeoff relation by iterating 

the train-validation procedure using different data partitions. Results from multiple runs of the train-

validation procedure are used to estimate the best complexity with the highest validation data accuracy. 

The estimated best complexity is used to choose a single final classifier from non-dominated classifiers 

that are obtained by applying the MoGFS algorithm to all the available patterns. The basic framework of 

our approach can be summarized as follows: 

(i) The available patterns are divided into training data and validation data. The MoGFS algorithm is 

applied to the training data to design non-dominated fuzzy rule-based classifiers. The accuracy of each 

classifier on the validation data is calculated together with its complexity. This train-validation 

procedure is iterated using different data partitions.  

(ii) Results in (i) are used to estimate the best complexity with the highest validation data accuracy. 

(iii) The MoGFS algorithm is applied to all the available patterns to design non-dominated fuzzy rule-

based classifiers. Using the estimated best complexity in (ii), a single final classifier is chosen from the 

obtained non-dominated classifiers. 

 The train-validation procedure in (i) is iterated using different data partitions. Thus the estimated best 

complexity does not depend on a single data partition. Moreover, all the available patterns are used to 

design non-dominated classifiers in (iii). 

 From each run of the train-validation procedure in (i), we obtain a number of non-dominated 

classifiers. Since the train-validation procedure is iterated using different data partitions, we obtain 

different sets of non-dominated classifiers in (i). The main problem in the above-mentioned procedure for 

classifier selection is how to estimate the best complexity with the highest validation data accuracy in (ii) 

using different sets of non-dominated classifiers obtained in (i). In this paper, we propose two simple 

methods for the best complexity estimation. 

 One idea for the best complexity estimation is to first estimate the best complexity with the highest 

validation data accuracy in each run of the train-validation procedure. The final estimation is calculated as 

the average value of the estimated best complexity over multiple runs of the train-validation procedure. 

This method is referred to as the first-estimate-then-average (FETA) method. Another idea is to first 

calculate the average validation data accuracy for each complexity over multiple runs of the train-
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validation procedure. The final estimation of the best complexity is obtained as the complexity with the 

highest average validation data accuracy. This approach is referred to as the first-average-then-estimate 

(FATE) method. These two methods are explained in detail in the next section.  

 

3. Repeated double CV for classifier selection 

3.1. Basic idea of repeated double cross-validation 

 When we evaluate the performance of classifiers, we usually use cross-validation (CV) [31-34]. In k-

fold cross-validation (kCV), available patterns are divided into k subsets of the same size. One subset is 

used as test data and the others (k1) subsets are used as training data. A classifier is designed using the 

training data. The accuracy of the designed classifier is evaluated using the test data. This train-test 

procedure is iterated k times so that all the k subsets are used as test data. A single execution of kCV 

consists of those k iterations. Since the calculated test data accuracy depends on the data partition into k 

subsets, the execution of kCV is usually iterated several times using different data partitions. We denote t 

iterations of kCV as tkCV, which includes t k runs of the train-test procedure. For example, 510CV 

means five iterations of 10CV. 

 The performance of the MoGFS algorithm can be evaluated in the same manner. In each run in tkCV, 

the MoGFS algorithm is applied to the training data to search for non-dominated fuzzy rule-based 

classifiers. A single classifier is selected from the obtained ones in each run. The selected classifier is 

evaluated using the corresponding test data in each run. This train-test procedure is iterated t k  times 

(i.e., t k  runs).  

 Our idea is to use a cross-validation mechanism for classifier selection in each of t k  runs of the 

MoGFS algorithm in t  kCV. That is, the training data in each run in t  kCV are used as available 

patterns in another CV procedure for classifier selection. This idea leads to the same framework as 

repeated double Cross-Validation (rdCV [29]), which has a nested structure of two CV loops (i.e., inner 

and outer CV loops) as shown in Fig. 2. The rdCV has already been utilized for performance evaluation 

of classifiers and regression models [35-37] (for details, see [38,39]). However, at the best of our 

knowledge, rdCV has not been used in multi-objective machine learning including MoGFS. 
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Figure 2.  A rdCV procedure with 1 10CV in the outer loop and 2 5CV in the inner loop. 

 The outer CV loop is the same as the standard CV for performance evaluation of classifiers. We use 

kOut-fold CV (i.e., kOutCV), which is iterated tOut times (i.e., tOut  kOutCV). The MoGFS algorithm is 

executed tOut kOut times in the outer CV loop (e.g., 10 times in 1 10CV in Fig. 2).  

 The inner CV loop is applied to training data from the outer CV loop. We use kIn-fold CV (i.e., kInCV), 

which is iterated tIn  times (i.e., tIn kInCV). The outer CV training data are divided into kIn subsets (e.g., 

kIn = 5 in Fig. 2). One subset is used as validation data while the other (kIn 1) subsets are used as inner 

CV training data. The MoGFS algorithm is applied to the inner CV training data to design non-dominated 

fuzzy rule-based classifiers. The validation data are used to evaluate the accuracy of each classifier. The 

train-validation procedure is iterated tIn kIn  times for the same outer CV training data to estimate the best 

complexity with the highest validation data accuracy. Using the estimated best complexity for the current 

outer CV training data, a single classifier is chosen from the non-dominated ones obtained by the MoGFS 

algorithm for the current outer CV training data.  

Since tOut kOut CV is used in the outer CV loop, the total number of runs of the MoGFS algorithm in 

the inner CV loop is tOut kOut tIn kIn . Thus the total number of runs of the MoGFS in the outer and 
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inner CV loop is (tOut kOut + tOut kOut tIn kIn ) = tOut kOut(1 + tIn kIn ), which is (1 + tIn kIn ) times 

larger than the number of runs in the standard CV (i.e., tOut kOut). For example, when 5 10CV is used in 

the inner CV loop, the total number of runes of the MoGFS in our rdCV approach is 51 times larger than 

the case of the standard CV approach. Such a computational overhead is always needed when our rdCV 

approach is used for any multiobjective machine learning algorithms. 

3.2. Implementation of rdCV for MoGFS 

 In the inner CV loop, a number of non-dominated fuzzy rule-based classifiers are obtained from each 

run of the MoGFS algorithm on inner CV training data. The error rate on the validation data is calculated 

for each classifier. A different set of non-dominated fuzzy rule-based classifiers is usually obtained from 

each of tIn kIn runs in the inner CV loop since different inner CV training data are used in each run. Thus, 

tIn kIn sets of non-dominated fuzzy rule-based classifiers are obtained together with the validation data 

error rate of each classifier. We use those results to estimate the best complexity with the highest 

validation data accuracy for the current outer CV training data. The estimated best complexity is used to 

choose a single classifier from the obtained non-dominated ones by the MoGFS algorithm for the current 

outer CV training data. 

 We propose the following two methods for the best complexity estimation: 

 First-estimate-then-average method (FETA): In this methods, first the best complexity is estimated 

in each run of the MoGFS algorithm in the inner CV loop. Then the average value of the estimated best 

complexity is calculated over tIn kIn runs. The calculated average value is used as the best complexity to 

choose a single final classifier for the current outer CV training data in the outer CV loop. 

 First-average-then-estimate method (FATE): In this method, first the average error rate for each 

complexity is calculated over tIn  kIn runs. Then the best complexity is estimated from the calculated 

average error rate for each complexity. The estimated best complexity is used to choose a single final 

classifier for the current outer CV training data in the outer CV loop. 

 In the following, we explain each of these methods in details. Let us assume that four and three non-

dominated fuzzy rule-based classifiers in Fig. 3 (a) and Fig. 3 (b) are obtained from the first and second 

runs of MoGFS in the inner CV loop, respectively. In Fig. 3, we assume that multi-objective classifier 

design is formulated as the two-objective minimization problem of the error rate and the number of fuzzy 

rules.  
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 In the FETA method, we first estimate the best complexity from each run. In Fig. 3 (a), the smallest 

validation error rate is obtained from the classifier with four fuzzy rules. Thus the best complexity is 

estimated as four from the first run. From the second run in Fig. 3 (b), the best complexity is estimated as 

three. In this manner, the best complexity is estimated from each of the tIn  kIn  runs of the MoGFS 

algorithm in the inner CV loop. The average value of the estimated best complexity over the tIn kIn  runs 

is used as the estimated best complexity for classifier selection for the current outer CV training data in 

the outer CV loop. It should be noted that the obtained best complexity is not always an integer value in 

the FETA method. For the current outer CV training data in the outer CV loop, a single classifier with the 

most similar complexity to the estimated best complexity is chosen.  
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       (a) Results of the first run.       (b) Results of the second run. 

Figure 3. Two sets of non-dominated fuzzy rule-based classifiers 

 

 In the FATE method, we first calculate the average error rate on validation data for each complexity 

(i.e., each number of fuzzy rules in Fig. 3). It should be noted that a different set of non-dominated fuzzy 

rule-based classifiers is obtained from each of the tIn kIn  runs of the MoGFS algorithm in the inner CV 

loop as illustrated in Fig. 3. This means that fuzzy rule-based classifiers with a particular complexity (i.e., 

a particular number of fuzzy rules) are not always obtained in all the tIn kIn  runs. Thus the calculated 

average error rate for each complexity is not always the average over the tIn kIn  runs. When we estimate 

the best complexity, we use only the average error rates calculated over at least % of the tIn kIn  runs 

(e.g.,  = 80). If fuzzy rule-based systems with a particular complexity are not obtained from at least % 

of the tIn kIn  runs, the complexity is not selected as the best complexity.  
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 In our former study [30], we used a substitute method for calculating the average error rate for each 

complexity over all the tIn kIn  runs. In the substitute method, a similar classifier with less complexity was 

used in the average error rate calculation when a fuzzy rule-based classifier with a particular complexity 

was not obtained. The substitute method in our former study [30] is illustrated in Fig. 4. In Fig. 4 (a), no 

fuzzy rule-based classifier with five fuzzy rules is not obtained. So the obtained classifier with four fuzzy 

rules is used as a dummy classifier in the average error rate calculation over classifiers with five fuzzy 

rules. In Fig. 4 (b), the obtained classifiers with one and three fuzzy rules are used as dummy classifiers 

with two and four fuzzy rules, respectively. Due to the use of dummy classifiers, the average error rate is 

not always calculated over fuzzy rule-based classifiers with the same complexity. Thus the estimated best 

complexity does not correctly indicate the complexity of fuzzy rule-based classifiers with the highest 

validation data accuracy. Thus we do not use such a substitute method in this paper.   
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        (a) Results of the first run.           (b) Results of the second run. 

Figure 4. Illustration of the use of other fuzzy rule-based classifiers with similar complexity as dummy 

classifiers for the calculation of the average error rates on validation data [30]. 

 

 After the best complexity is estimated in the inner CV loop, we go back to the current run of the 

MoGFS in the outer CV loop where a number of non-dominated fuzzy rule-based classifiers are obtained 

by the MoGFS algorithm using the current outer CV training data. A classifier with the most similar 

complexity to the estimated best complexity is chosen among them. The similarity is measured by the 

difference in the number of fuzzy rules. When we have two classifiers with the same similarity to the best 

complexity, we choose the simpler one with less complexity. For example, when the estimated best 



 -11-

complexity is 3.5 fuzzy rules, a classifier with three fuzzy rules is selected rather than that with four fuzzy 

rules. After a single classifier is selected, the error rate of the selected classifier is calculated using test 

data. A single run of the MoGFS algorithm in the outer CV loop involves all of these procedures (i.e., 

tIn kIn  runs of the MoGFS algorithm for complexity determination in the inner CV loop, a single run of 

the MoGFS algorithm to design non-dominated classifiers in the outer CV loop, classifier selection using 

the estimated best complexity, error rate calculation of the selected classifier on test data). 

 Here we explain the handling of two special situations. One is the handling of overlapping classifiers 

in the objective space, and the other is the handling of the tiebreak situation in the best complexity 

determination.  

 It is possible that multiple non-dominated classifiers with the same objective vector are simultaneously 

obtained by a single run of the MoGFS algorithm. While those classifiers have the same training data 

accuracy, they may have different validation data accuracy in the inner CV loop. This is also the case for 

test data accuracy in the outer CV loop. Thus we calculate the average error rate over the overlapping 

classifiers. For example, let us assume that five classifiers with the same complexity and the same training 

data accuracy are simultaneously obtained. These five classifiers are overlapping with each other in the 

objective space. We also assume that four of them are exactly the same classifier with a validation data 

error rate of 10% and the other has a validation data error rate of 20%. In this case, these overlapping 

classifiers are handled as a single classifier with a validation data error rate of 12% (i.e., (4 10 + 

1 20)/5). Overlapping classifiers are handled in this manner in the outer and inner CV loops.  

 It is also possible that multiple complexity values have the same best validation data accuracy in the 

inner CV loop. In this case, we choose the smallest complexity among them in both the FETA method 

and the FATE method. 

4. Computational experiments 

4.1. Setting of computational experiments 

 In our computational experiments, we use 17 data sets in Table I. All attribute values are normalized 

into real numbers in the unit interval [0, 1]. That is, each pattern is handled as a point in the n-dimensional 

pattern space [0, 1]n where n is the number of attributes in each data set.  
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TABLE I 
DATA SETS USED IN THIS PAPER (AVAILABLE FROM UCI DATABASE AND KEEL PROJECT [40]).  

Data Patterns Attributes Classes

Appendicitis 106 7 2 
Australian 690 14 2 

Bands 365 19 2 
Bupa 345 6 2 

Cleveland 297 13 5 
Dermatology 358 34 6 

Glass 214 9 6 
Haberman 306 3 2 

Heart 270 13 2 
Mammographic 830 5 2 

Pima 768 8 2 
Saheart 462 9 2 
Sonar 208 60 2 

Vehicle 846 18 4 
Wdbc 569 30 2 
Wine 178 13 3 

Wisconsin 683 9 2 

 For such an n-dimensional classification problem, we use fuzzy rules of the following type:  

   Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  then Class qC  with qCF ,       (2)  

where Rq is the label of the qth fuzzy rule, x = (x1, ..., xn) is an n-dimensional pattern vector, Aqi is an 

antecedent fuzzy set (i = 1, 2,  ...,  n), Cq is a class label, and CFq is a rule weight (which is a real number 

in [0, 1]). We use 45 antecedent fuzzy sets from fuzzy partitions with granularities 1-9 including “don’t 

care”. Some of them are shown in Fig. 5 (a)-(d) where an integer is attached to each fuzzy set. The unit 

interval [0, 1] is used as a special antecedent fuzzy set “don’t care” since all attribute values are real 

numbers in [0, 1].  

 As an MoGFS algorithm, we use our multi-objective fuzzy genetics-based machine learning 

(MoFGBML) algorithm [25] which is based on a hybrid FGBML algorithm [41] with a Pittsburgh-style 

algorithm framework and a Michigan-style search mechanism. Each fuzzy rule is coded by its n 

antecedent fuzzy sets. Thus each classifier with N fuzzy rules is coded by a string of length nN. The 

integers attached to fuzzy sets in Fig. 5 are used for classifier coding. Our MoFGBML algorithm is 

applied to the two-objective problem for minimizing the percentage error rate and the number of fuzzy 

rules as explained in Section 1.  
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Figure 5.  Examples of fuzzy partitions used in our computational experiments. 

 The other parameters on our MoFGBML algorithm were the same as those in [30] except for the 

number of initial rules (i.e., 30) and the maximum number of rules (i.e., 60) in a string. The replacement 

probability with “don’t care” was also different. We specified it as (n-5)/n in this paper. These changes 

are based on our preliminary empirical studies.  

 Our rdCV approach is implemented as 5 10CVOut 5 10CVIn where 10CV is iterated five times for 

the test data accuracy evaluation in the outer CV loop and five times for the best complexity estimation in 

the inner CV loop. The number of runs of our MoFGBML algorithm is 5 10 in the outer CV loop while 

it is 50 5 10 in the inner CV loop (i.e., 2550 runs in total). The class balance is maintained as much as 

possible in random data partition into ten subsets for each 10CV. In Moreno-Torres et al. [42], they 

discussed data shift and introduced some data partitioning methods. The comparison with other data 

partitioning methods would be an interesting future research topic. There is a possibility that we can 

obtain better classifiers with higher generalization ability. There is also a possibility that we can reduce 

the number of inner CV iterations using other data partitioning methods. 

4.2. Illustration of Our rdCV Approach 

 Before reporting experimental results on the 17 data sets, we first explain our rdCV approach (i.e., 

5 10CVOut 5 10CVIn) using the heart data set with 270 patterns. In the outer CV loop, the given 270 

patterns are divided into ten subsets with 27 patterns for 10CV. In the first run of our MoFGBML 

algorithm in the outer CV loop, one of the ten subsets is used as test data. The other nine subsets are used 
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as training data (i.e. outer CV training data).  

 The outer CV training data are further subdivided into ten subsets for 10CV in the inner CV loop. One 

of the ten subsets of the outer CV training data is used as validation data, and the other nine subsets are 

used as training data (i.e., inner CV training data). Our MoFGBML algorithm is applied to the inner CV 

training data to search for non-dominated fuzzy rule-based classifiers. Each of the obtained classifier is 

evaluated using the validation data. In this manner, 5 10CV is performed for the same outer CV training 

data in the inner CV loop. Then the best complexity is estimated using the validation error rate of each 

fuzzy rule-based classifier.  

 When we use the FETA method, the best complexity is estimated in each run in the 5 10CV in the 

inner CV loop. In Fig. 6, we show the experimental results of the first two runs. The best complexity is 

estimated in each run as 4 in Fig. 6 (a) and 7 in Fig. 6 (b). From the 50 runs, we obtain the average value 

7.52 of the estimated best complexity. In Fig. 7, we show the histogram of the 50 values of the estimated 

best complexity. We can see that the estimated best complexity has a large variety over 50 runs.  
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      (a) Results of the first run.       (b) Results of the second run. 

Figure 6. Results of the first two runs of our MoFGBML algorithm in the inner CV loop. 
 

 When we use the FATE method, first the average validation error rate is calculated for each 

complexity (i.e., each number of fuzzy rules) over the 50 runs. Then the best complexity with the highest 

validation data accuracy is estimated. In Fig. 8 (a), we show the average validation error rate for each 

complexity. Some average error rates in Fig. 8 (a) are calculated over all the 50 runs while others are 

calculated over only a few runs. In Fig. 8 (b)-(d), we show the average error rates calculated over at least 

% of the 50 runs for  = 50, 80 and 100, respectively. Fig. 8 (a) shows all results obtained from at least 
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one of the 50 runs (i.e.,  = 2). Depending on the value of , the best complexity is estimated as 32 ( = 2 

in Fig. 8 (a)), 20 ( = 50 in Fig. 8 (b)), and 7 ( = 80 in Fig. 8 (c) and  = 100 in Fig. 8 (d)). 
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Figure 7. Histogram of the 50 values of the estimated best complexity. 
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    (a) Average over at least a single run.    (b) Average over at least 50% runs. 
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    (c) Average over at least over 80% runs.    (d) Average over 100% runs. 

Figure 8. Average error rates on validation data in the inner CV loop.  
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 The estimated best complexity is used for choosing a single classifier in the first run of our 

MoFGBML algorithm in the outer CV loop. In Fig. 9 (a), we show the results of the first run in the outer 

CV loop. One of the obtained 23 fuzzy rule-based classifiers in Fig. 9 (a) is selected using the estimated 

best complexity. For example, when the estimated best complexity is 7.52 (i.e., the results of the FETA 

method), one classifier with eight fuzzy rules is selected. Then the error rate on the test data of the first 

run in the outer CV loop is calculated. This completes the first run in the 5 10CV in the outer CV loop. 

In this manner, 50 runs in the 5 10CV are performed in the outer CV loop. In Fig. 9 (b)-(d), we show the 

average results over the 50 runs in the outer CV loop. As in Fig. 8 (i.e., as in the inner CV loop), a 

different set of non-dominated classifiers is obtained in each of 50 runs of our MoFGBML algorithm in 

the outer CV loop. Thus the average results in Fig. 9 (b)-(d) are shown in the same manner as in Fig. 8 

(i.e., average results over at least a single run, 50% runs, and 100% runs). 
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         (a) First run in the outer CV loop.    (b) Average over at least a single run. 
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         (c) Average over at least 50% runs.    (d) Average over 100% runs. 

Figure 9. Results in the outer CV loop. 
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4.3. Some Other Methods for Classifier Selection 

 As mentioned in Section 1, a simple method for classifier selection is to choose the classifier with the 

highest training data accuracy. In Fig. 9 (a), the right-most classifier with 27 fuzzy rules is selected. This 

method is referred to as the highest training data accuracy method. As shown in Fig. 9 (b)-(d), usually 

fuzzy rule-based classifiers do not severely overfit to the training data. Thus the highest training data 

accuracy method works well in many cases. Of course, the selected classifier also has the highest 

complexity.  

 Another method mentioned in Section 1 is to choose the classifier with the highest validation data 

accuracy. In this method, a part of the training data in the outer CV loop are used as validation data as in 

the inner CV loop of our rdCV-based two methods. However, the validation data accuracy is directly used 

for choosing the classifier with the highest validation data accuracy (not for estimating the best 

complexity). When 10% of the training data are used as validation data, this method is the same as 

choosing the classifier with the highest validation data accuracy in the first run in the inner CV loop. That 

is, the classifier with four rules in Fig. 6 (a) is selected. In other words, the first run in the inner CV loop 

of our rdCV approach is used as the first run in the outer CV loop in this approach. Actually, no inner CV 

loop is needed in this approach. This approach is referred to as the single train-validation method. As 

shown in Fig. 7, classifier selection based on 10% validation data often chooses totally different 

classifiers with a large variety in their complexity. This is because each of the obtained classifiers is 

evaluated by only 10% of the training data when a single classifier is selected. That is, classifier selection 

is performed using only a single validation data set, which is 10% of the training data. In our rdCV 

approach, the best complexity estimation is performed using average results over a large number of 

different validation data sets in the inner CV loop. As a result, the variety of complexity among the 

chosen classifiers by our approach is much smaller than that by classifier selection based on a single 

validation data set. 

4.4. Experimental Results 

 We compared five classifier selection methods: our rdCV-based FETA method, our rdCV-based 

FATE method, the highest training data accuracy method, the single train-validation method, and the 

median complexity method [43].  

 In the FATE method, the value of  was specified as  = 80. This means that the average validation 
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data error rate was calculated only when fuzzy rule-based classifiers are obtained for a particular 

complexity from at least 80% runs in the inner CV loop (i.e., 40 out of 50 runs in the 5 10CV in the 

inner CV loop).  

 In the single train-validation method, the outer CV training data were randomly divided into 90% 

training data and 10% validation data. A classifier with the highest validation data accuracy was selected 

from non-dominated classifiers obtained from the 90% training data. Except for this single train-

validation method, all the outer CV training data were used to design non-dominated classifiers from 

which a final classifier was selected.  

 In the median complexity method, a classifier with the median complexity among the obtained non-

dominated classifiers was chosen (for details, see [43]). Only the two methods of our rdCV approach have 

the inner CV loop. The same outer CV loop with 5 10CV was used for all the five classifier selection 

methods. Average test data error rates are summarized for the 17 data sets in Table II. 

In Table II, the lowest error rate is shown by boldface for each data set. We can see from Table II, the 

highest test data accuracy was obtained for ten data sets from one of our two rdCV-based methods. For 

four data sets, the highest test data accuracy was obtained from the highest training data accuracy method. 

This observation suggests that our MoFGBML algorithm did not overfit to training data of those data sets.  

We can also see from Table II that the difference in the average test data error rates between the 

highest training data accuracy method and the median complexity method is small for most data sets. This 

observation suggests that the complexity of highest training data accuracy classifiers can be decreased 

without severely deteriorating their generalization ability (e.g., see Fig. 9 (b)).  

For most data sets, better results were obtained from our rdCV-based two methods than the single 

train-validation method. Especially for small data sets such as the appendicitis, glass, and sonar data sets, 

we can observe large differences between our rdCV-based methods and the single train-validation method. 

This observation suggests that multiple runs of the train-validation procedure with different data partitions 

in our rdCV methods can somewhat alleviate the difficulty in the single train-validation classifier 

selection method for small data sets. 
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TABLE II 
AVERAGE ERROR RATES ON TEST DATA. 

  
Our rdCV 

FETA 
Our rdCV 

FATE 
Single 

Validation
Median 

Complexity
Highest 
Training 

Appendicitis 16.08  17.02  19.96  17.16  18.83  
Australian 14.87  14.69  15.29  15.16  15.48  

Bands 32.50  32.63  34.80  32.45  32.70  
Bupa 34.84  35.12  34.53  34.38  33.90  

Cleveland 45.83  46.44  46.80  46.59  45.94  
Dermatology 5.17  5.12  6.33  13.81  5.72  

Glass 34.28  33.62  37.23  34.54  33.59  
Haberman 26.95  26.52  26.39  27.45  27.90  

Heart 21.72  22.13  22.08  23.35  23.63  
Mammographic 18.26  18.15  18.10  18.56  19.53  

Pima 26.13  26.45  26.23  26.70  26.93  
Saheart 32.04  31.84  35.21  33.16  33.86  
Sonar 25.63  25.45  28.26  25.36  24.86  

Vehicle 30.43  31.03  31.30  30.69  30.69  
Wdbc 5.73  5.26  6.24  5.76  5.49  
Wine 10.60  10.60  10.71  33.35  10.30  

Wisconsin 3.84  3.87  4.36  4.15  4.16  
Average 22.64 22.70 23.75 24.86 23.15 

  

We perform a Wilcoxon signed-ranks test [44] with the average error rates for each method. Table III 

shows R+/R/p-value for each pairwise comparison. The statistical difference (i.e., p-value < 0.1) is 

highlighted in bold face. The statistical test supports that our rdCV methods outperform alternative 

methods with respect to test data accuracy. It also shows our rdCV methods are not statistically different.  

TABLE III 
WILCOXON SIGNED-RANKS TEST. RESULTS ARE PRESENTED AS R+/R/P-VALUE. 

  
Our rdCV 

FETA 
Our rdCV 

FATE 
Single 

Validation 
Median 

Complexity 
Highest 
Training 

Our rdCV FETA - 75/61/0.717 137/16/0.004 137/16/0.004 114/39/0.076
Our rdCV FATE 61/75/0.717 - 132/21/0.008 130/23/0.011 112/41/0.092
Single Validation 16/137/0.004 21/132/0.008 - 63/90/0.523 47/106/0.163

Median Complexity 16/137/0.004 23/130/0.011 90/63/0.523 - 62/74/0.756
Highest Training 39/114/0.076 41/112/0.092 106/47/0.163 74/62/0.756 - 

 

In Table IV, we summarize the average number of fuzzy rules in the selected fuzzy rule-based 

classifiers. This table shows that the size of fuzzy rule-based classifiers selected by our rdCV-based two 

methods is about 1/3 of the highest training data accuracy classifiers on average. 
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TABLE IV 

AVERAGE NUMBER OF FUZZY RULES. 

Data 
Our rdCV 

FETA 
Our rdCV 

FATE 
Single 

Validation
Median 

Complexity
Highest 
Training 

Appendicitis 2.46  2.96  1.66  3.30  7.70 
Australian 9.00  6.34  10.72  15.52  37.18  

Bands 16.56  18.72  14.12  19.48  45.88  
Bupa 13.82  12.82  14.42  14.88  39.12  

Cleveland 14.24  18.52  8.04  24.86  53.54  
Dermatology 6.62  7.30  6.26  4.74  10.56  

Glass 14.22  17.90  11.90  13.66  32.74  
Haberman 4.34  2.24  3.94  7.32  16.80  

Heart 7.26  10.82  6.20  11.52  25.90  
Mammographic 4.92  3.84  4.88  8.98  19.74  

Pima 15.12  12.38  12.28  21.20  50.34  
Saheart 10.62  3.52  54.22  22.74  52.30  
Sonar 6.28  8.40  5.52  6.42  13.68  

Vehicle 21.40  26.30  18.78  21.10  48.14  
Wdbc 4.72  5.76  3.94  4.42  9.88  
Wine 3.14  3.34  3.18  2.10  4.68  

Wisconsin 4.76  6.50  3.44  6.38  13.86  
Average 9.38 9.86 10.79 12.27 28.36 

 

In Fig. 10, the five methods are compared in the accuracy-complexity space using the average test 

data error rate and the average number of fuzzy rules over the 17 data sets (i.e., the average results shown 

in the bottom row of Table II and Table IV). This figure explains the characteristic features of each 

method. For example, we can see that the highest training data accuracy method finds accurate classifiers 

with many fuzzy rules while the median complexity method finds simpler classifiers. Fig. 10 also shows 

that our rdCV-based methods dominate the other three methods in the accuracy-complexity space. 

 From Fig. 10, one may think why the median complexity method was worse than the highest training 

data accuracy method with respect to the average test data error rate. Of course, the highest training data 

accuracy method is more likely to suffer from the overfitting to the training data than the medium 

complexity method. In this sense, the medium complexity method can be a good heuristic to choose a 

single classifier with high generalization ability when classifiers with high complexity severely overfits to 

training data as explained in Fig. 1 (b). However, this heuristics does not always work well. For example, 

in Table IV, the average number of fuzzy rules in the selected classifiers by the medium complexity 

method is smaller than the number of classes in the dermatology and wine data sets. This means that the 
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complexity of the selected classifiers for these data sets is too small. 
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Figure 10. The average test data error rate and the average number of fuzzy rules over the 17 data sets by 

the five classifier selection methods. 

 

4.5. Parameter Specifications in Our rdCV Approach 

 In our rdCV approach, the best complexity is estimated in the inner CV loop using tIn kInCVIn. Thus 

the performance of our rdCV approach may strongly depend on the specifications of the two parameters 

tIn and kIn. We examined the performance of the FETA method for the following specifications in the 

inner CV loop: 5 10CV, 4 10CV, 3 10CV, 2 10CV, 1 10CV, 5 5CV, and 5 2CV. Experimental 

results are shown in Fig. 11 (a) and Fig. 11 (b).  

From Fig. 11 (a), we can see that the number of iterations of 10CV (i.e., the specification of tIn in the 

tIn  kInCVIn) does not have a large effect on the performance of the FETA method. Actually, the 

difference in the experimental results between 1  10CV and 5  10CV in the inner CV loop is not 

statistically significant when we use a Wilcoxon signed-ranks test with  = 0.10. The p-value is 0.687. 

However, the number of data partitions (i.e., the specification of kIn in the tIn kInCVIn) has a large effect 

in Fig. 11 (b). For example, when we used 5 2CV instead of 5 10CV in the inner CV loop, simpler and 

less accurate fuzzy rule-based classifiers were selected. This may be because only 50% of the outer CV 

training data were used as training data in the inner 5 2CV. That is, there is a large difference in the size 

of training data between the inner and outer CV loops. When 5 10CV was used in the inner CV loop, 

90% of the outer CV training data were used as training data in the inner CV loop. In this case, the size of 
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training data is not so different between the inner and outer CV loops. Similar observations are obtained 

from Fig. 12 (b) for our rdCV-based FATE method.  
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(a) Effects of the number of iterations.        (b) Effects of the number of partitions. 

Figure 11. The average test data error rate and the average number of fuzzy rules over the 17 data sets by 

our rdCV-based FETA method. 
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(a) Effects of the number of iterations.        (b) Effects of the number of partitions. 

Figure 12. The average test data error rate and the average number of fuzzy rules over the 17 data sets by 

our rdCV-based FATE method. 

 

 In our rdCV-based FATE method, we have another important parameter . Only when fuzzy rule-

based classifiers with a particular complexity are obtained at least % runs in the inner CV loop, the 

average validation data error rate is calculated for the complexity in this method. In Fig. 13, we show 
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experimental results for five specifications of   in the inner 5 10CV:   = 2% (1 run), 20% (10 runs), 

50% (25 runs), 80% (40 runs), 100% (50 runs). We can see from Fig. 13 that the increase in the value of 

 decreased the average number of fuzzy rules in the selected classifiers. This is because fuzzy rule-based 

systems with a large number of fuzzy rules were not obtained in many runs in the inner CV loop (i.e., the 

average validation error rate was not calculated for such a large number of fuzzy rules when the value of 

 is large). 
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Figure 13. Results of our rdCV-based FATE method with different specifications of . 

 

5. Repeated Double CV for Other Settings in MoGFS 

 It is not likely that a single algorithm with a fixed parameter specification always works well on 

various data sets. A different algorithm with a different parameter specification may be needed for a 

different data set. In this section, we discuss how our rdCV approach can be used for parameter 

specification, formulation selection and algorithm choice.  

Our idea is to examine different parameter specifications, different formulations and different 

algorithms in the inner CV loop of our rdCV approach. It should be noted that we cannot use test data for 

these tasks. Only after a single classifier is obtained, test data are used to evaluate the obtained classifier. 

Various parameter values, formulations and algorithms can be compared in the inner CV loop without 

using test data. It should be also noted that our rdCV approach is not used for comparing different 

MoGFS algorithms but used for choosing an appropriate MoGFS algorithm for each data set. A different 

MoGFS algorithm will be chosen for a different data set. The inner CV loop plays a role of a manager to 

utilize a team of different MoGFS algorithms.  



 -24-

 In general, MoGFS algorithms have a number of parameters to be pre-specified. For example, one 

important parameter in our MoFGBML is the range of granularities of fuzzy partitions. In the previous 

section, we used fuzzy partitions with granularities 1-9. This is not necessarily the best specification for 

all data sets. We can use other specifications.  

 In addition to granularities 1-9, let us examine granularities 1-3, 1-5 and 1-7. In our rdCV approach, 

we can examine each specification in the inner CV loop. Then we can choose the best specification 

together with the best complexity for each run in the outer CV loop. Let us explain how our rdCV-based 

FETA method works for granularities specification through computational experiments on the heart data 

set with 270 patterns using the FETA method. 

As in the previous section, we use 5 10CV in the outer CV loop and 5 10CV in the inner CV loop. 

The inner CV loop is used to choose one of the three specifications together with the best complexity. For 

each run of our MoFGBML algorithm in the outer CV loop, the 5 10CV in the inner CV loop is applied 

to the outer CV training data in the same manner as in the previous section for each of the three 

specifications: 1-3, 1-5 and 1-7. In each run in the inner CV loop, the best error rate on validation data 

and the best complexity are identified as shown in the previous section. The estimated validation data 

accuracy is obtained by calculating the average value of the best error rate over 50 runs in the inner CV 

loop for each specification. Using the estimated validation data accuracy for each specification, the best 

specification can be selected (i.e., the specification with the highest estimated validation data accuracy is 

selected). In this manner, one of the three specifications is selected for each of 50 runs in the outer CV 

loop.   

 Among 50 runs of our MoFGBML in the outer CV loop, granularities 1-3, 1-5, 1-7 and 1-9 are 

selected in 39, 7, 1 and 3 runs, respectively. When we use granularities 1-3, 1-5, 1-7 and 1-9 in all the 50 

runs, the average error rate on test data is calculated as 19.91%, 22.00%, 20.63% and 21.72%, 

respectively. We can see from these results that our approach selects granularities with lower error rates 

more often. It should be noted that we cannot use test data error rates for parameter specifications.  

 Since the estimated validation data accuracy is obtained together with the estimated best complexity 

for each of different settings, we can choose the best setting with the best validation data accuracy. This 

idea can be used for various specifications in MoGFS (e.g., the specification of the shape of membership 

functions, the choice of an EMO algorithm, the specification of a termination condition of MoGFS, the 

choice of a multiobjective formulation of classifier design). 
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6. Conclusions 

 In this paper, we discussed classifier selection from a number of non-dominated fuzzy rule-based 

classifiers obtained by a MoGFS algorithm. For classifier selection and test data accuracy evaluation, we 

proposed the use of repeated double Cross-Validation (rdCV). In the inner CV loop of our rdCV approach, 

the MoGFS algorithm was applied to the training data to design a number of non-dominated fuzzy rule-

based classifiers. The validation data accuracy and the complexity of each non-dominated classifier were 

examined. This train-validation procedure was iterated for different data partitions. We proposed two 

methods for specifying the best complexity with the highest validation data accuracy using experimental 

results in the inner CV loop with multiple runs of the train-validation procedure. The main characteristic 

of our rdCV-based approach is to use validation data accuracy for complexity determination instead of 

classifier selection. As a result, multiple runs can be performed in the inner CV loop for complexity 

determination. 

 We examined the performance of our rdCV-based two methods for classifier selection through 

computational experiments on 17 data sets. Our rdCV-based two methods were compared with the 

highest training data accuracy method, the single train-validation method and the median complexity 

method. For ten data sets out of the 17 data sets, the best test data accuracy was obtained from one of our 

rdCV-based two methods. One future research issue is the handling of three-objective formulations (e.g., 

[23,45,46]) in our rdCV approach. Examination of our rdCV approach in more advanced MoGFS 

algorithms with various tuning mechanisms (e.g., [43]) is also an interesting future research issue. In our 

rdCV approach, classifier selection was performed for generalization ability maximization with no 

intervention of the decision maker. Classifier selection based on the decision maker’s preference is an 

interesting and promising future research issue where we should take into account not only the 

generalization ability of fuzzy rule-based classifiers but also their complexity and interpretability. 
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