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Abstract Genetic fuzzy rule selection has been suc-
cessfully used to design accurate and compact fuzzy rule-
based classifiers. It is, however, very difficult to handle
large data sets due to the increase in computational
costs. This paper proposes a simple but effective idea
to improve the scalability of genetic fuzzy rule selection
to large data sets. Our idea is based on its parallel dis-
tributed implementation. Both a training data set and
a population are divided into subgroups (i.e., into train-
ing data subsets and sub-populations, respectively) for
the use of multiple processors. We compare seven vari-
ants of the parallel distributed implementation with the
original non-parallel algorithm through computational
experiments on some benchmark data sets.
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1 Introduction

Recently genetic algorithms (GAs) have frequently been
used in the field of data mining and knowledge extraction
[1]. Their scalability to large data sets, however, is not
high. This is because computational costs become ex-
pensive when GAs are applied to large data sets. There
are two well-known approaches to the decrease in com-
putational costs for the handling of large data sets. One
is data reduction, which includes feature selection and
instance selection [2–5]. The other is parallel implemen-
tation of genetic algorithms, which is usually based on
spatial structures such as island and cellular models [6–
10]. In addition to the reduction in computational costs,
each approach has other benefits. For example, parallel
implementation often improves the global search abil-
ity of GAs by maintaining the diversity of individuals
(i.e., by avoiding premature convergence). On the other

hand, data reduction in some cases improves the gener-
alization ability of extracted knowledge by avoiding the
overfitting to training data.

Genetic fuzzy rule selection is an effective approach
to the design of accurate and compact fuzzy rule-based
classifiers [11–13]. It is a two-step approach. In the first
phase, a number of promising fuzzy rules are extracted as
candidate rules by a data mining technique from training
data. In this phase, rule evaluation criteria such as sup-
port and confidence are used to prescreening candidate
fuzzy rules. In the second phase, only a small number of
candidate rules are selected by a GA to maximize the
classification accuracy of selected candidate rules and
minimize their complexity.

One advantage of genetic fuzzy rule selection over
other fuzzy genetics-based machine learning (GBML) al-
gorithms [14–17] is its algorithmic simplicity. Each rule
set (i.e., fuzzy rule-based classifier) is represented by a
binary string in genetic fuzzy rule selection. This leads
to much less implementation costs of genetic fuzzy rule
selection than other fuzzy GBML algorithms. When the
number of candidate fuzzy rules is small, its computa-
tional costs are also usually much less than other fuzzy
GBML algorithms [18].

Another advantage is that fuzzy rules in the designed
classifier are always meaningful in terms of their sup-
port and confidence. This is because these rule evalu-
ation criteria are used for candidate rule prescreening
in the first phase. We can use these criteria in various
manners for candidate rule prescreening. For example,
Pareto-optimality with respect to these two criteria was
used to extract candidate fuzzy rules in [19,20].

Genetic fuzzy rule selection can be viewed as a post-
processing procedure in fuzzy data mining for choosing
only a small number of fuzzy rules [21]. It is usually very
difficult for human users to understand a large number of
extracted fuzzy rules by a data mining technique. Thus
the selection of only a small number of fuzzy rules helps
human users to easily understand the extracted knowl-
edge.
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Whereas genetic fuzzy rule selection usually needs
much less computational costs than other fuzzy GBML
algorithms, its computational costs become unmanage-
ably expensive when it is applied to large data sets. This
is because the computational time for fitness evaluation
of each individual linearly increases with the number of
training patterns.

The aim of this work is to decrease the computa-
tional cost for genetic fuzzy rule selection without severe
deterioration in the accuracy of designed classifiers. To
achieve this aim, we propose a simple but effective idea
to improve the scalability of genetic fuzzy rule selection
to large data sets. Our idea is based on the subdivision of
both a training data set and a population. They are sub-
divided into training data subsets and sub-populations,
respectively. Training data subsets and sub-populations
are assigned to different CPUs. Each individual in a
sub-population is evaluated by the corresponding train-
ing data subset assigned to the same CPU. Thus the
computational time for the fitness evaluation of a sin-
gle individual decreases by the magnitude of the num-
ber of training data subsets (i.e., the number of CPUs).
Since the fitness evaluation is performed in parallel in
each sub-population, the computational time for a sin-
gle generation decreases by the magnitude of the number
of sub-populations (i.e., the number of CPUs). That is,
the computational time of genetic fuzzy rule selection
decreases by the square of the number of CPUs in our
parallel distributed implementation.

This paper is organized as follows. First we briefly
review related studies in Section 2. Next we explain the
original non-parallel algorithm of genetic fuzzy rule se-
lection in Section 3. Then we explain our idea (i.e., par-
allel distributed implementation) in Section 4. In Section
5, we examine several variants of the parallel distributed
implementation in comparison with the original non-
parallel algorithm through computational experiments
on some benchmark data sets. Finally we conclude this
paper in Section 6.

2 Related Studies

In this section, we briefly review some related studies on
parallel distributed GA-based data mining for large data
sets.

Araujo et al. [8] proposed GA-PVMINER for paral-
lelizing the fitness calculation of an individual. Both a
population and a training data set are divided into sub-
groups as in our idea. A sub-population and a training
data subset are assigned to one processor. In one gen-
eration, each sub-population passes through all the pro-
cessors to calculate the fitness of each individual. This
means that the fitness evaluation of each individual is
based on the entire training data set. Thus, the effect
of parallelization is not so high in comparison with our
idea where a different training data subset is used for
evaluating each individual.

Llora et al. [9,10] proposed GALE, which is a cellular-
based approach. GALE uses a 2D grid for spreading in-
dividuals spatially. Each cell contains one or zero in-
dividual. Genetic operations are performed in a small
neighborhood of each individual. If we can assign a dif-
ferent CPU to each cell, the computational time does
not depend on the population size. As in [8], computa-
tional time decreases by the magnitude of the number
of CPUs in [9,10] whereas it decreases by the square of
the number of CPUs in our idea.

Cano et al. [4,5] proposed stratified strategies for in-
stance selection. At its first stage, training patterns are
divided into subgroups. Then instance selection is per-
formed on each subgroup in the first stage. The selected
patterns are combined and used as candidate patterns
in the second stage. The final solution is obtained in the
second stage by instance selection from the selected pat-
terns. Any data mining techniques can be used in the
second stage of this framework. This approach includes
data reduction and parallelization. Whereas all training
patterns are always used in each generation (i.e., their
subsets are used on different CPUs) in the first stage,
many patterns are disregarded in the second stage of [4,
5].

3 Classifier Design by Genetic Rule Selection

In this section, we explain fuzzy rules, fuzzy rule ex-
traction and genetic fuzzy rule selection for classification
problems.

3.1 Pattern Classification Problems

Let us assume that we have m training (i.e., labeled) pat-
terns xp = (xp1, ..., xpn), p = 1, 2, ...,m from M classes
in the n-dimensional continuous pattern space where xpi

is the attribute value of the p-th training pattern for the
i-th attribute (i = 1, 2, ..., n). For the simplicity of ex-
planation, we assume that all the attribute values have
already been normalized into real numbers in the unit
interval [0, 1]. This means that the pattern space of our
pattern classification problem is an n-dimensional unit-
hypercube [0, 1]n.

3.2 Fuzzy Rules for Pattern Classification Problems

For our n-dimensional pattern classification problem, we
use fuzzy rules of the following type:

Rule Rq : If x1 is Aq1 and ... and xn is Aqn

then Class Cq with CFq,
(1)

where Rq is the label of the q-th fuzzy rule, x = (x1, ...,
xn) is an n-dimensional pattern vector, Aqi is an an-
tecedent fuzzy set (i = 1, 2, ..., n), Cq is a class label,



Parallel Distributed Genetic Fuzzy Rule Selection 3

 

Attribute value 

1 

0 1 

1 

0 1 

1 

0 1 

1 

0 1 

M
em
b
er
sh
ip
 

M
em
b
er
sh
ip
 

M
em
b
er
sh
ip
 

M
em
b
er
sh
ip
 

Attribute value 

Attribute value 

Attribute value  

Fig. 1 Four fuzzy partitions used in our computational ex-
periments.

and CF q is a rule weight (i.e., certainty grade). We de-
note the antecedent part of the fuzzy rule Rq by the
fuzzy vector Aq = (Aq1, Aq2, ..., Aqn). By using Aq, the
fuzzy rule Rq is denoted as “Aq ⇒ Cq”.

Since we usually have no a priori information about
an appropriate granularity of the fuzzy discretization
for each attribute, we simultaneously use multiple fuzzy
partitions with different granularities for fuzzy rule ex-
traction. In our computational experiments, we use four
homogeneous fuzzy partitions with triangular fuzzy sets
in Fig. 1. We also use the domain interval [0, 1] as an
antecedent fuzzy set in order to represent a don’t care
condition. That is, we use the 15 antecedent fuzzy sets
for each attribute in our computational experiments.
Whereas we use only the simple fuzzy partitions in Fig.
1, the use of multiple fuzzy partitions may degrade more
or less the interpretability of designed fuzzy rule-based
classifiers. This is because some antecedent fuzzy sets
are similar to each other. Although an interpretability-
accuracy issue of fuzzy rule-based classifiers is not neg-
ligible [28,29], we skip discussions on this issue in order
to focus our attention on parallel distributed implemen-
tation of genetic fuzzy rule selection in this paper.

3.3 Fuzzy Rule Extraction

Since we use the 15 antecedent fuzzy sets for each at-
tribute of our n-dimensional pattern classification prob-
lem, the total number of combinations of the antecedent
fuzzy sets is 15n. Each combination can be used as the
antecedent part of the fuzzy rule in (1). Thus the total
number of possible fuzzy rules is also 15n. The conse-
quent class Cq and the rule weight CF q of each fuzzy
rule Rq can be heuristically specified by the compati-
ble training patterns with its antecedent part Aq in the
following manner.

First we calculate the compatibility grade of each
training pattern xp with the antecedent part Aq of the
fuzzy rule Rq using the product operation as:

µAq
(xp) = µAq1(xp1) · ... · µAqn

(xpn), (2)

where µAqi(·) is the membership function of Aqi.
Next we calculate the confidence of the fuzzy rule

“Aq ⇒ Class h” for each class (h = 1, 2, ...,M) as follows
[22]:

c(Aq ⇒ Class h) =

∑
xp∈Class h

µAq
(xp)

m∑
p=1

µAq (xp)

. (3)

The consequent class Cq is specified by identifying
the class with the maximum confidence:

c(Aq ⇒ Class Cq) = max
h=1, 2, ..., M

{c(Aq ⇒ Class h)} .

(4)
The consequent class Cq can be viewed as the dom-

inant class in the fuzzy subspace defined by the an-
tecedent part Aq. When there is no pattern in the fuzzy
subspace defined by Aq, we do not generate any fuzzy
rules with Aq in the antecedent part. When multiple
classes have the same maximum value in (4), we do not
generate any fuzzy rules with Aq in the antecedent part,
either. This specification method of the consequent class
of fuzzy rules has been used in many studies since [23].

The rule weight CF q of each fuzzy rule Rq has a large
effect on the performance of fuzzy rule-based classifiers
[24]. Different specifications of the rule weight have been
proposed and examined in the literature. We use the fol-
lowing specification because good results were reported
by this specification in the literature [25,26]:

CFq = c(Aq ⇒ Class Cq)−
M∑

h=1
h̸=Cq

c(Aq ⇒ Class h). (5)

3.4 Fuzzy Rule Evaluation

Using the above-mentioned procedure, we can generate a
large number of fuzzy rules by specifying the consequent
class and the rule weight for each of the 15n combina-
tions of the antecedent fuzzy sets. It is, however, very
difficult for human users to handle such a large num-
ber of generated fuzzy rules. It is also very difficult for
human users to intuitively understand long fuzzy rules
with many antecedent conditions. Thus we only generate
short fuzzy rules with only a small number of antecedent
conditions. It should be noted that don’t care conditions
with the antecedent interval [0, 1] can be omitted from
fuzzy rules. Thus the rule length means the number of
antecedent conditions excluding don’t care conditions.
We examine only short fuzzy rules of length Lmax or
less (e.g., Lmax = 3). This restriction is to find a small
number of short (i.e., simple) fuzzy rules.

Among short fuzzy rules, we generate only promising
rules as candidate rules in genetic fuzzy rule selection
using a heuristic rule evaluation criterion. In the field of
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data mining, two rule evaluation criteria (i.e., confidence
and support) have often been used. We have already
shown the fuzzy version of the confidence criterion in
(3). In the same manner, the support of the fuzzy rule
“Aq ⇒ Class h” is calculated as follows [22]:

s(Aq ⇒ Class h) =

∑
xp∈Class h

µAq (xp)

m
. (6)

In our computational experiments, we extracted fuzzy
rules satisfying pre-specified threshold values of support
and confidence (i.e., minimum support and minimum
confidence).

3.5 Classification in Fuzzy Rule-Based Classifiers

A subset of candidate fuzzy rules can be viewed as a
fuzzy rule-based classifier. Let S be a subset of candi-
date fuzzy rules of the form in (1). A new pattern xp

is classified by a single winner rule RW, which is chosen
from the rule set S as follows:

RW = argmax{µAq (xp) · CF q | Rq ∈ S}. (7)

As shown in (7), the winner rule RW has the max-
imum product of the compatibility grade and the rule
weight in S. The classification of xp is rejected when no
rules are compatible with xp (which was counted as an
error in our computational experiments). In our genetic
fuzzy rule selection, random tiebreak is not used to ef-
ficiently search for a small number of necessary fuzzy
rules. Thus, the classification of xp is also rejected when
multiple fuzzy rules with different consequent classes
have the same maximum value in (7).

For other fuzzy reasoning methods for pattern clas-
sification problems, see Cordon et al. [27] and Ishibuchi
et al. [23,25].

3.6 Genetic Fuzzy Rule Selection

Let us assume that N candidate fuzzy rules have already
been extracted. The task of genetic fuzzy rule selection
is to design an accurate and compact fuzzy rule-based
classifier from the N candidate fuzzy rules.

Any subset S of the N candidate fuzzy rules can be
denoted by a binary string of length N as S = s1s2 · · · sN

where si = 1 and si = 0 mean that the i-th candidate
fuzzy rule is included in and excluded from the rule set S,
respectively. Such a binary string is used as an individual
in genetic fuzzy rule selection.

In this paper, we use the following three objectives
to find an accurate and compact rule set S:

f1(S) : The number of correctly classified training pat-
terns by S,

f2(S) : The number of fuzzy rules in S,

f3(S) : The total number of antecedent conditions in S.
The first objective is maximized while the second

and third objectives are minimized. The first objective
is calculated by classifying each training pattern xp by
the rule set S. The classification is based on the single
winner-based method explained in the previous subsec-
tion.

The second objective is calculated by just counting
the number of 1’s (i.e., the number of selected fuzzy
rules) in S. Since we use the single winner-based method
without random tiebreak to evaluate the accuracy of the
rule set S, only a single rule is responsible for the classi-
fication of each training pattern. As a result, some fuzzy
rules may be used for the classification of no training
patterns. Whereas the existence of such an unnecessary
fuzzy rule in the rule set S has no effect on the first ob-
jective, it deteriorates the second and third objectives.
Thus we remove from the rule set S all the unneces-
sary rules responsible for the classification of no train-
ing patterns before the second and third objectives are
calculated. The third objective is the total number of
antecedent conditions excluding don’t care conditions of
the selected fuzzy rules in S.

The above-mentioned three objectives are combined
into the following weighted sum fitness function:

fitness(S) = w1 · f1(S) − w2 · f2(S) − w3 · f3(S), (8)

where w1, w2, and w3 are pre-specified non-negative
weights. This fitness function is maximized in genetic
fuzzy rule selection. As a result, the accuracy is maxi-
mized while the complexity is minimized. Of course, the
final solution (i.e., the rule set S) strongly depends on
the specification of the weight vector w = (w1, w2, w3).

Genetic fuzzy rule selection is implemented in the
following manner to find the optimal rule set S with
respect to the weighted sum fitness function in (8).
Genetic Fuzzy Rule Selection
Phase I: Candidate Rule Extraction
Step 1: Extract candidate fuzzy rules from the train-
ing patterns using pre-specified values of the minimum
support, the minimum confidence, and the maximum
rule length. Let the number of extracted candidate fuzzy
rules be N .
Phase II: Genetic Optimization of Rule Sets
Step 2: Randomly generate Npop binary strings of length
N as an initial population where Npop is the population
size. Calculate the fitness value of each string using the
fitness function in (8) after removing unnecessary rules.
Step 3: Iterate the following operations Npop times to
generate an offspring population of Npop strings.
3.1: Select a pair of parent strings from the current pop-

ulation by binary tournament selection with replace-
ment.

3.2: Recombine the selected pair of parent strings to
generate new strings by the uniform crossover oper-
ation. One of the generated strings is randomly cho-
sen as an offspring. This operation is applied with a
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pre-specified probability. The crossover probability is
specified as 0.9 in this paper. When the crossover op-
eration is not applied to the selected pair of parent
strings, one of the two parents is randomly chosen
and used as an offspring in the following steps.

3.3: Apply a biased mutation operation to the offspring.
This operation changes 0 to 1 with a small probabil-
ity and 1 to 0 with a large probability to decrease
the number of 1’s (i.e., the number of selected fuzzy
rules) in the offspring. The mutation probabilities
from 0 to 1 and from 1 to 0 are specified as 1/N
and 0.05, respectively, where N is the number of
candidate rules. In our computational experiments,
N >> 100.

3.4: Calculate the fitness value of the offspring string by
the fitness function in (8) after removing unnecessary
rules.

Step 4: Select the best Npop strings with respect to
the fitness function in (8) from the current and offspring
populations.
Step 5: If a pre-specified termination condition is not
satisfied, return to Step 3 with the best Npop strings
selected in Step 4 which are used as the population in
the next generation. Otherwise, terminate the execution
of the algorithm.

We use the total number of evaluated strings as the
termination condition in this paper. The best rule set
among examined ones during the execution of our ge-
netic rule selection algorithm is returned to human users
as the final result.

4 Parallel Distributed Implementation

In this section, we propose a simple but effective idea to
improve the scalability of genetic fuzzy rule selection to
large data sets.

Figure 2 explains a computer system used in our com-
putational experiments in this paper. We use a cluster
computer system with a single server CPU and a num-
ber of client CPUs (three client CPUs in our computa-
tional experiments). We can easily set up this system
using multiple independent desktop computers and/or
a single computer with multi-core CPUs. Currently we
are developing a cluster computer system with 12 client
CPUs [36].

Our idea to improve the scalability of genetic fuzzy
rule selection to large data sets is to divide not only a
population but also a training data set. They are divided
into the same number of sub-populations and training
data subsets, which is also the same as the number of
client CPUs. Let us assume that the number of client
CPUs is three as in Fig. 2. In this case, the training
data set and the population are divided into three train-
ing data subsets and three sub-populations, respectively.
Then each client CPU performs genetic fuzzy rule se-
lection using a single training data subset and a single
sub-population given by the server CPU.

Data SetServer

Client 1

Genetic Rule
Selection

Genetic Rule
Selection

Genetic Rule
Selection

Rule Extraction

D
1

D
2

D
3

Client 2 Client 3

R

(R, P1, D1) (R, P2, D2) (R, P3, D3)

D
Test

D
Train

pBest

 

Fig. 2 Cluster computer system used for parallel distributed
implementation of genetic fuzzy rule selection.

It seems that each sub-population is likely to over-
fit to the corresponding training data subset. Thus, we
change the assignment of the training data subsets to the
client CPUs after a pre-specified number of generations
(i.e., every ten generations).

Our parallel distributed implementation of genetic
fuzzy rule selection is written as follows:

Parallel Distributed Implementation
Phase I: Candidate Rule Extraction
Step 1: Extract candidate fuzzy rules in the same man-
ner as in Section 3. This phase is executed on the server
CPU. Let the number of extracted fuzzy rules be N .
Phase II: Genetic Optimization of Rule Sets
Step 2: Randomly generate Npop binary strings of length
N as an initial population on the server CPU.
Step 3: Randomly divide the current population and
the training data set into sub-populations and training
data subsets, respectively, on the server CPU.
Step 4: Distribute the sub-populations and the training
data subsets from the server CPU to the client CPUs.
Step 5: Evaluate each string in the sub-population using
the assigned training data subset on each client CPU.
Step 6: Execute genetic fuzzy rule selection for a pre-
specified computation load (which is specified by the to-
tal number of evaluated strings in this paper) on each
client CPU using the assigned training data subset and
the assigned sub-population.
Step 7: Systematically change the assignment of the
training data subsets to the client CPUs (e.g., from the
first client CPU to the second one, from the second one
to the third one, and from the third one to the first one
in the case of three client CPUs).
Step 8: If a pre-specified termination condition (the to-
tal number of evaluated strings in this paper) is not sat-
isfied, return to Step 5. Otherwise go to Step 9.
Step 9: Calculate the fitness value of each string in each
sub-population using the whole training data set on the
server CPU. Choose the best string as the final solution
(i.e., as the finally obtained fuzzy rule-based classifier).
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Our parallel distributed implementation decreases the
computational time by the magnitude of the square of
the number of client CPUs. For example, it is nine times
faster than the original non-parallel algorithm in Section
2 when we have three client CPUs. This is because both
the population size and the number of training patterns
at each client CPU are 1/3 of those in the original non-
parallel algorithm.

5 Computational Experiments

Through computational experiments on some benchmark
data sets in the UCI machine learning repository, we
examined several variants of the proposed parallel dis-
tributed implementation in comparison with the original
non-parallel algorithm.

Table 1 shows the benchmark data sets used in our
computational experiments. Whereas these data sets in
Table 1 are not actually very large, they can be used
to demonstrate the effectiveness of the proposed idea.
We evaluated the generalization ability of obtained fuzzy
rule-based classifiers by iterating the ten-fold cross vali-
dation procedure two times (i.e., 2×10CV).

We first extracted candidate fuzzy rules using the
minimum confidence, the minimum support, and the
maximum rule length. The maximum rule length was
specified as three for all the data sets. Table 2 shows the
minimum support and the minimum confidence used for
each data set. We also show the average number of ex-
tracted candidate rules and the average CPU time for
rule extraction (hour: minute: second) in Table 2. Since
the candidate rule extraction phase was performed us-
ing the entire training data set, the same candidate rules
were extracted in all variants examined in our computa-
tional experiments. Then genetic fuzzy rule selection was
performed. The weight vector in the weighted sum fitness
function in (8) was specified as w = (100, 1, 1). We used
three client CPUs. The population size Npop was speci-
fied as 300 (i.e., the size of each sub-population was 100).
The total number of evaluated strings for each variant
was specified as 300300. This is equal to an initial popu-
lation with 300 strings plus 1000 generation updates in
the case of non-parallel genetic fuzzy rule selection.

We examined the following eight variants of genetic
fuzzy rule selection (one original non-parallel algorithm
and seven parallel distributed ones).

Type 0: The original non-parallel algorithm, which was
executed at a single server CPU.

Type 1: A parallel distributed algorithm, which was
executed at a cluster system with a single sever CPU
and three client CPUs. The assignment of training
data subsets to the client CPUs was not changed.

Type 2: The same algorithm as Type 1 except that
the assignment of training data subsets was changed
every 100 generations.

Table 1 Data sets used in our computational experiments.

Data set Attributes Patterns Classes

Wine 13 178 3
Breast W 9 683* 2

Yeast 8 1484 10
Pendig 16 10992 10

∗ Incomplete patterns with missing values are not included.

Table 2 Minimum confidence and support levels, the aver-
age number of generated candidate rules, and the average
CPU time for candidate rule extraction for each data set.

Data set Confidence Support Rules Time

Wine 0.8 0.1 2137.7 0:00:08
Breast W 0.9 0.2 6882.6 0:00:09

Yeast 0.5 0.002 12338.8 0:00:15
Pendig 0.5 0.04 18297.9 0:19:12

Type 3: The same algorithm as Type 1 except that
the assignment of training data subsets was changed
every 10 generations.

Type 4: The same algorithm as Type 1 except that
the assignment of training data subsets was changed
every generation.

Type 5: The same algorithm as Type 3 (i.e., the as-
signment of training data subsets was changed every
10 generations) except that the population subdivi-
sion was randomly performed every 200 generations.
This means that 300 strings in the current popula-
tion (i.e., three sub-populations) were randomly re-
assigned to the three client CPUs every 200 genera-
tions.

Type 6: The same algorithm as Type 5 except that
the population subdivision was randomly performed
every 100 generations.

Type 7: The same algorithm as Type 5 except that
the population subdivision was randomly performed
every 10 generations.

The last three types (i.e., Types 5-7) can be viewed as
the incorporation of a very simple migration procedure
into our parallel distributed implementation.

The CPU time was measured on a workstation with
two Xeon 3.0 GHz dual processors (i.e., four CPU cores).
We used one of them as a server CPU. The others were
used as client CPUs.

Tables 3-6 show the average training data accuracy,
the average test data accuracy, the average number of
selected fuzzy rules, the average total rule length, and
the average CPU time (hour: minute: second) over two
iterations of the ten-fold cross validation procedure (i.e.,
over 20 runs). We performed statistical tests [30] for ex-
amining the statistical significance of the difference be-
tween the original non-parallel algorithm (i.e., Type 0)
and our parallel distributed implementation (i.e., Type
1 - Type 7) in the training data accuracy and the test
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data accuracy. We used a paired student’s t-test when
the distribution of experimental results can be regarded
as a normal distribution. Otherwise, we used a Wilcoxon
signed-ranks test. Average classification rates which are
significantly different with the significance level α = 0.05
from the results by Type 0 are underlined in each table.
In the same way, the rates which are strongly signifi-
cantly different with the significance level α = 0.01 are
highlighted by bold face.

As shown in Tables 3-6, our parallel distributed im-
plementation without too frequent assignment changes
for a small data set (i.e., except for Type 4 on the Wine
data set) decreased the average CPU time of Type 0 (i.e.,
the original non-parallel algorithm). The decrease in the
CPU time was more significant in the case of larger data
sets (i.e., Yeast and Pendig data sets). This observation
shows that our parallel distributed implementation can
improve the scalability of genetic fuzzy rule selection to
large data sets.

As we can see from many bold-face fonts and un-
derlines in the second column labeled as “training” in
Tables 3-6, the training data accuracy was significantly
degraded by the parallel distributed implementation in
many cases. This is because genetic fuzzy rule selec-
tion was performed at each client CPU by using only
a part of training data. We can also see that the periodi-
cal reassignment of training data subsets to the client
CPUs (i.e., Type 2 and Type 3) and the population
re-subdivision (i.e., Type 5 and Type 6) somewhat im-
proved the training data accuracy of Type 1 with no
reassignment. This is because these procedures can help
genetic fuzzy rule selection to adapt the entire training
data. On the contrary, the reassignment and re-subdivision
at every generation (i.e., Type 4 and Type 7) did not
work well. Too frequent reassignment and re-subdivision
may disturb the genetic search for good rule sets.

Whereas the training data accuracy was significantly
degraded by the parallel distributed implementation in
many cases in Tables 3-6, the test data accuracy was
not significantly degraded with only a few exceptions.
Almost the same test data accuracy was obtained from
the original non-parallel algorithm and the parallel dis-
tributed implementation in many cases. This observation
clearly shows the usefulness of our parallel distributed
implementation since the average CPU time was drasti-
cally decreased by our parallel distributed implementa-
tion.

We can further observe that the complexity (i.e., the
number of fuzzy rules and the total rule length) was also
decreased by our parallel distributed implementation, es-
pecially for large data sets. This is a by-product of the
training data subdivision.

6 Conclusions

In this paper, we proposed a parallel distributed imple-
mentation of genetic fuzzy rule selection to improve its

Table 3 Results on the Wine data set.

Training Test Rules Length Time

Type 0 100.00 93.82 5.80 11.05 0:02:52
Type 1 98.06 91.80 5.65 11.05 0:00:26
Type 2 98.84 92.43 5.35 12.10 0:00:27
Type 3 99.97 95.18 5.80 12.15 0:00:33
Type 4 100.00 93.25 6.65 12.85 0:03:15
Type 5 100.00 94.33 5.55 11.50 0:00:33
Type 6 99.84 93.76 5.20 10.40 0:00:33
Type 7 98.53 94.95 6.35 11.85 0:00:35

Table 4 Results on the Breast W data set.

Training Test Rules Length Time

Type 0 98.55 96.12 5.75 12.50 0:26:53
Type 1 97.75 96.93 5.45 11.10 0:03:20
Type 2 97.84 96.41 5.25 10.95 0:03:19
Type 3 98.42 95.90 5.25 11.45 0:03:33
Type 4 98.27 96.34 5.45 12.00 0:06:10
Type 5 98.41 96.27 5.55 12.40 0:03:49
Type 6 98.34 96.20 5.10 10.75 0:03:33
Type 7 97.82 96.27 5.40 11.35 0:03:35

Table 5 Results on the Yeast data set.

Training Test Rules Length Time

Type 0 63.77 56.93 37.85 107.20 2:11:24
Type 1 60.91 56.31 25.65 72.00 0:15:06
Type 2 61.51 56.14 23.00 67.50 0:14:33
Type 3 63.23 57.42 22.45 65.45 0:14:56
Type 4 61.31 56.71 22.85 65.50 0:17:48
Type 5 63.41 57.25 23.15 66.95 0:15:03
Type 6 63.26 57.18 23.50 68.60 0:14:57
Type 7 60.67 56.27 24.15 69.25 0:15:24

Table 6 Results on the Pendig data set.

Training Test Rules Length Time

Type 0 80.94 80.32 40.35 117.60 24:43:27
Type 1 80.38 79.81 30.80 89.35 2:42:14
Type 2 80.79 80.32 28.25 82.95 2:43:14
Type 3 80.75 80.26 29.70 86.20 2:55:12
Type 4 80.12 79.64 28.25 82.05 2:57:34
Type 5 80.75 80.13 30.00 87.20 2:54:11
Type 6 80.82 80.11 30.30 88.05 2:54:22
Type 7 80.38 79.98 29.40 85.75 2:48:37

scalability to large data sets. Through computational ex-
periments, it was shown that the proposed parallel dis-
tributed implementation found fuzzy rule-based classi-
fiers with almost the same test data accuracy as the orig-
inal non-parallel algorithm while it drastically decreased
the average CPU time. It was also shown that the re-
assignment of training data subsets helped our parallel
distributed implementation to find good fuzzy rule-based
classifiers with high generalization ability.
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The extension of parallel distributed genetic fuzzy
rule selection to evolutionary multiobjective optimiza-
tion [31–35] is an interesting future research issue.

This work was partially supported by Foundation for
C&C Promotion and Grant-in-Aid for Young Scientists
(B): KAKENHI (18700228).
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