
Scalability Improvement of 
Genetics-Based Machine Learning 

to Large Data Sets

Hisao Ishibuchi
Osaka Prefecture University, Japan

Workshop on Grand Challenges of Computational Intelligence (Cyprus, September 14, 2012)



Contents of This Presentation

Introduction1. Basic Idea of Evolutionary Computation
2. Genetics-Based Machine Learning
3. Parallel Distributed Implementation
4. Computation Experiments
5. Conclusion



Contents of This Presentation

Introduction1. Basic Idea of Evolutionary Computation
2. Genetics-Based Machine Learning
3. Parallel Distributed Implementation
4. Computation Experiments
5. Conclusion



Basic Idea of Evolutionary Computation

Environment

Population

Individual



Basic Idea of Evolutionary Computation

Environment

Population

Individual

(1)

(1) Natural selection in a tough environment.

Environment

Population

Good Individual



Basic Idea of Evolutionary Computation

Environment

Population

Individual

(1) (2)

Environment

Population

Environment

Population

New Individual

(1) Natural selection in a tough environment.
(2) Reproduction of new individuals by crossover and mutation.

Good Individual



Basic Idea of Evolutionary Computation

Environment

Population

Environment

Population

Iteration of the generation update many times
(1) Natural selection in a tough environment.
(2) Reproduction of new individuals by crossover and mutation.
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Multi-Objective Evolution
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A Popular Approach for Speed-Up
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After enough evolution with a moving window
The population does not overfit to any particular training data subset.
The population may have high generalization ability.
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Our Idea: Parallel Distributed Implementation
H. Ishibuchi et al.: Parallel Distributed Hybrid Fuzzy GBML Models 
with Rule Set Migration and Training Data Rotation. TFS (in Press)

Training data

(1) A population is divided into multiple subpopulations.
(2) Training data are also divided into multiple subsets.
(3) An evolutionary algorithm is locally performed at each CPU.
(4) Training data subsets are periodically rotated.

(e.g., every 100 generations)
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Our Idea: Parallel Distributed Implementation
H. Ishibuchi et al.: Parallel Distributed Hybrid Fuzzy GBML Models 
with Rule Set Migration and Training Data Rotation. TFS (in Press)

Training data

(1) A population is divided into multiple subpopulations.
(2) Training data are also divided into multiple subsets.
(3) An evolutionary algorithm is locally performed at each CPU.
(4) Training data subsets are periodically rotated.
(5) Migration is also periodically performed.
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EC = Evolutionary Computation

= { Selection, Crossover, 
Mutation, Generation Update }
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Seven Subpopulations of Size 30
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Seven Data Subsets
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Standard Non-Parallel Non-Distributed Model
with a Single Population and a Single Data Set

Single CPU

Single Population of Size 210

Whole Data Set

Termination Conditions: 50,000 Generations
Computation Load: 210 x 50,000 = 10,500,000 Evaluations

(more than ten million evaluations)  
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Comparison of Computation Load

Standard Model:
Evaluation of 210 rule sets 
using all the training data  

Parallel Distributed Model:
Evaluation of 30 rule sets using 
one of the seven data subsets.

Computation Load on a Single CPU per Generation

1/7

1/7

Computation Load  ==>  1/7 x 1/7 = 1/49 (about 2%) 



Data Sets in Computational Experiments
Nine Pattern Classification Problems

Name of 
Data Set

Number of 
Patterns

Number of 
Attributes

Number of 
Classes

Segment 2,310 19 7
Phoneme 5,404 5 2

Page-blocks 5,472 10 5
Texture 5,500 40 11

Satimage 6,435 36 6
Twonorm 7,400 20 2

Ring 7,400 20 2
PenBased 10,992 16 10

Magic 19,020 10 2



Computation Time for 50,000 Generations
Computation time was decreased to about 2%

Name of 
Data Set

Standard
A minutes

Our Model 
B minutes

Percentage of B 
B/A (%)

Segment 203.66 4.69 2.30%
Phoneme 439.18 13.19 3.00%

Page-blocks 204.63 4.74 2.32%
Texture 766.61 15.72 2.05%

Satimage 658.89 15.38 2.33%
Twonorm 856.58 7.84 0.92%

Ring 1015.04 22.52 2.22%
PenBased 1520.54 35.56 2.34%

Magic 771.05 22.58 2.93%
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Test Data Error Rates (Results of 3x10CV)
Test data accuracy was improved for six data sets

Name of 
Data Set

Standard
(A %)

Our Model 
(B %)

Improvement 
from A: (A - B)%

Segment 5.99 5.90 0.09
Phoneme 15.43 15.96 - 0.53

Page-blocks 3.81 3.62 0.19
Texture 4.64 4.77 - 0.13 

Satimage 15.54 12.96 2.58 
Twonorm 7.36 3.39 3.97 

Ring 6.73 5.25 1.48 
PenBased 3.07 3.30 - 0.23 

Magic 15.42 14.89 0.53
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Q. Why did our model improve the test data accuracy ?
A. Because our model improved the search ability.

Data Set Standard Our Model Improvement
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Q. Why did our model improve the search ability ?
A. Because our model maintained the diversity.

Data Set Standard Our Model Improvement
Satimage 15.54% 12.96% 2.58% 

Training Data Rotation:
Every 100 Generations

Rule Set Migration:
Every 100 Generations
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(Best = Worst: No Diversity)

The best and worst error rates
in a particular subpopulation at
each generation in a single run.

Worst

Best



Effects of Rotation and Migration Intervals

Training Data Rotation: Every 100 Generations
Rule Set Migration: Every 100 Generations
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Conclusion

Thank you very much!
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