Workshop on Grand Challenges of Computational Intelligence (Cyprus, September 14, 2012)

Scalability Improvement of Genetics-Based Machine Learning to Large Data Sets

Hisao Ishibuchi
Osaka Prefecture University, Japan

Contents of This Presentation

- 1. Basic Idea of Evolutionary Computation
- 2. Genetics-Based Machine Learning
- 3. Parallel Distributed Implementation
- 4. Computation Experiments
- 5. Conclusion

Contents of This Presentation

- 1. Basic Idea of Evolutionary Computation
- 2. Genetics-Based Machine Learning
- 3. Parallel Distributed Implementation
- 4. Computation Experiments
- 5. Conclusion

Environment

Individual

(1) Natural selection in a tough environment.

- (1) Natural selection in a tough environment.
- (2) Reproduction of new individuals by crossover and mutation.

Iteration of the generation update many times

- (1) Natural selection in a tough environment.
- (2) Reproduction of new individuals by crossover and mutation.

Applications of Evolutionary Computation Design of High Speed Trains

Environment

Individual = Design ()

Applications of Evolutionary Computation Design of Stock Trading Algorithms

Environment

Individual = Trading Algorithm (

Contents of This Presentation

- 1. Basic Idea of Evolutionary Computation
- 2. Genetics-Based Machine Learning
- 3. Parallel Distributed Implementation
- 4. Computation Experiments
- 5. Conclusion

Genetics-Based Machine Learning Knowledge Extraction from Numerical Data

Design of Rule-Based Systems

Design of Rule-Based Systems

Environment

Population

```
If ... Then ...
If ... Then ...
If ... Then ...
If ... Then ...
```

```
If ... Then ...
If ... Then ...
If ... Then ...
If ... Then ...
```

```
If ... Then ...
If ... Then ...
If ... Then ...
If ... Then ...
```

```
If ... Then ...
If ... Then ...
If ... Then ...
If ... Then ...
```

```
If ... Then ...
If ... Then ...
If ... Then ...
If ... Then ...
```

```
If ... Then ...
If ... Then ...
If ... Then ...
If ... Then ...
```

```
If ... Then ...
If ... Then ...
If ... Then ...
If ... Then ...
```

```
If ... Then ...
If ... Then ...
If ... Then ...
If ... Then ...
```

Individual = Rule-Based System

Design of Decision Trees

Environment

Individual = Decision Tree ()

Design of Neural Networks

Environment

Individual = Neural Network ()

Multi-Objective Evolution Minimization of Errors and Complexity

Multi-Objective Evolution Minimization of Errors and Complexity

Multi-Objective Evolution A number of different neural networks

Multi-Objective Evolution A number of different decision trees

Multi-Objective Evolution A number of fuzzy rule-based systems

Contents of This Presentation

- 1. Basic Idea of Evolutionary Computation
- 2. Genetics-Based Machine Learning
- 3. Parallel Distributed Implementation
- 4. Computation Experiments
- 5. Conclusion

Difficulty in Applications to Large Data Computation Load for Fitness Evaluation

Environment

If ... Then ..

If ... Then ...

Individual = Rule-Based System

Difficulty in Applications to Large Data Computation Load for Fitness Evaluation

Environment

If ... Then ..

If ... Then ..

If ... Then ...

Individual = Rule-Based System (

Difficulty in Applications to Large Data Computation Load for Fitness Evaluation

Environment

The Main Issue in This Presentation How to Decrease the Computation Load

Environment

Individual = Rule-Based System (

Environment

Individual = Rule-Based System

Environment

If ... Then ...

If ... Then ...
If ... Then ...
If ... Then ...

Individual = Rule-Based System (

Environment

Individual = Rule-Based System

Environment

If ... Then ...

If ... Then ...
If ... Then ...
If ... Then ...

Individual = Rule-Based System (

A Popular Approach for Speed-Up Parallel Computation of Fitness Evaluation

If we use n CPUs, the computation load for each CPU can be 1/n in comparison with the case of a single CPU (e.g., 25% by four CPUs)

Difficulty: How to choose a training data subset

The population will overfit to the selected training data subset.

Idea of Windowing in J. Bacardit et al.: Speeding-up Pittsburgh learning classifier systems: Modeling time and accuracy. PPSN 2004.

Idea of Windowing in J. Bacardit et al.: Speeding-up Pittsburgh learning classifier systems: Modeling time and accuracy. PPSN 2004.

Idea of Windowing in J. Bacardit et al.: Speeding-up Pittsburgh learning classifier systems: Modeling time and accuracy. PPSN 2004.

Idea of Windowing in J. Bacardit et al.: Speeding-up Pittsburgh learning classifier systems: Modeling time and accuracy. PPSN 2004.

Training Data = Environment

```
If ... Then ...
If ... Then ...
If ... Then ...
                      If ... Then ...
                     If ... Then ...
If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ...
```

Training Data = Environment

```
If ... Then ...
                     If ... Then ...
                     If ... Then ...
If ... Then ...
```

Training Data = Environment

```
If ... Then ...
                     If ... Then ...
                     If ... Then ...
If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ..
```

Training Data = Environment

```
If ... Then ...
                     If ... Then ...
If ... Then ...
                      If ... Then ...
If ... Then ...
                      If ... Then ...
If ... Then ...
                      If ... Then ...
If ... Then ...
                      If ... Then ...
If ... Then ...
                      If ... Then ...
If ... Then ...
                      If ... Then ...
If ... Then ..
                      If ... Then ...
```

Training Data = Environment

```
If ... Then ...
                     If ... Then ...
If ... Then ...
                      If ... Then ...
If ... Then ...
                      If ... Then ...
                     If ... Then ...
If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                      If ... Then ...
If ... Then ...
                      If ... Then ...
If ... Then ...
                     If ... Then ...
```

Training Data = Environment

Population

```
If ... Then ...
                     If ... Then ...
                     If ... Then ...
If ... Then ...
If ... Then ...
                     If ... Then ...
                     If ... Then ...
If ... Then ...
If ... Then ...
                     If ... Then ...
If ... Then ...
                     If ... Then ...
                     If ... Then ...
If ... Then ...
If ... Then ...
                     If ... Then ..
```

After enough evolution with a moving window

The population does not overfit to any particular training data subset. The population may have high generalization ability.

H. Ishibuchi et al.: Parallel Distributed Hybrid Fuzzy GBML Models with Rule Set Migration and Training Data Rotation. TFS (in Press)

Non-parallel Non-distributed

H. Ishibuchi et al.: Parallel Distributed Hybrid Fuzzy GBML Models with Rule Set Migration and Training Data Rotation. TFS (in Press)

Non-parallel Non-distributed

Our Parallel Distributed Model

(1) A population is divided into multiple subpopulations.

(as in an island model)

H. Ishibuchi et al.: Parallel Distributed Hybrid Fuzzy GBML Models with Rule Set Migration and Training Data Rotation. TFS (in Press)

- (1) A population is divided into multiple subpopulations.
- (2) Training data are also divided into multiple subsets.

 (as in the windowing method)

H. Ishibuchi et al.: Parallel Distributed Hybrid Fuzzy GBML Models with Rule Set Migration and Training Data Rotation. TFS (in Press)

Non-parallel Non-distributed

Our Parallel Distributed Model

- (1) A population is divided into multiple subpopulations.
- (2) Training data are also divided into multiple subsets.
- (3) An evolutionary algorithm is locally performed at each CPU. (as in an island model)

H. Ishibuchi et al.: Parallel Distributed Hybrid Fuzzy GBML Models with Rule Set Migration and Training Data Rotation. TFS (in Press)

Non-parallel Non-distributed

Our Parallel Distributed Model

- (1) A population is divided into multiple subpopulations.
- (2) Training data are also divided into multiple subsets.
- (3) An evolutionary algorithm is locally performed at each CPU.
- (4) Training data subsets are periodically rotated.

(e.g., every 100 generations)

H. Ishibuchi et al.: Parallel Distributed Hybrid Fuzzy GBML Models with Rule Set Migration and Training Data Rotation. TFS (in Press)

Non-parallel Non-distributed

Our Parallel Distributed Model

- (1) A population is divided into multiple subpopulations.
- (2) Training data are also divided into multiple subsets.
- (3) An evolutionary algorithm is locally performed at each CPU.
- (4) Training data subsets are periodically rotated.
- (5) Migration is also periodically performed.

Standard Non-Parallel Model

Computation Load

= EC Part + Fitness Evaluation Part

EC = Evolutionary Computation

= { Selection, Crossover,
 Mutation, Generation Update }

Standard Non-Parallel Model

Computation Load

= EC Part + Fitness Evaluation Part

Standard Non-Parallel Model

Computation Load

= EC Part

+ Fitness Evaluation Part (1/7)

Standard Parallel Model (Parallel Fitness Evaluation)

Standard Non-Parallel Model

Standard Parallel Model (Parallel Fitness Evaluation)

Windowing Model (Reduced Training Data Set)

Computation Load = EC Part

+ Fitness Evaluation Part (1/7)

Standard Non-Parallel Model

Standard Parallel Model (Parallel Fitness Evaluation)

Windowing Model (Reduced Training Data Set)

Parallel Distributed Model (Divided Population & Data Set)

Standard Non-Parallel Model

Standard Parallel Model (Parallel Fitness Evaluation)

Windowing Model (Reduced Training Data Set)

Parallel Distributed Model (Divided Population & Data Set)

Contents of This Presentation

- 1. Basic Idea of Evolutionary Computation
- 2. Genetics-Based Machine Learning
- 3. Parallel Distributed Implementation
- 4. Computation Experiments
- 5. Conclusion

Our Model in Computational Experiments with Seven Subpopulations and Seven Data Subsets

Our Model in Computational Experiments with Seven Subpopulations and Seven Data Subsets

Standard Non-Parallel Non-Distributed Model with a Single Population and a Single Data Set

Standard Non-Parallel Non-Distributed Model with a Single Population and a Single Data Set

Standard Non-Parallel Non-Distributed Model with a Single Population and a Single Data Set

Termination Conditions: 50,000 Generations

Computation Load: $210 \times 50,000 = 10,500,000$ Evaluations

(more than ten million evaluations)

Comparison of Computation Load

Computation Load on a Single CPU per Generation

Standard Model:

Evaluation of 210 rule sets using all the training data

Parallel Distributed Model:

Evaluation of 30 rule sets using one of the seven data subsets.

Comparison of Computation Load

Computation Load on a Single CPU per Generation

Standard Model:

Evaluation of 210 rule sets using all the training data

Parallel Distributed Model:

Evaluation of 30 rule sets using one of the seven data subsets.

Comparison of Computation Load

Computation Load $==> 1/7 \times 1/7 = 1/49$ (about 2%)

Standard Model:

Evaluation of 210 rule sets using all the training data

Parallel Distributed Model:

Evaluation of 30 rule sets using one of the seven data subsets.

Data Sets in Computational Experiments Nine Pattern Classification Problems

Name of Data Set	Number of Patterns	Number of Attributes	Number of Classes
Segment	2,310	19	7
Phoneme	5,404	5	2
Page-blocks	5,472	10	5
Texture	5,500	40	11
Satimage	6,435	36	6
Twonorm	7,400	20	2
Ring	7,400	20	2
PenBased	10,992	16	10
Magic	19,020	10	2

Computation Time for 50,000 Generations Computation time was decreased to about 2%

Name of Data Set	Standard A minutes	Our Model B minutes	Percentage of B B/A (%)
Segment	203.66	4.69	2.30%
Phoneme	439.18	13.19	3.00%
Page-blocks	204.63	4.74	2.32%
Texture	766.61	15.72	2.05%
Satimage	658.89	15.38	2.33%
Twonorm	856.58	7.84	0.92%
Ring	1015.04	22.52	2.22%
PenBased	1520.54	35.56	2.34%
Magic	771.05	22.58	2.93%

Computation Time for 50,000 Generations Computation time was decreased to about 2%

Name of Data Set	Standard A minutes	Our Model B minutes	Percentage of B B/A (%)
Se Ph Why	?		
Page Te			
Sa			
Twonorm	856.58	7.84	0.92%
Ring	1015.04	22.52	2.22%
PenBased	1520.54	35.56	2.34%
Magic	771.05	22.58	2.93%

Computation Time for 50,000 Generations Computation time was decreased to about 2%

Name Data S			Percentage of B B/A (%)
Bogg	ata were divid	pulation and ted into seven = 1/49 (abou	subsets.
Twonoi	m 856.58	7.84	0.92%
Ring	1015.04	22.52	2.22%
PenBas	ed 1520.54	35.56	2.34%
Magic	771.05	22.58	2.93%

Test Data Error Rates (Results of 3x10CV) Test data accuracy was improved for six data sets

Name of	Standard	Our Model	Improvement
Data Set	(A %)	(B %)	from A: (A - B)%
Segment	5.99	5.90	0.09
Phoneme	15.43	15.96	- 0.53
Page-blocks	3.81	3.62	0.19
Texture	4.64	4.77	- 0.13
Satimage	15.54	12.96	2.58
Twonorm	7.36	3.39	3.97
Ring	6.73	5.25	1.48
PenBased	3.07	3.30	- 0.23
Magic	15.42	14.89	0.53

Test Data Error Rates (Results of 3x10CV) Test data accuracy was improved for six data sets

Name of Data Set	Standard (A %)	Our Model (B %)	Improvement from A: (A - B)%
Segment	5.99	5,90	0.09
Phoneme	15.43		- 0.53
Page-blocks	3.81		0.19
Texture	4.6	A CORRESPONDENCE	- 0.13
Satimage		12.96	2.58
Twonorm	1 m 5 0	3.39	3.97
Ring	6	5.25	1.48
PenBased	3.07	3.30	- 0.23
Magic	15.42	14.89	0.53

Q. Why did our model improve the test data accuracy? A. Because our model improved the search ability.

Data Set Sta	ndard	Our Mod	el In	nprovement
Satimage 15	.54%	12.96%		2.58%
ata Error Rate (%)	Non-Pa	arallel Non-	Distribut	ed -
Taining D	Our Para 10000 2	allel Distribution 30000 er of Gene	40000 5	

Q. Why did our model improve the search ability? A. Because our model maintained the diversity.

Data Set Sta	ndard	Our Model	Improvement
Satimage 15	.54%	12.96%	2.58%
The best and in a particular each generation	subpopu	lation at	
Non-Parallel Non-Distributed Model (Best = Worst: No Diversity)			
Datallel		7	raining Data Rotation: Every 100 Generations
Parallel 30001 30100 3020	Distribute 0 30300	R	tule Set Migration: Every 100 Generations

Number of Generations

Training Data Rotation: Every 100 Generations Rule Set Migration: Every 100 Generations

Effects of Rotation and Migration Intervals (Rotations in the opposite directions)

Effects of Rotation and Migration Intervals (Rotations in the opposite directions)

Effects of Rotation and Migration Intervals (Rotations in the same direction)

Effects of Rotation and Migration Intervals (Rotations in the same direction)

Contents of This Presentation

- 1. Basic Idea of Evolutionary Computation
- 2. Genetics-Based Machine Learning
- 3. Parallel Distributed Implementation
- 4. Computation Experiments
- 5. Conclusion

1. We explained our parallel distributed model.

- 1. We explained our parallel distributed model.
- 2. It was shown that the computation time was decreased to 2%.

- 1. We explained our parallel distributed model.
- 2. It was shown that the computation time was decreased to 2%.
- 3. It was shown that the test data accuracy was improved.

- 1. We explained our parallel distributed model.
- 2. It was shown that the computation time was decreased to 2%.
- 3. It was shown that the test data accuracy was improved.
- 4. We explained negative effects of the interaction between the training data rotation and the rule set migration.

5. A little bit different model may be also possible for learning from locally located data bases.

Thank you very much!