IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 2, APRIL 2013

355

Parallel Distributed Hybrid Fuzzy GBML Models
With Rule Set Migration and Training Data Rotation

Hisao Ishibuchi, Senior Member, IEEE, Shingo Mihara, and Yusuke Nojima, Member, IEEE

Abstract—We propose a parallel distributed model of a hybrid
fuzzy genetics-based machine learning (GBML) algorithm to dras-
tically decrease its computation time. Our hybrid algorithm has a
Pittsburgh-style GBML framework where a rule set is coded as an
individual. A Michigan-style rule-generation mechanism is used as
a kind of local search. Our parallel distributed model is an island
model where a population of individuals is divided into multiple
islands. Training data are also divided into multiple subsets. The
main feature of our model is that a different training data subset is
assigned to each island. The assigned training data subsets are pe-
riodically rotated over the islands. The best rule set in each island
also migrates periodically. We demonstrate through computational
experiments that our model decreases the computation time of the
hybrid fuzzy GBML algorithm by an order or two of magnitude
using seven parallel processors without severely degrading the gen-
eralization ability of obtained fuzzy rule-based classifiers. We also
examine the effects of the training data rotation and the rule set
migration on the search ability of our model.

Index Terms—Fuzzy rule-based classifiers, genetics-based
machine learning, parallel distributed algorithms, training data
rotation, training data stratification.

1. INTRODUCTION

OPULATION-BASED evolutionary algorithms have a
Pnumber of advantages over point-based search methods
such as global search ability, adaptability to uncertain envi-
ronments, and applicability to large-scale optimization prob-
lems [1]-[5]. Applications of evolutionary algorithms to ma-
chine learning have often been referred to as genetics-based
machine learning (GBML) [1]. A number of GBML algorithms
were proposed for machine learning, knowledge extraction, and
data mining [6]-[11]. Recently, evolutionary multiobjective op-
timization was also used to handle conflicting objectives such
as “accuracy and complexity” in classifier design [12]-[17].

GBML algorithms are divided into two categories depending
on their coding mechanisms [11]. In one category, a rule set is
coded as a string and handled as an individual. A single popula-
tion consists of a number of rule sets. This category of GBML

Manuscript received November 26, 2011; revised March 24, 2012; ac-
cepted June 19, 2012. Date of publication August 24, 2012; date of current
version March 27, 2013. This work was supported in part by the Japan Soci-
ety for the Promotion of Science under Grant-in-Aid for Young Researchers
(B) (22700239) and Takayanagi Foundation for Electronics Science and
Technology.

The authors are with the Department of Computer Science and Intelli-
gent Systems, Osaka Prefecture University, Osaka 599-8531, Japan (e-mail:
hsaoi @cs.osakafu-u.ac.jp; mihara@ci.cs.osakafu-u.ac.jp; nojima@cs.osakafu-
u.ac.jp).

Digital Object Identifier 10.1109/TFUZZ.2012.2215331

algorithms is referred to as the Pittsburgh approach. Pittsburgh-
style GBML algorithms search for the best rule set with respect
to a prespecified fitness function. In the other category, a single
rule is coded as a string and handled as an individual. A single
population consists of a number of rules. This category is sub-
divided into the Michigan approach and iterative rule learning
(IRL). In the Michigan approach, a population of rules is viewed
as a single rule-based classifier. The final population after the
execution of a Michigan-style GBML algorithm is usually han-
dled as an obtained rule-based classifier. In an IRL-style GBML
algorithm, a rule-based classifier is designed by its multiple runs
where a single rule is obtained from each run. For details of these
three approaches, see [11].

The main difficulty in the application of Pittsburgh-style
GBML algorithms to large-scale classification problems is their
heavy computation load. This is because a number of rule sets
are to be evaluated in each generation during their execution.
Various techniques have been discussed for the speed-up of
Pittsburgh-style GBML algorithms. One popular technique is
their parallel implementation, where multiple processors are
used in parallel for rule set evaluation. Parallel implementation
is a general technique for the speed-up of evolutionary algo-
rithms [18]-[21]. Parallel implementation of population-based
search algorithms is not difficult since the fitness evaluation of
each solution can be performed in parallel. Motivated by recent
rapid advancement of parallel hardware technologies, such as
general-purpose graphics processing units, parallel evolutionary
computation has become a very active research area [22]-[26].

Training data reduction has also been actively studied in
machine learning, knowledge extraction, and data mining
[27]1-[30]. Its basic idea is to decrease the size of training data.
A windowing method was studied as a training data reduction
method for the speed-up of GBML algorithms in [31] which
training data were stratified into multiple strata (i.e., divided
into multiple disjoint subsets of the same size with the same
class distribution). A different training data subset was used in
every generation in [31]. Further speed-up of GBML algorithms
was realized by parallel implementation of GBML algorithms
with the windowing method in [32] where the fitness evaluation
of each solution was performed in parallel.

In our former studies [33], [34], we used an island model for
parallel distributed implementation of genetic fuzzy rule selec-
tion [35]. A different training data subset was assigned to each
island. Genetic fuzzy rule selection was performed indepen-
dently in each island for a prespecified number of generations.
Assigned training data subsets were rotated periodically over
the islands. We used the term “distributed” because the fitness
evaluation of each solution was performed at each island using

1063-6706/$31.00 © 2012 IEEE

356

a different training data subset. A simple migration strategy was
used in [34] where copies of the best rule sets in each island
were moved to the next island. In [33], subpopulations were pe-
riodically merged and randomly redivided into multiple islands.

Although genetic fuzzy rule selection is an interesting post-
processing procedure of fuzzy data mining [36], accurate fuzzy
rule-based classifiers are not always obtained. This is because it
does not generate any new fuzzy rules. When important fuzzy
rules are not included in a candidate rule set, it is difficult to
design fuzzy rule-based classifiers with high accuracy through
rule selection.

We examined parallel distributed implementation of a hybrid
fuzzy GBML algorithm [37] in our former studies [38], [39]
where no migration strategy was used. In this paper, we propose
a parallel distributed model with training data rotation and rule
set migration as an extended version of island models in our
former studies [38], [39]. A different training data subset is
assigned to each island and rotated periodically over multiple
islands. As a migration strategy, a copy of the best rule set (i.e.,
the best individual) at each island is sent to another island. As we
will show through computational experiments, the training data
rotation and the rule set migration interfere with each other. That
is, their synchronized use clearly deteriorates the search ability
of our hybrid fuzzy GBML algorithm. In this paper, we propose
anidea of using an inverse rotation for the rule set migration. The
training data rotation and the rule set migration are performed in
opposite directions. To the best of our knowledge, the handling
of such a mutual interference between the training data rotation
and the rule set migration has not been discussed in the literature.

The main contributions of this paper can be summarized as
follows.

1) We discuss the mutual interference between the training
data rotation and the rule set migration. In order to avoid
its negative effects, we propose a new parallel distributed
model with the training data rotation and the rule set mi-
gration in opposite directions.

2) We demonstrate that the proposed model drastically de-
creases the computation time of our hybrid fuzzy GBML
algorithm without severely deteriorating the generaliza-
tion ability of obtained fuzzy rule-based classifiers.

This paper is organized as follows. First, we briefly explain
fuzzy rule-based classifiers in Section II. Next, we explain our
hybrid fuzzy GBML algorithm in Section III. Then, we propose
a parallel distributed model with the training data rotation and
the rule set migration in opposite directions in Section IV. In
Section V, our parallel distributed model and its variants are
examined in detail through computational experiments. Finally,
we conclude this paper in Section VI.

II. Fuzzy RULE-BASED CLASSIFIERS

Let us explain a fuzzy rule-based classifier for an M -class
pattern classification problem in an n-dimensional pattern space
[0, 17" with m training patterns X, = (Zp,, .. Zpn), P = 1,
2, ..., m. We assume that each attribute value x,; has already
been normalized into a real number in the unit interval [0, 1]
fort=1,2,...,nandp=1,2,...,m.For our n-dimensional

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 2, APRIL 2013

e 10 B, B, e 1.0 By B, Bs
=
=
£ 5
0.0 Attribute value 1.0 0.0 Attribute value 1.0
o 1.0 Bs B, By By o 1.0 By By By, By By
= =2
2 L
g =i
Q QO
= - = -
0.0 Attribute value 1.0 0.0 Attribute value 1.0
Fig. 1. Antecedent fuzzy sets “By, B, ..., Bi4.”

pattern classification problem, we use fuzzy rules of the follow-
ing type [40]:
Rule R, : If 2y is A;, and ... and ,, is A,

then Class C, with C'F, (1

where R, is the label of the gth fuzzy rule, A,; is an antecedent
fuzzy set (i =1,2,...,n), C, is aclass label, and C'F} is a rule
weight (which is a real number in the unit interval [0, 1]). Since
the early 1990s, fuzzy rules of this type have been frequently
used in the literature [41]. For other types of fuzzy rules for
pattern classification problems, see [41]-[43].

As antecedent fuzzy sets, we use 14 fuzzy sets “Bj, Bo, .. .,
By,” in Fig. 1. We also use a special antecedent fuzzy set
“By” defined by the unit interval [0, 1] to represent a “don’t
care” condition. The antecedent fuzzy set By is always fully
compatible with any normalized attribute values. The use of the
“don’t care” condition enables us to perform rule-level feature
selection [44]. That is, each rule can have antecedent conditions
on different attributes. The number of antecedent conditions
(excluding “don’t care”) of a fuzzy rule is often referred to as
its rule length. The total number of possible combinations of
the antecedent fuzzy sets is 15" for our n-dimensional pattern
classification problem. The antecedent part of the fuzzy rule R,
in (1) is one of those combinations. The consequent class C,
and the rule weight CF;, are specified using compatible training
patterns with its antecedent part in a heuristic manner [45].

The compatibility grade of each pattern x,, = (1, - .., Tpn)
with the antecedent part of the fuzzy rule R, in (1) is calculated
using the product operator as

pag(Xp) = pag(Tp1) X paga(Tp2) X - X fragn (Tpn) (2)

where A, is the vector of the antecedent fuzzy sets of the fuzzy
rule R, (i.e., Ay = (Agys .., Agn)), and piagi(xy) is the
membership value of the antecedent fuzzy set A,; at the input
value ;.

To specify the consequent class C'; and the rule weight C'Fy,
we first calculate the confidence of the association from the
antecedent fuzzy vector A, toeachclass k (k=1,2,..., M) as

Zx,ye(}lassk :U“Aq (XTJ)
m
Zp:l iu‘Aq (lel)
This is the confidence measure of the fuzzy association rule

“A, = Class k” [46], [47]. If the confidence value for a particu-
lar class C; is larger than 0.5 in (3), we generate a fuzzy rule with

3)

Conf(A, = Classk) =

ISHIBUCHI et al.: PARALLEL DISTRIBUTED HYBRID FUZZY GBML MODELS WITH RULE SET MIGRATION AND TRAINING DATA ROTATION 357

the antecedent fuzzy vector A, and the consequent class C,. In
this case, C; is the majority class in the fuzzy pattern subspace
A,. Then, the rule weight CF;, is specified as follows [45]:

M
CF, = Conf(A, = Class C,) — Z Conf(A,; = Classk).
iZe,
4)
Since the sum of the confidence value in (3) over all classes
is 1, (4) can be rewritten as

CF, =2 -Conf(A, = ClassC;;) — 1.)

Note that CFj, is always positive since we generate the fuzzy
rule R, only when the confidence value for the class C, is larger
than 0.5 in (3). If the confidence values are equal to or smaller
than 0.5 for all classes, no fuzzy rules with the antecedent fuzzy
vector A, are generated.

Our fuzzy rule-based classifier is a set of fuzzy rules of the
form in (1). Let us denote a set of fuzzy rules by S. When
an input pattern Xx,, is presented to S, we use a single winner-
based fuzzy reasoning method to classify x, by S. A single
winner rule Ry for x, is chosen from S using the product of
the compatibility grade in (2) and the rule weight of each fuzzy
rule in S as follows:

Ay (xp) - CFy = max{pa, (x,) - CFy|Rg € S} (6)

The input pattern x,, is classified as the consequent class
Cy of the winner rule Ry, . When multiple fuzzy rules with
different consequent classes have the same maximum value in
(6), the classification of x,, is rejected. The classification of x,,
is also rejected when no fuzzy rule in S is compatible with x,,.
For other fuzzy reasoning methods for pattern classification,
see [41]-[43].

III. HYBRID FuzzY GENETICS-BASED MACHINE
LEARNING ALGORITHM

Our hybrid fuzzy GBML algorithm [37] has a Pittsburg-style
framework where a rule set is handled as an individual. Its
outline is shown in the left plot of Fig. 2. A Michigan-style al-
gorithm is used as a kind of local search after genetic operations
in the Pittsburgh-style framework.

As shown in the right plot of Fig. 2, the Michigan-style al-
gorithm is probabilistically applied to each rule set. When it
is applied, new rules are generated by genetic operations and
a heuristic rule generation mechanism to partially modify the
rule set. The Michigan-style algorithm is not iterated for each
rule set. That is, new rule generation and population update are
performed just once for each rule set when the Michigan-style
algorithm is invoked (see the right plot of Fig. 2).

In this section, we explain a standard nonparallel nondis-
tributed implementation of our hybrid fuzzy GBML algorithm.
Its parallel distributed implementation is proposed in the next
section.

Coding: A single fuzzy rule is represented by its n antecedent
fuzzy sets as an integer string of length n. This integer coding is
used in the Michigan part of our hybrid algorithm. In its Pitts-
burgh part, a set of N fuzzy rules is denoted by a concatenated

Pittsburgh-style framework

Michigan-style part

| Initialization | _____________________
I i Rule set
| Selection |<— No
1 - Michigan probability
Genetic operations
(Crossoverand Mutation) Yes

I
I Michigan-style part |
I

1

1

1

1

1

1

1

1

1

1

. 1
New rule generation]
* Geneticrule generation | !
1

1

1

1

1

1

1

1

1

1

1

| Population update | * Heuristic ru}e generation
. o No | Population update
Termination condition
Yes b Yo __

| Choose the best individual |

Fig. 2. Pittsburgh-style framework (left) of our hybrid algorithm and its
Michigan-style part (right).

integer string of length nN, where each substring of length n
denotes a single fuzzy rule. The consequent class and the rule
weight of each fuzzy rule are not coded (they are specified by
the heuristic method in Section II).

The consequent class and the rule weight are, however, stored
together with the corresponding substring to avoid their unnec-
essary recalculation. The heuristic method is used to specify its
consequent class and rule weight only when a new substring is
generated. If there exists no majority class with a confidence
value larger than 0.5, we tentatively assign an empty class and a
zero rule weight to the substring. Such a substring, which can be
viewed as a dummy rule, is removed when each string is eval-
uated in the Pittsburgh part. Our concatenated integer strings
have variable string length because the number of fuzzy rules in
fuzzy rule-based classifiers is not prespecified.

Initial Population: An initial string (i.e., initial rule set) is
generated from a prespecified number of randomly selected
training patterns. A substring of length n (i.e., an antecedent
fuzzy vector) is specified from each training pattern. In our
computational experiments, we randomly choose 30 patterns
from available training patterns without replacement.

Letx, = (xp,, ..., Ty,) be a selected training pattern. A sub-
string of length n is specified from x,, in the following manner.
First, we calculate the compatibility grade of each antecedent
fuzzy set B; in Fig. 1 with each attribute value x,,; of x,,. Next,
we choose one of the 14 antecedent fuzzy sets for each attribute
x; as A,; with the following probability (i = 1,2, ..., n):

P(B) = i)
T Dk iy (i)

Then, each of the chosen antecedent fuzzy sets is replaced
with By with a prespecified “don’t care” probability Ppc. In our
computational experiment, Pp ¢ is specified as Ppc = (n—35)/n.
This means that each substring has five antecedent conditions
on average (except for “don’t care”). We generate 30 substrings
of length n from randomly selected 30 training patterns in this
manner.

i=1,2,...,14. (]

358

For each substring, the consequent class and the rule weight
are specified by the heuristic method in Section II. If there exists
no majority class with a confidence value larger than 0.5 for a
substring, a dummy rule with an empty class and a zero rule
weight is generated. In this manner, 30 fuzzy rules in an initial
rule set S are generated. When all the generated 30 fuzzy rules
are dummy rules, another set of 30 training patterns is randomly
selected to generate 30 fuzzy rules. Let IV,,,,, be the population
size. By iterating the aforementioned procedure V,,,, times, an
initial population of IV, rule sets is generated.

Fitness Evaluation in the Pittsburgh Part: Let S be a rule set
(i.e., an individual) in the current population. After removing all
dummy rules from .S, its fitness value is calculated as

fitness(S) = wy f1(S) + wa f2(S) + ws f5(5) ®)

where wy,ws, and ws are nonnegative weights, and f;(.5),
f2(S), and f3(S) are as follows:

f1(S) error rate on training patterns in percentage;
f2(S) number of fuzzy rules in S
f3(S) total rule length over fuzzy rules in S.

The weight values are specified as w; = 100, wy, = 1,
and w3 = 1 in our computational experiments.

Parent Selection in the Pittsburgh Part: We use binary tourna-
ment selection with replacement to select IV,,,,, pairs of parents
from the current population.

Crossover in the Pittsburgh Part: Let S; and Sy be a pair
of selected parents. An offspring S is generated by randomly
selecting fuzzy rules from each parent. The number of fuzzy
rules to be selected from Sj is randomly and uniformly speci-
fied in the interval [1, |Sk|], where | S| is the number of fuzzy
rules in Si(k = 1, 2). The order of substrings in S is ran-
domly updated. If the number of fuzzy rules in .S becomes larger
than a prespecified upper limit (60 in our computational experi-
ments), it is decreased to the upper limit by randomly removing
fuzzy rules from S. This crossover operation is applied to each
pair of selected parents with a prespecified crossover proba-
bility (0.9 in our computational experiments). If the crossover
operation is not applied, one parent is randomly chosen and
handled as an offspring S, to which a mutation operation is
applied.

Mutation in the Pittsburgh Part: A mutation operation is ap-
plied to each antecedent fuzzy set of the offspring .S. Our mu-
tation operation randomly replaces each antecedent fuzzy set
(including “don’t care”) with a different one. This mutation
operation is applied to each antecedent fuzzy set with a pre-
specified mutation probability (1/(n|S]) in the Pittsburgh part in
our computational experiments, where n|.S| is the string length
of S). When the antecedent part of a fuzzy rule in S is mutated,
its consequent class and rule weight are updated by the heuristic
method using compatible training patterns.

Use of a Michigan-Style Algorithm: After the mutation op-
eration in the Pittsburgh part, a Michigan-style rule genera-
tion procedure is applied to each rule set S with a prespecified
probability (0.5 in our computational experiments). When the
Michigan part is not applied to a rule set .S, .S is handled as a
newly generated rule set (i.e., a new offspring) in the Pittsburgh

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 2, APRIL 2013

part. Otherwise, the Michigan part is used to partially modify S,
where all fuzzy rules in S are handled as the current population.

Fitness Evaluation in the Michigan Part: Training patterns
are classified by the rule set S. The fitness value of each fuzzy
rule R, in S is defined by the number of correctly classified
training patterns by R,. Since we use the single winner-based
fuzzy reasoning method in (6), each training pattern is classified
by its single winner rule. Thus, we can count the number of
correctly classified training patterns by each fuzzy rule in S.
When multiple fuzzy rules with the same consequent class have
the same maximum value in (6) for a training pattern, the first
one among them in the rule set S is used as the winner rule. For
example, if three fuzzy rules Ry, Rs, and Rj3 in S are exactly
the same, only the first rule ?; among them has the possibility
to be selected as a winner rule. The other two rules are never
selected as a winner rule for any training patterns since R, I»,
and Rj3 are the same. Thus, the fitness values of those duplicated
rules R, and Rj are always zero.

New Rule Generation in the Michigan Part: New fuzzy rules
are generated from the existing ones in S. For generating a new
fuzzy rule, a pair of parent fuzzy rules is first selected from S
using binary tournament selection with replacement. Uniform
crossover is applied to the selected pair with a prespecified
crossover probability (0.9 in the Michigan part in our computa-
tional experiments). One of the generated offspring is randomly
chosen as a new fuzzy rule. When the crossover is not applied,
one parent is randomly chosen and handled as a new fuzzy rule.
Then, the same mutation operation as in the Pittsburgh part is
applied to each antecedent fuzzy set of the new fuzzy rule with
a prespecified mutation probability (1/n in the Michigan part
in our computational experiments, while it is 1/(n|S]) in the
Pittsburgh part).

New fuzzy rules are also generated from training patterns
that are misclassified (including rejection). Let Dyr be the set
of those training patterns (i.e., misclassified or rejected training
patterns). Using the same heuristic method as in the initial popu-
lation of the Pittsburgh part, a single fuzzy rule is generated from
a pattern randomly selected without replacement from Dy .

Population Update in the Michigan Part: The number of
fuzzy rules to be generated for updating the current rule set S
depends on the population size (i.e., |:S|). In our computational
experiments, only a single rule is generated when |S| < 5 (i.e.,
when S includes five or less fuzzy rules). We use one of the
two rule generation mechanisms (i.e., genetic or heuristic rule
generation) with the same probability. Of course, we always
use the genetic rule generation when all training patterns are
correctly classified by S (i.e., when Dyg is empty).

When 5 < |S| < 10, two rules are generated: one by the
genetic rule generation and the other by the heuristic rule gen-
eration. If Dy is empty, two rules are generated by the genetic
rule generation. In the case of 10 < |S| < 15, three rules are
generated. Two of them are generated in the same manner as in
the case of 5 < |S| < 10. One of the two mechanisms is ran-
domly chosen to generate the other fuzzy rule. If Dy is empty,
the genetic rule generation is always used. When 15 < | S| < 20,
we generate four fuzzy rules: two by the genetic rule generation
and the other two by the heuristic rule generation (when Dyir

ISHIBUCHI et al.: PARALLEL DISTRIBUTED HYBRID FUZZY GBML MODELS WITH RULE SET MIGRATION AND TRAINING DATA ROTATION 359

includes two or more patterns). If Dyr includes only a single
pattern, one fuzzy rule is generated from that pattern. The other
three rules are generated by the genetic rule generation. In this
manner, we generate k fuzzy rules when 5(k — 1) < |S| < 5k.

From the rule set S, the worst k fuzzy rules are removed
when 5(k — 1) < |S| < 5k. Then, the newly generated k fuzzy
rules are added to S. The updated rule set S is returned to the
Pittsburgh part where .S is handled as a newly generated rule set
(i.e., a new offspring in the Pittsburgh part).

Population Update in the Pittsburgh Part: In each genera-
tion of the Pittsburgh part, we generate INV,,,,, new rule sets by
selection, crossover, mutation, and Michigan-style rule gener-
ation. The fitness of each new rule set is calculated. Then, we
select the best IV,,,, rule sets as the next population from the
Nyop rule sets in the current population and the newly gener-
ated V.o, rule sets. That is, we use the (12 + A)-ES population
update mechanism with 1 = A = Ny,

Our hybrid fuzzy GBML algorithm can be summarized as
follows.

[Hybrid Fuzzy GBML Algorithm (Pittsburgh Part)]

Step 1: Generate an initial population of IV, rule sets.

Step 2: Evaluate each rule set .S in the current population.

Step 3: Generate N, rule sets by selection, crossover, and
mutation.

Step 4: Apply the Michigan part to each new rule set with a
prespecified probability.

Step 5: Construct the next population by choosing the best
Npop rule sets from the IV, rule sets in the current population
and the newly generated N, rule sets.

Step 6: If a prespecified termination condition is satisfied,
terminate the execution of this algorithm. Otherwise, return to
Step 3. In our computational experiments, we use the total num-
ber of generations as the termination condition.

[Michigan Part]

Step A: Let a new rule set in Step 4 of the Pittsburgh part be
S, which is used as the current population in the Michigan part.

Step B: Classify training patterns by S. Then calculate the
number of correctly classified training patterns by each fuzzy
rule, which is used as the fitness value of each fuzzy rule.

Step C: Generate k fuzzy rules where k is an integer satisfying
the inequality 5(k — 1) < |S| < 5k.

Step D: Remove the worst k fuzzy rules from S. Then add
the newly generated k fuzzy rules to S.

Step E: Return the updated S to the Pittsburgh part where S
is used as a newly generated rule set.

IV. PARALLEL DISTRIBUTED IMPLEMENTATION

We propose a parallel distributed model in Fig. 3, where our
model is explained for the case of seven parallel processors.
The population is divided into multiple subpopulations of the
same size. Each subpopulation is assigned to a different island
with a single processor. The given training data are also divided
into multiple disjoint subsets of the same size and the same
class distribution (i.e., they are stratified into multiple strata as
in a windowing method [31]). A different training data subset is
assigned to each island. This is the main feature of our parallel

Rule set migration

Training data rotation

Training data

Fig. 3. Proposed parallel distributed model with the training data rotation and
the rule set migration.

distributed model, which is different from other parallel GBML
models.

The subpopulation at each island is locally initialized using
the assigned training data subset at the first generation. For
a prespecified number of generations (e.g., 100 generations),
our hybrid fuzzy GBML algorithm is executed at each island
independently from the other islands.

The assigned training data subsets are periodically rotated
over the islands (e.g., every 100 generations). The training data
subset at the 7th island is moved to the (¢ + 1)th island. If the
ith island is the last island, it is moved to the first island. After
the training data rotation, our hybrid fuzzy GBML algorithm
restarts from Step 2 where the fitness value of each string is
evaluated using the newly assigned training data subset. In this
step, we have the following two options with respect to the
update of the consequent class and the rule weight of each fuzzy
rule:

Option I (Local Update after Rotation): The consequent class
and the rule weight of every fuzzy rule are updated at each island
using the newly assigned training data subset.

Option 2 (No Update): They are not updated until the an-
tecedent part is changed by mutation.

In this paper, we use the second option because better exper-
imental results are obtained with less computation load. After
the termination of our parallel distributed model, we also have
similar two options as follows (we use the second one for the
same reason):

Option 1 (Global Update after Termination): The consequent
class and the rule weight of every fuzzy rule are updated using
all training patterns after the termination of our model.

Option 2 (No Update): They are not updated.

We also use a migration operation where a copy of the best
rule set at each island is periodically moved to another island.
At the same time, the worst rule set at each island is removed.
The best and worst rule sets are locally chosen using their error
rates on the training data subset at each island. The worst rule
set with the highest error rate is removed, and a copy of the best
rule set with the lowest error rate is moved to another island. As
we will show in the next section, when the training data rotation
and the rule set migration are performed at the same generation
in the same direction, they do not improve the search ability

360

CPU

0000000000000 O
000000000000 00
0000000000000
000000000000 00
000000000000 00

e

Standard nonparallel nondistributed model.

Population

b

Training data

Fig. 4.

of our parallel distributed model whereas their individual use
improves its search ability. Thus, we propose an idea of the rule
set migration in the opposite direction from the training data
rotation. That is, a copy of the best rule set at the ith island is
moved to the (z — 1)th island while the training data subset at
the 7th island is moved to the (¢ + 1)th island. In this manner,
we can avoid their mutual interference that has negative effects
on the search ability of our parallel distributed model.

After the termination of our parallel distributed model, all rule
sets in the final population are examined using all training pat-
terns. Before the fitness evaluation of each rule set, we remove
from each rule set unnecessary fuzzy rules that are not used as
the winner rule for any training patterns. The removal of those
unnecessary fuzzy rules improves the second term (the number
of fuzzy rules) and the third term (the total rule length) of our
fitness function with no change of the first term (the error rate
on training patterns). The best rule set with respect to the fitness
function is selected from the final population. The selected rule
set is used for performance evaluation.

Our parallel distributed model is compared with the standard
nonparallel nondistributed implementation in Section III, which
is illustrated in Fig. 4. The entire population is handled by a
single CPU in Fig. 4, where each rule set is evaluated using all
training patterns.

V. COMPUTATIONAL EXPERIMENTS
A. Algorithm Implementation

We performed computational experiments on a workstation
with eight processors: Intel Xeon X5570 (4 core 2.93 GHz) x
2. In our parallel distributed model in Fig. 3, seven out of the
eight processors were used for the execution of our hybrid fuzzy
GBML algorithm. The other processor was used for other tasks
such as the operation system. A population of size 210 was
divided into seven subpopulations of size 30. Training patterns
were also divided into seven subsets of the same size with the
same class distribution. In the case of the standard nonparallel
nondistributed model in Fig. 4, only a single processor was
used. In both models, our hybrid fuzzy GBML algorithm was
terminated after the 50 000th generation.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 2, APRIL 2013

TABLE I
NINE DATA SETS USED IN THIS PAPER

Name of Data Number of Number of Number of Classes
Set Patterns Attributes

Segment 2,310 19 7
Phoneme 5,404 5 2
Page-blocks 5,472 10 5
Texture 5,500 40 11
Satimage 6,435 36 6
Twonorm 7,400 20 2
Ring 7,400 20 2

PenBased 10,992 16 10
Magic 19,020 10 2

TABLE I

RESULTS BY THE STANDARD NONPARALLEL NONDISTRIBUTED
MODEL IN FIG. 4

Data Set Training Test Number Rule Time
Error (%) Error (%) ofRules Length (minutes)
Segment 3.73 5.99 21.93 4.27 203.66
Phoneme 13.53 15.43 19.97 432 439.18
Page-blocks 3.25 3.81 10.80 3.24 204.63
Texture 3.03 4.64 24.53 7.20 766.61
Satimage 13.69 15.54 17.77 5.21 658.89
Twonorm 451 7.36 22.90 4.67 856.58
Ring 4.38 6.73 31.27 2.78 1015.04
PenBased 1.95 3.07 32.67 5.64 1520.54
Magic 14.75 15.42 10.87 4.09 771.05

B. Test Problems

We used nine datasets in Table I, which were available from
the UCI machine learning repository and the KEEL project web-
page [8]. All attribute values were normalized into real numbers
in the unit interval [0, 1] in our computational experiments.

C. Results of Nonparallel Nondistributed Model

First, we report experimental results by the standard nonparal-
lel nondistributed model in Fig. 4. A population of 210 rule sets
was evolved on a single processor for 50 000 generations. The
tenfold cross-validation (10CV) procedure was iterated three
times using different data partitions into ten subsets (i.e., 3 X
10CV). Average results over 30 runs in the 3 x 10CV are sum-
marized in Table II. As shown in the last column of Table II,
the average computation times were very long for some datasets
(e.g., more than 25 h for the PenBased data). In the next sec-
tion, experimental results of our parallel distributed model are
compared with those in Table II.

D. Results by Our Parallel Distributed Model

In the same manner as Table II, experimental results by our
parallel distributed model are summarized in Table III. The

ISHIBUCHI et al.: PARALLEL DISTRIBUTED HYBRID FUZZY GBML MODELS WITH RULE SET MIGRATION AND TRAINING DATA ROTATION 361

TABLE III
RESULTS BY OUR PARALLEL DISTRIBUTED MODEL IN FIG. 3

Data Set Training Test N}xmber Rule Time
Error (%) Error (%) ofRules Length (minutes)
Segment 424 5.90 14.83 5.19 4.69
Phoneme 14.70 15.96 14.27 3.98 13.19
Page-blocks 3.25 3.62 6.93 4.95 4.74
Texture 3.24 471 19.33 7.54 15.72
Satimage 11.43 12.96 11.80 8.86 15.38
Twonorm 2.83 3.39 3.17 9.34 7.84
Ring 4.11 5.25 16.70 4.43 22.52
PenBased 2.40 3.30 28.70 5.29 35.56
Magic 14.19 14.89 7.67 4.45 22.58
TABLE IV
RESULTS BY OUR PARALLEL DISTRIBUTED MODEL
(DIFFERENCES FROM TABLE II)
Difference Difference Difference Difference Relative
Data Set in Training inTest inNumber inRule Computation
Error (%) Error (%) of Rules Length Time (%)
Segment 0.51 -0.09 -7.10 0.92 2.30
Phoneme 117 0.53 -5.70 -0.34 3.00
Page-blocks ~ 0.00 -0.19 -3.87 1.71 2.32
Texture 0.21 0.13 -5.20 0.34 2.05
Satimage -2.26 -2.58 -5.97 3.65 2.33
Twonorm -1.68 -3.97 -19.73 4.67 0.92
Ring -0.27 -1.48 -14.57 1.65 222
PenBased 0.45 0.23 -3.97 -0.35 2.34
Magic -0.56 -0.53 -3.20 0.36 2.93

rotation and migration intervals were specified as 100 gener-
ations. The average computation times were decreased from
Table II by an order or two of magnitude.

To compare Table III with Table II in detail, we calculated
their differences by subtracting the average results in Table II
from the corresponding results in Table III. Only for the aver-
age computation times, we calculated the relative computation
times of our parallel distributed model in percentage in compar-
ison with the corresponding results in Table II. The calculated
differences and the relative computation times are summarized
in Table IV. A negative value in Table IV shows the decrease in
the corresponding average result in Table III from Table II.

The fourth column of Table IV shows that the average number
of fuzzy rules was decreased by our parallel distributed model
for all nine datasets. In the fifth column, the average rule length
was decreased only for two datasets (Phoneme and PenBased).
These observations show that fuzzy rule-based classifiers with a
smaller number of longer fuzzy rules were often obtained by our
parallel distributed model. From the third column of Table IV,
we can see that the average error rates on test data were decreased
(i.e., improved) by our parallel distributed model for six datasets.
The largest deterioration in the test data error rate was 0.53%

for the Phoneme dataset, while the largest improvement was
3.97% for the Twonorm dataset. These observations show that
our parallel distributed model did not severely deteriorate the
generalization ability of obtained fuzzy rule-based classifiers
for the nine datasets used in our computational experiments. An
interesting observation in Table IV is that the improvement in
the test data error rate was larger than that in the training data
error rate for almost all datasets (except for the Magic dataset).
A similar effect of training data rotation on the generalization
ability was also reported for a windowing method [31].

Using the Wilcoxon signed-rank test (two-tailed, o = 0.05),
we examined the existence of statistically significant differences
between the two models in error rates on training data in our
computational experiments. Except for the Page-blocks and Tex-
ture data, error rates on training data had statistically significant
differences between the two models. Those seven datasets are
shown by using boldface for the training data error rates in
Table IV. In the same manner, the Wilcoxon signed-rank test
was also applied to error rates on test data. Statistically sig-
nificant differences are found between the two models for six
datasets. Those six datasets are shown by using boldface for the
test data error rates in Table I'V. These statistical tests show that
different results were obtained by the two models for almost all
datasets except for the Texture dataset.

From the last column of Table IV, we can see that the av-
erage computation times of our parallel distributed model in
Table III were in the range between 0.9% and 3.0% of those of
the standard nonparallel nondistributed model in Table II. In our
parallel distributed model, both the population and the training
data were divided into seven subsets. Thus, the computation load
at a single CPU was decreased to 1/49 (i.e., 2.04%) if compared
with the case of the standard nonparallel nondistributed model.
In general, the speed-up by parallel computation is smaller than
the decrease in computation load at a single CPU due to com-
putational overhead. As a result, the relative computation times
in the last column of Table IV were slightly larger than 2.04%
for almost all datasets. However, the relative computation time
for the Twonorm dataset (i.e., 0.92%) was much smaller than
2.04%. This speed-up can be explained by a large decrease in
the average number of fuzzy rules (i.e., —19.73 in Table IV
from 22.90 in Table II to 3.17 in Table III). For comparison, we
also examined a simple master—slave model where the fitness
evaluation of each rule set in the Pittsburgh part and all pro-
cedures in the Michigan part of the nonparallel nondistributed
model in Fig. 4 were performed in parallel on seven processors.
Since the training data were not divided, the speed-up by our
master—slave model was much smaller than that by our paral-
lel distributed model (e.g., the relative computation time of our
master—slave model for the Ring dataset was 24.64% while that
of our parallel distributed model was 2.22% in Table IV).

E. Recalculation of Consequent Class and Rule Weight

As explained in Section IV, we do not recalculate the con-
sequent class and the rule weight of each fuzzy rule after the
training data rotation in our parallel distributed model. Only
when the antecedent part of a fuzzy rule is changed by mutation,

362
TABLE V
RESULTS WITH RECALCULATION AFTER TRAINING DATA ROTATION
(DIFFERENCES FROM TABLE II)
Difference Difference Difference Difference Relative
Data Set in Training in Test inNumber inRule Computation
Error (%) Error (%) ofRules Length Time (%)
Segment 1.29 0.17 -6.66 1.32 2.42
Phoneme 2.11 1.25 -3.70 -0.41 3.25
Page-blocks 0.44 0.09 -3.70 2.15 234
Texture 0.70 0.43 -5.80 2.02 2.06
Satimage -2.04 -2.44 -7.00 8.82 2.14
Twonorm -1.97 -4.36 -19.90 5.59 0.82
Ring -0.02 -1.09 -13.90 1.03 2.41
PenBased 0.68 0.35 -4.90 -0.23 2.26
Magic -0.35 -0.58 -3.70 0.58 2.82
TABLE VI

RESULTS WITH GLOBAL RECALCULATION AFTER THE TERMINATION
(DIFFERENCES FROM TABLE II)

Difference Difference Difference Difference Relative
Data Set in Training inTest inNumber inRule Computation

Error (%) Error (%) of Rules Length Time (%)
Segment 1.29 0.09 -6.50 1.27 2.46
Phoneme 2.30 1.18 -4.70 -0.46 3.26
Page-blocks 0.49 0.14 -4.13 2.26 2.38
Texture 0.66 0.42 -5.63 1.95 2.03
Satimage -1.36 -2.09 -6.00 3.67 235
Twonorm -1.95 -4.32 -20.00 5.52 0.82
Ring -0.01 -1.41 -14.87 1.72 224
PenBased 0.89 0.46 -4.10 -0.35 2.33
Magic -0.13 -0.27 -3.14 0.41 2.87

are its consequent class and rule weight recalculated. For com-
parison, we implemented a variant of our parallel distributed
model, where the consequent class and the rule weight of each
fuzzy rule were recalculated at each island using the newly
assigned training data subset after the training data rotation.
Experimental results are summarized in Table V in the same
manner as in Table IV (i.e., differences from Table II and the
relative computation times). The recalculation after the training
data rotation increased (i.e., deteriorated) the test data error rates
for seven datasets (except for Twonorm and Magic).

In our parallel distributed model, the consequent class and
the rule weight of each fuzzy rule are not recalculated after the
termination, either. For comparison, we implemented a variant
where the consequent class and the rule weight of each fuzzy
rule were recalculated using all training patterns after the ter-
mination of our parallel distributed model. The best rule set
was chosen from the final population after the recalculation. We
summarize experimental results by this variant in Table VI. The
recalculation after the termination increased (i.e., deteriorated)
the average error rates on test data for eight datasets (except for
Twonorm).

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 2, APRIL 2013

TABLE VII
RESULTS WITH NO TRAINING DATA ROTATION (DIFFERENCES FROM TABLE II)
Difference Difference Difference Difference Relative
Data Set in Training in Test inNumber inRule Computation
Error (%) Error (%) of Rules Length Time (%)
Segment 4.19 3.32 -3.60 -0.75 2.19
Phoneme 3.13 2.64 1.53 -0.34 2.68
Page-blocks 0.82 0.69 -1.00 -0.59 2.84
Texture 4.73 4.39 1.60 -1.49 2.55
Satimage 0.71 0.08 3.23 -0.09 2.68
Twonorm 343 1.84 1.87 -0.73 2.99
Ring 3.80 2.60 -2.84 0.14 2.53
PenBased 443 4.11 4.43 -1.10 2.82
Magic 0.94 0.93 1.90 0.40 3.74
TABLE VIII
RESULTS WITH NO RULE SET MIGRATION (DIFFERENCES FROM TABLE II)
Difference Difference Difference Difference Relative
Data Set in Training in Test in Number inRule Computation
Error (%) Error (%) of Rules Length Time (%)
Segment 3.06 1.98 -4.73 1.46 2.80
Phoneme 2.28 1.27 -3.97 0.00 3.23
Page-blocks 0.13 -0.09 -3.63 2.49 2.34
Texture 2.51 2.20 -8.36 8.98 1.99
Satimage -0.18 -0.78 -4.50 4.39 2.52
Twonorm -1.72 -4.28 -19.60 5.69 0.97
Ring 0.29 -1.46 -25.44 7.24 1.68
PenBased 1.69 1.35 - 8.04 0.90 2.44
Magic 0.10 -0.09 -3.80 1.21 3.06

F. Training Data Rotation and Rule Set Migration

To examine the effects of the training data rotation and the
rule set migration on the search ability of our parallel distributed
model, we implemented the following three variants.

1) No training data rotation variant where each island con-
tinues to use the same training data subset. The rule set
migration is used. Experimental results are summarized in
Table VII.

2) Norule set migration variant where we do not perform any
migration operation. The training data rotation is used.
Experimental results are summarized in Table VIIIL.

3) Synchronized rotation—migration variant where the rota-
tion and the migration are performed in the same direction.
Experimental results are summarized in Table IX.

Experimental results in Tables VII-IX are shown in the same
manner as in Table IV (i.e., differences from Table II and the
relative computation times). The existence of statistically sig-
nificant differences in error rates from the standard nonparallel
nondistributed model in Table II is also shown by boldface in
the same manner as in Table IV.

The no training data rotation variant in Table VII increased
the average error rates on training and test data for all datasets
from Table II (a positive value in Table VII shows the increase

ISHIBUCHI et al.: PARALLEL DISTRIBUTED HYBRID FUZZY GBML MODELS WITH RULE SET MIGRATION AND TRAINING DATA ROTATION

TABLE IX
RESULTS WITH ROTATION AND MIGRATION IN THE SAME DIRECTION
(DIFFERENCES FROM TABLE II)

Difference Difference Difference Difference

Relative
Data Set in Training in Test inNumber inRule Computation
Error (%) Error (%) ofRules Length Time (%)
Segment 3.65 2.93 -2.70 -0.20 2.73
Phoneme 2.75 2.14 5.80 -0.28 3.78
Page-blocks 0.64 0.44 0.17 -0.56 3.49
Texture 3.54 2.73 4.00 -1.25 3.04
Satimage 0.26 -0.49 7.10 -0.04 3.45
Twonorm 3.31 1.95 8.03 -0.68 3.84
Ring 3.46 2.06 2.46 0.28 3.29
PenBased 3.69 3.26 11.86 -0.65 3.32
Magic 0.57 0.52 6.60 0.43 5.43

from Table II). This observation supports the importance of the
training data rotation.

Experimental results in Table VIII by the no rule set migra-
tion variant are much better than those in Table VII by the no
training data rotation variant. This observation shows that the
training data rotation is more important than the rule set migra-
tion. The comparison between Tables IV and VIII shows that
lower average error rates on test data were obtained for eight
datasets (except for Twonorm) by our parallel distributed model
than the no rule set migration variant. This observation shows
the importance of using both the training data rotation and the
rule set migration.

In Table IX, good results were not obtained by the synchro-
nized rotation—migration variant. This variant increased the av-
erage error rates on test data from Table II of the nonparallel
nondistributed model for eight datasets (except for Satimage).
The comparison between Table VIII (no rule set migration)
and Table IX (synchronized rotation and migration) shows that

lower average error rates on test data were obtained for all nine
datasets by the no rule set migration variant. This observation
shows negative effects of the mutual interference between the
training data rotation and the rule set migration on the search
ability of our parallel distributed model.

To further examine the effect of the training data rotation and
the rule set migration, we performed additional computational
experiments using various specifications of the rotation interval
TR and the migration interval 7Ty;. More specifically, we exam-
ined 6 x 6 combinations of Ty and Ty; with TR = 20, 50, 100,
200, 500, oo and Ty = 20, 50, 100, 200, 500, co, where T = oo
and Ty; = oo mean no rotation and no migration, respectively.

Average error rates on test data of the Ring data are sum-
marized in Fig. 5 for the case of the training data rotation and
the rule set migration in the same direction. Fig. 6 shows the
corresponding results for the case of the opposite directions. In
the same manner, we show experimental results on the Satimage

datain Figs. 7 and 8. In Figs. 5-8, good results were not obtained
with no training data rotation (i.e., 7Ty = 00). This observation
is consistent with Table VII with no training data rotation. The
necessity of the rule set migration is not clear in Figs. 5 and 6,

363

Test data error rate (%)

Fig. 5. Test data error rates with rotation and migration in the same direction
(Ring data).

Test data error rate (%)

Fig. 6. Test data error rates with rotation and migration in opposite directions
(Ring data).

where good results were obtained even when 7y = oco. How-
ever, its necessity is clear in Fig. 8§, where experimental results
with Ty = oo were improved by the rule set migration (e.g.,
Ty = 500).

In Figs. 5 and 7, good results were not obtained when T =
aTy; holds for an integer a [i.e., when (Tx, T\) = (500, 20),
(500, 50), (500, 100), (500, 500, ..., (50, 50), (20, 20)]. Under
these parameter settings, no training data rotation was performed
without the rule set migration. That is, the training data rotation
was always performed together with the rule set migration in
Figs. 5 and 7. Such a synchronization of the training data rotation
with the rule set migration in the same direction clearly degraded
the performance of our parallel distributed model in Figs. 5
and 7.

InFigs. 5 and 7, good results were obtained from the two com-
binations (500, 200) and (50, 20) of (1w, Ty) when Ty > Th.
Under these combinations, the training data rotation was per-
formed with and without the rule set migration. When (Tx, 111)
= (500, 200), the first training data rotation after the 500th gen-
eration was performed without the rule set migration, while the
next rotation after the 1000th generation was performed with

364

Test data error rate (%)

Fig. 7.
(Satimage data).

Test data error rate (%)

Fig. 8. Test data error rates with rotation and migration in opposite directions
(Satimage data).

the migration. Good results from these combinations suggest
that the training data rotation without the rule set migration has
a positive effect on the search ability of our parallel distributed
model. This is also suggested by good results in Figs. 5 and 7
when the rotation interval 7 was shorter than the migration
interval Ty [i.e., when Ty < Ty (the training data rotation was
more frequent than the rule set migration)].

Even in Figs. 5 and 7 with the training data rotation and
the rule set migration in the same direction, good results were
obtained when the rotation and migration intervals were appro-
priately specified. The point is to avoid the following situation:
The training data rotation is always performed together with the
rule set migration in the same direction. In Figs. 6 and 8, we
obtained good results from a wide range of the rotation interval
TR and the migration interval Tj;. This is because the rotation
and the migration were performed in opposite directions.

G. Comparison With Other Reported Results

In this section, we compare average error rates on test data
by our parallel distributed model with other reported results by

Test data error rates with rotation and migration in the same direction

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 2, APRIL 2013

TABLE X
REPORTED TEST DATA ERROR RATES IN THE LITERATURE

Our GP- IVFS-
Parallel COACH Amp
model [48] [49]

IVFS-
Coop
[50]

FARC-
HD
[51]

Bio
HEL
[52]

Data Set ILAS

[31]

Segment 5.90 24.04
15.96 -
3.62 8.77 5.84

477 - -

- - - 2.90
- 17.86

6.57 4.99
- 7.11

Phoneme

Page-blocks

Texture

Satimage 1296 27.50

- 12.68 20.10 11.60
- 4.72
12.57
17.00
19.82

Twonorm 3.39 15.17
5.25 -
3.30

14.89

Ring 16.89
21.73

20.82

5.92

PenBased 17.80

20.18

396 20.10 6.00
15.49 - -

Magic

fuzzy and nonfuzzy GBML algorithms in the literature. Since
computational experiments were performed in different settings
in each study, our performance comparison in this subsection is
not rigorous. Our intention is not to compare different GBML
algorithms with each other, but to show that our experimental
results are at least comparable with other reported results in the
literature.

In Table X, we compare our parallel distributed model with
recently proposed four fuzzy GBML algorithms (GP-COACH
[48], IVES-Amp [49], IVFS-Coop [50], and FARC-HD [51])
and two nonfuzzy GBML algorithms (ILAS [31] and BioHEL
[52]). GP-COACH [48] is a Michigan-style algorithm. All three
of the other fuzzy GBML algorithms are Pittsburgh-style al-
gorithms. IVFS-Amp [49] and IVFS-Coop [50] use interval-
valued membership functions. The width of each membership
function is tuned in IVFS-Amp [49], while both the location
and the width are tuned in IVFS-Coop [50]. Standard mem-

bership functions are used in FARC-HD [51] where rule ex-
traction, rule selection, and lateral tuning of membership func-
tions are performed. ILAS [31] and BioHEL [52] are nonfuzzy
GBML algorithms. ILAS [31] is based on Pittsburgh approach
with a training data rotation method called “windowing” while
BioHEL [52] is based on IRL approach.

The lowest error rate for each dataset is highlighted by bold-
face in Table X. Good results were obtained by our parallel

distributed model in comparison with the other algorithms in
Table X.

H. Search Behavior of Our Parallel Distributed Model

As shown in Table IV, our parallel distributed model im-
proved both the training data and test data error rates on some
datasets in comparison with the standard nonparallel nondis-
tributed model. In this section, we examine why our paral-
lel distributed model can improve the performance of our hy-
brid fuzzy GBML algorithm using experimental results on the
Satimage dataset with the largest improvement in the training
data error rate in Table IV (i.e., —2.26%).

ISHIBUCHI et al.:

T ¥ T Y T ¥ T L T
— Parallel distributed model
= Non-parallel non-distributed model |

22

20

18 a

Training data error rate (%)

10 .

1 L 1 L 1 L 1 L 1 " 1

0 10000 20000 30000 40000 50000
Number of generations

Fig. 9. Average error rates on all training patterns (Satimage data).

In Fig. 9, we compare training data error rates between our
parallel distributed model and the standard nonparallel nondis-
tributed model. Fig. 9 shows the average error rate of the best
rule set at each generation over 30 runs in the 3 x 10CV. The
best rule set was selected at each generation in each run using all
training patterns, even in our parallel distributed model (i.e., the
best rule set was selected at each generation in the same manner
as in the final generation). Since the learning of rule sets was
performed using periodically rotated training data subsets in our
parallel distributed model, its experimental results in Fig. 9 have
a number of ups and downs.

Our parallel distributed model in Fig. 9 continued to de-
crease the training data error rate after the standard nonparallel
nondistributed model was slowed down. This may be because
our parallel distributed model can help the hybrid fuzzy GBML
algorithm to escape from local minima through diversity main-
tenance by the training data rotation. The use of an island model
for parallel implementation also has a positive effect on the
diversity of solutions.

To further examine the diversity maintenance ability of our
parallel distributed model, we monitored 30 rule sets in the first
island in a single run of our parallel distributed model. In Fig. 10,
we show the maximum and minimum error rates on the assigned
training data subset among the 30 rule sets in the first island for
500 generations after the 30 000th generation. The error rate
of each rule set was calculated for the assigned training data
subset, which was rotated every 100 generations. In Fig. 10, we
can observe clear periodical ups and downs of the error rates
caused by the training data rotation every 100 generations. The
difference between the maximum and minimum error rates in
Fig. 10 shows that the 30 rule sets in the first island had some
diversity.

For comparison, Fig. 10 also shows the corresponding results
by a single run of the standard nonparallel nondistributed model.
The maximum and minimum error rates were calculated among
210 solutions in the whole population using all training patterns.
The maximum and minimum error rates were the same over 500
generations in Fig. 10. This means that the 30 rule sets in the
firstisland of our parallel distributed model had a larger diversity

PARALLEL DISTRIBUTED HYBRID FUZZY GBML MODELS WITH RULE SET MIGRATION AND TRAINING DATA ROTATION

365

T J T T T ¥
20+ Non-parallel non-distributed model
;\? L == « Maximum error rate |
?9’ 18+ —— Minimum error rate _|
e | Parallel distributed model
8 . meme Maximum error rate |
E 16 I ; —— Minimum error rate |
“ |-\.L
S 14T gy))
£ 12F el 1
=R SN s S
10 T

30001 30100 30200 30300 30400 30500
Number of generations

Fig. 10. The maximum and minimum error rates among 30 rule sets at the
first island of our parallel distributed model, and those among 210 rule sets in
the population of the standard implementation (Satimage data).

T L T ¥ T
Maximum error rate -
—— Minimum error rate |

[\
(e
1

181
16

14f

Training data error rate (%)

12—

101 7

30001 30100 30200 30300 30400 30500
Number of generations

Fig. 11. Maximum and minimum error rates among 30 solutions at the first
island of our parallel distributed model with the synchronized rotation and
migration in the same direction (Satimage data).

than the 210 rule sets in the whole population of the standard
nonparallel nondistributed model in Fig. 10.

In Fig. 11, we show experimental results by our parallel dis-
tributed model with the training data rotation and the rule set
migration in the same direction (i.e., the synchronized rotation-
migration variant). The maximum and minimum error rates
on the training data subset were calculated at each generation
among 30 rule sets in the first island in the same manner as
in Fig. 10. The training data subset was rotated from the sev-
enth island to the first one together with a copy of the best rule
set in the seventh island every 100 generations in Fig. 11. The
search behavior of our parallel distributed model is totally dif-
ferent between Figs. 10 and 11. Computational experiments in
these two figures were performed under the same setting except
for the migration direction. In Fig. 11, the training data error
rates of the 30 rule sets in the first island converged to the best
one during 100 generations before each training data rotation
(except for the 30 300th generation). Large increases of the
maximum error rate in Fig. 11 suggest that this convergence

366

TABLE XI
DIFFERENCE BETWEEN THE AVERAGE TRAINING AND TEST ERROR RATES

Data Set Standard Our Earallel No No Same
Non-Parallel Distributed Rotation Migration Direction
Segment 2.26* 1.66 1.39 1.18 1.54
Phoneme 1.90%* 1.26 1.41 0.89 1.29
Page-blocks 0.56* 0.37 0.43 0.34 0.36
Texture 1.61* 1.53 1.27 1.30 0.80
Satimage 1.85% 1.53 1.22 1.25 1.10
Twonorm 2.85% 0.56 1.26 0.29 1.49
Ring 2.35% 1.14 1.15 0.60 0.95
PenBased 1.12* 0.90 0.80 0.78 0.69
Magic 0.67 0.70* 0.66 0.48 0.62

caused the overfitting of the 30 rule sets to the assigned training
data subset.

In our parallel distributed model, seven training data subsets
are rotated over seven islands every 100 generations. Thus, the
cycle of the rotation is 700 generations. That is, the environ-
ment of each island is periodically changed every 100 genera-
tions with the cycle of 700 generations. Thus, each island can
be viewed as having a dynamic optimization problem. In other
words, our parallel distributed model can be viewed as solv-
ing a static pattern classification task by generating a dynamic
optimization problem at each island. However, we do not use
any dynamic optimization techniques in our parallel distributed
model (for evolutionary dynamic optimization, see [53]-[55]).
This is because our goal is not the fast adaptation to the changing
environment at each island but the design of fuzzy rule-based
classifiers with high generalization ability.

In order to examine positive effects of our parallel distributed
model on the generalization ability of obtained fuzzy rule-based
classifiers, we calculated the difference between the training data
and test data error rates on each dataset for the following five
implementations of our hybrid fuzzy GBML algorithm: the stan-
dard nonparallel nondistributed model, our parallel distributed
model, and its three variants (i.e., no training data rotation, no
rule set migration, and synchronized rotation—migration). The
calculated difference is summarized in Table XI. The largest
difference for each dataset is shown by “x.”

From Table XI, we can see that the difference between the
average training and test data error rates was small in our parallel
distributed model and its variants. This is because only 1/7 of
training patterns were used for fitness evaluation. The other 6/7
of training patterns played a role of validation data when a final
rule set is chosen.

We also calculated the average training data error rate of the
best rule set at each island in the final generation over 30 runs in
the 3 x 10CV. The error rate and the fitness value of each rule set
were locally calculated at each island using the assigned training
data subset in the final generation. The calculated average error
rate is summarized in Table XII. For comparison, we also show
the corresponding experimental results by the standard nonpar-

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 2, APRIL 2013

TABLE XII
AVERAGE TRAINING DATA ERROR RATE OVER THE BEST RULE SET AT EACH
ISLAND. THE ERROR RATE OF EACH RULE SET WAS CALCULATED ON THE
ASSIGNED TRAINING DATA SUBSET

Data Set Standard OL_lr Pgrallel No No _Samg
Non-Parallel Distributed Rotation Migration Direction
Segment 3.73 3.17 1.86 4.83 1.52
Phoneme 13.53 13.13 10.61 13.77 9.55
Page-blocks 3.25 2.82 2.61 3.20 2.38
Texture 3.03 3.16 3.04 6.32 2.05
Satimage 13.69 10.91 11.11 13.36 9.72
Twonorm 4.51 2.24 1.77 242 1.32
Ring 4.38 3.67 2.55 423 1.96
PenBased 1.95 2.36 2.38 4.17 1.58
Magic 14.75 14.00 13.86 14.69 12.93

allel nondistributed model where all training patterns were used
for the error rate calculation and the fitness evaluation.

In Table XII, the lowest and second lowest error rates for each
dataset are shown in boldface. For all nine datasets in Table XII,
the lowest error rates on the assigned training data subsets were
obtained by the synchronized rotation—migration variant. That
is, the best fitting of rule sets to the assigned training data
subset at each island was achieved by this variant. However,
high generalization ability was not obtained from this variant
as we have already shown in this paper. For some datasets in
Table XII, the second lowest error rates on the assigned training
data subsets were obtained by the no rotation variant. However,
good results were not obtained for test data from this variant,
either. These observations suggest that good fitting of rule sets
in each island to the assigned training data subset does not mean
high generalization ability.

VI. CONCLUSION

We have proposed a parallel distributed model of our hy-
brid fuzzy GBML algorithm. The following observations were
obtained from computational experiments using the proposed
model.

1) The proposed model drastically decreased the computa-
tion time of our hybrid fuzzy GBML algorithm. When we
used seven processors for parallel computation, the com-
putation time of the proposed model was in the range from
0.92% to 3.00% of that of the standard nonparallel nondis-
tributed model. The proposed model with such a drastic
speed-up did not severely degrade the generalization abil-
ity of obtained fuzzy rule-based classifiers. The largest
increase (i.e., deterioration) in the average error rate on
test data was 0.53% in our computational experiments on
nine datasets. Actually, the average error rate on test data
was decreased (i.e., improved) by the proposed model for
six out of the nine datasets.

2) The search ability of the proposed model was severely de-
graded by removing the training data rotation. The rule set
migration also had a positive effect on the search ability,

ISHIBUCHI et al.: PARALLEL DISTRIBUTED HYBRID FUZZY GBML MODELS WITH RULE SET MIGRATION AND TRAINING DATA ROTATION

while its effect is much smaller than that of the train-
ing data rotation. The best results were obtained by the
proposed model with both the training data rotation and
the rule set migration. The search ability of the proposed
model, however, was severely degraded when the training
data rotation and the rule set migration were performed in
the same direction. Such a negative effect was removed
by performing them in opposite directions.

The basic idea of the proposed parallel distributed model is
applicable to other fuzzy and nonfuzzy Pittsburgh-style GBML
algorithms (e.g., IVFS-Amp [49], IVFS-Coop [50], and FARC-
HD [51]). This is because their implementation as an island
model is usually easy. Parallel distributed implementation of
other Pittsburgh-style GBML algorithms is a promising future
research topic. Parallel distributed implementation of multiob-
jective Pittsburgh-style GBML algorithms is also a future re-
search topic, which will be much more difficult than single-
objective implementation. Recently various population-based
approaches have been proposed for the design of Type-1 and
Type-2 fuzzy rule-based systems [56]-[60]. Those approaches
can be viewed as special types of fuzzy GBML algorithms. Their
parallel distributed implementation is also a future research
issue.

[4]

[5]

[6]

[7]

—
x

[9]

[10]

(1]

[12]

[13]

REFERENCES

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

V. Nissen and J. Propach, “On the robustness of population-based versus
point-based optimization in the presence of noise,” IEEE Trans. Evol.
Comput., vol. 2, no. 3, pp. 107-119, Sep. 1998.

M. M. Ali and A. Torn, “Population set-based global optimization algo-
rithms: Some modifications and numerical studies,” Comput. Oper. Res.,
vol. 31, no. 10, pp. 1703-1725, Sep. 2004.

Y. Jin and J. Branke, “Evolutionary optimization in uncertain environ-
ments: A survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3, pp. 303-317,
Jun. 2005.

T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” I[EEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 459472, 2006.

L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems and
genetic algorithms,” Artif. Intell., vol. 40, no. 1-3, pp. 235-282, Sep.
1989.

A. A. Freitas, Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Berlin, Germany: Springer-Verlag, 2002.

J. Alcala-Fdez, L. Sanchez, S. Garcia, M. J. del Jesus, S. Ventura,
J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C.
Fernandez, and F. Herrera, “KEEL: A software tool to assess evolution-
ary algorithms for data mining problems,” Soft Comput., vol. 13, no. 3,
pp. 307-318, Feb. 2009.

S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, “A study of statis-
tical techniques and performance measures for genetics-based machine
learning: Accuracy and interpretability,” Soft Comput., vol. 13, no. 10,
pp- 959-977, Aug. 2009.

J. Bacardit and N. Krasnogor, “Performance and efficiency of memetic
Pittsburgh learning classifier systems,” Evol. Comput., vol. 17, no. 3,
pp. 307-342, Fall 2009.

A. Ferndndez, S. Garcia, J. Luengo, E. Bernad6-Mansilla, and F. Herrera,
“Genetics-based machine learning for rule induction: State of the art,
taxonomy, and comparative study,” /EEE Trans. Evol. Comput., vol. 14,
no. 6, pp. 913-941, Dec. 2010.

Y. Jin, Ed., Multi-Objective Machine Learning.
Springer-Verlag, 2006.

H. Ishibuchi and Y. Nojima, “Analysis of interpretability-accuracy tradeoff
of fuzzy systems by multiobjective fuzzy genetics-based machine learn-
ing,” Int.J. Approx. Reason., vol. 44, no. 1, pp. 4-31, Jan. 2007.

Berlin, Germany:

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
(27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]

[37]

[38]

367

H. Ishibuchi, “Multiobjective genetic fuzzy systems: Review and future
research directions,” in Proc. IEEE Int. Conf. Fuzzy Syst., London, U.K.,
Jul. 23-26, 2007, pp. 913-918.

Y. Jin and B. Sendhoff, “Pareto-based multiobjective machine learning:
An overview and case studies,” IEEE Trans. Syst., Man Cybern C Appl.
Rev., vol. 38, no. 3, pp. 397-415, May 2008.

P. Ducange, B. Lazzerini, and F. Marcelloni, “Multi-objective genetic
fuzzy classifiers for imbalanced and cost-sensitive datasets,” Soft Com-
put., vol. 14, no. 7, pp. 713-728, May 2010.

C. J. Carmona, P. Gonzalez, M. J. del Jesus, and F. Herrera, “NMEEF-
SD: Non-dominated multiobjective evolutionary algorithm for extracting
fuzzy rules in subgroup discovery,” [EEE Trans. Fuzzy Syst., vol. 18,
no. 5, pp. 958-970, Oct. 2010.

E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
IEEE Trans. Evol. Comput., vol. 6, no. 5, pp. 443-462, Oct. 2002.

S. Cahon, N. Melab, and E. G. Talbi, “ParadisEO: A framework for the
reusable design of parallel and distributed metaheuristics,” J. Heuristics,
vol. 10, no. 3, pp. 357-380, May 2004.

N. Nedjah, E. Alba, and L. de Macedo Mourelle, Parallel Evolutionary
Computations. Berlin, Germany: Springer-Verlag, 2006.

G. Luque and E. Alba, Parallel Genetic Algorithms: Theory and Real
World Applications. Berlin, Germany: Springer-Verlag, 2011.

O. Maitre, L. A. Baumes, N. Lachiche, A. Corma, and P. Collet, “Coarse
grain parallelization of evolutionary algorithms on GPGPU cards with
EASEA,” in Proc. Genetic Evol. Comput. Conf., Montreal, QC, Canada,
Jul. 8-12, 2009, pp. 1403-1410.

P. Vidal and E. Alba, “A multi-GPU implementation of a cellular genetic
algorithm,” in Proc. IEEE Congr. Evol. Comput., Barcelona, Spain, Jul.
18-23, 2010, pp. 396-402.

S. Tsutsui and N. Fujimoto, “An analytical study of GPU computation
for solving QAPs by parallel evolutionary computation with independent
run,” in Proc. IEEE Congr. Evol. Comput., Barcelona, Spain, Jul. 18-23,
2010, pp. 889-896.

M. Rouhipour, P. J. Bentley, and H. Shayani, “Fast bio-inspired computa-
tion using a GPU-based systemic computer,” Parallel Comput., vol. 36,
no. 10-11, pp. 591-617, Oct./Nov. 2010.

W. B. Langdon, “Graphics processing units and genetic programming: An
overview,” Soft Comput., vol. 15, no. 8, pp. 1657-1669, Aug. 2011.

H. Liu and H. Motoda, “On issues of instance selection,” Data Min.
Knowl. Discovery, vol. 6, no. 2, pp. 115-130, Apr. 2002.

J.R. Cano, F. Herrera, and M. Lozano, “On the combination of evolution-
ary algorithms and stratified strategies for training set selection in data
mining,” Appl. Soft Comput., vol. 6, no. 3, pp. 323-332, Mar. 2006.

J. R. Cano, F. Herrera, and M. Lozano, “Evolutionary stratified training
set selection for extracting classification rules with trade off precision-
interpretability,” Data Knowl. Eng., vol. 60, no. 1, pp. 90-108, Jan. 2007.
J. R. Cano, F. Herrera, and M. Lozano, “Stratification for scaling up
evolutionary prototype selection,” Pattern Recognit. Lett., vol. 26, no. 7,
pp- 953-963, May 2005.

J. Bacardit, D. E. Goldberg, M. V. Butz, X. Llora, and J. M. Garrell,
“Speeding-up Pittsburgh learning classifier systems: Modeling time and
accuracy,” in Proc. 8th Int. Conf. Parallel Probl. Solving Nat., Birming-
ham, U.K., Sep. 18-22, 2004, pp. 1021-1031.

M. A. Franco, N. Krasnogor, and J. Bacardit, “Speeding up the evaluation
of evolutionary learning systems using GPGPUs,” in Proc. Genetic Evol.
Computat. Conf., Portland, OR, Jul. 7-11, 2010, pp. 1039-1046.

Y. Nojima, H. Ishibuchi, and I. Kuwajima, “Parallel distributed genetic
fuzzy rule selection,” Soft Comput., vol. 13, no. 5, pp. 511-519, Mar.
2009.

Y. Nojima, H. Ishibuchi, and S. Mihara, “Use of very small training data
subsets in parallel distributed genetic fuzzy rule selection,” in Proc. 4th
Int. Workshop Genetic Evol. Fuzzy Syst., Mieres, Spain, Mar. 17-19, 2010,
pp. 27-32.

H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy
if-then rules for classification problems using genetic algorithms,” /EEE
Trans. Fuzzy Syst., vol. 3, no. 3, pp. 260-270, Aug. 1995.

H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-objective
genetic local search algorithms and rule evaluation measures in data min-
ing,” Fuzzy Sets Syst., vol. 141, no. 1, pp. 59-88, Jan. 2004.

H. Ishibuchi, T. Yamamoto, and T. Nakashima, “Hybridization of fuzzy
GBML approaches for pattern classification problems,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 35, no. 2, pp. 359-365, Apr. 2005.

Y. Nojima, S. Mihara, and H. Ishibuchi, “Parallel distributed implemen-
tation of genetics-based machine learning for fuzzy classifier design,” in
Proc. 8th Int. Conf. Simulated Evol. Learn., Kanpur, India, Dec. 1-4, 2010,
pp. 309-318.

368

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

H. Ishibuchi, S. Mihara, and Y. Nojima, “Training data subdivision and
periodical rotation in hybrid fuzzy genetics-based machine learning,” in
Proc. Int. Conf. Mach. Learn. Appl., Honolulu, HI, Dec. 18-21, 2011,
pp. 229-234.

H. Ishibuchi, K. Nozaki, and H. Tanaka, “Distributed representation of
fuzzy rules and its application to pattern classification,” Fuzzy Sets Syst.,
vol. 52, no. 1, pp. 21-32, Nov. 1992.

H. Ishibuchi, T. Nakashima, and M. Nii, Classification and Modeling
With Linguistic Information Granules: Advanced Approaches to Linguistic
Data Mining. Berlin, Germany: Springer-Verlag, 2004.

0. Cordén, M. J. del Jesus, and F. Herrera, “A proposal on reasoning meth-
ods in fuzzy rule-based classification systems,” Int. J. Approx. Reason.,
vol. 20, no. 1, pp. 21-45, Jan. 1999.

H. Ishibuchi, T. Nakashima, and T. Morisawa, “Voting in fuzzy rule-based
systems for pattern classification problems,” Fuzzy Sets Syst., vol. 103,
no. 2, pp. 223-238, Apr. 1999.

H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation of
fuzzy classifier systems for multi-dimensional pattern classification prob-
lems,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,vol.29,no. 5, pp. 601—
618, Oct. 1999.

H. Ishibuchi and T. Yamamoto, “Rule weight specification in fuzzy rule-
based classification systems,” IEEE Trans. Fuzzy Syst., vol. 13, no. 4,
pp. 428435, Aug. 2005.

T. P. Hong, C. S. Kuo, and S. C. Chi, “Trade-off between computation
time and number of rules for fuzzy mining from quantitative data,” Int.
J. Uncertain., Fuzziness Knowl.-Based Syst., vol. 9, no. 5, pp. 587-604,
Oct. 2001.

H. Ishibuchi, T. Yamamoto, and T. Nakashima, “Fuzzy data mining: Effect
of fuzzy discretization,” in Proc. IEEE Int. Conf. Data Min., San Jose, CA,
Nov. 29/Dec. 2, 2001, pp. 241-248.

F. J. Berlanga, A. J. Rivera, M. J. del Jesus, and F. Herrera, “GP-COACH:
Genetic programming-based learning of compact and accurate fuzzy rule-
based classification systems for high-dimensional problems,” Inf. Sci.,
vol. 180, no. 8, pp. 1183-1200, Apr. 2010.

J. A. Sanz, A. Fernandez, H. Bustince, and F. Herrera, “Improving the per-
formance of fuzzy rule-based classification systems with interval-valued
fuzzy sets and genetic amplitude tuning,” [Inf. Sci., vol. 180, no. 19,
pp. 3674-3685, Oct. 2010.

J. Sanz, A. Ferndndez, H. Bustince, and F. Herrera, “A genetic tuning to
improve the performance of fuzzy rule-based classification systems with
interval-valued fuzzy sets: Degree of ignorance and lateral position,” Int.
J. Approx. Reason., vol. 52, no. 6, pp. 751-766, Sep. 2011.

J. Alcald-Fdez, R. Alcald, and F. Herrera, “A fuzzy association rule-
based classification model for high-dimensional problems with genetic
rule selection and lateral tuning,” IEEE Trans. Fuzzy Syst., vol. 19, no. 5,
pp- 857-872, Oct. 2011.

J. Bacardit, E. K. Burke, and N. Krasnogor, “Improving the scalability
of rule-based evolutionary learning,” Memetic Comput. J., vol. 1, no. 1,
pp. 55-67, Mar. 2009.

S. Yang and X. Yao, “Experimental study on population-based incremental
learning algorithms for dynamic optimization problems,” Soft Comput.,
vol. 9, no. 11, pp. 815-834, Nov. 2005.

C. Cruz, J. R. Gonzédlez, and D. A. Pelta, “Optimization in dynamic envi-
ronments: A survey on problems, methods and measures,” Soft Comput.,
vol. 15, no. 7, pp. 1427-1448, Jul. 2011.

C.M. Fernandes, J. J. Merelo, and A. C. Rosa, “A comparative study on the
performance of dissortative mating and immigrants-based strategies for
evolutionary dynamic optimization,” Inf. Sci., vol. 181, no. 20, pp. 4428—
4459, Oct. 2011.

O. Castillo, P. Melin, A. A. Garza, O. Montiel, and R. Septlveda, “Op-
timization of interval type-2 fuzzy logic controllers using evolutionary
algorithms,” Soft Comput., vol. 15, no. 6, pp. 1145-1160, Jun. 2011.

G. M. Fathi and A. M. Saniee, “A fuzzy classification system based on ant
colony optimization for diabetes disease diagnosis,” Expert Syst. Appl.,
vol. 38, no. 12, pp. 14650-14659, Nov./Dec. 2011.

E. K. Aydogan, I. Karaoglan, and P. M. Pardalos, “hGA: Hybrid genetic
algorithm in fuzzy rule-based classification systems for high-dimensional
problems,” Appl. Soft Comput., vol. 12, no. 2, pp. 800-806, Feb. 2012.

[59]

[60]

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 21, NO. 2, APRIL 2013

O. Castillo and P. Melin, “A review on the design and optimization of
interval Type-2 fuzzy controllers,” Appl. Soft Comput., vol. 12, no. 4,
pp. 1267-1278, Apr. 2012.

O. Castillo, R. Martinez-Marroquin, P. Melin, F. Valdez, and J. Soria,
“Comparative study of bio-inspired algorithms applied to the optimization
of Type-1 and Type-2 fuzzy controllers for an autonomous mobile robot,”
Inf. Sci., vol. 192, no. 1, pp. 19-38, Jun. 2012.

Hisao Ishibuchi (M’93-SM’10) received the B.S.
and M.S. degrees in precision mechanics from Kyoto
University, Kyoto, Japan, in 1985 and 1987, respec-
tively, and the Ph.D. degree in computer science from
Osaka Prefecture University, Osaka, Japan, in 1992.

Since 1987, he has been with Osaka Prefecture
University, where he is currently a Professor with the
Department of Computer Science and Intelligent Sys-
tems. His research interests include fuzzy rule-based
classifiers, evolutionary multiobjective optimization,
and evolutionary game.

Dr. Ishibuchi is currently the IEEE Computational Intelligence Society Vice-
President for technical activities for 2010-2013. He is also an Associate Editor
for the IEEE TRANSACTIONS ON Fuzzy SYSTEMS, the IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION, the IEEE TRANSACTIONS ON SYSTEMS, MAN,
AND CYBERNETICS—PART B: CYBERNETICS, and IEEE COMPUTATIONAL IN-
TELLIGENCE MAGAZINE.

Shingo Mihara received the B.S. and M.S. degrees
in computer science and intelligent systems from
Osaka Prefecture University, Osaka, Japan, in 2010
and 2012, respectively.

His research interests include genetic fuzzy sys-
tems and their parallel distributed implementation.

Mr. Mihara received the Best Presentation Award
from the 12th International Symposium on Advanced
Intelligent Systems in 2011.

Yusuke Nojima (M’00) received the B.S. and M.S.
degrees in mechanical engineering from Osaka Insti-
tute of Technology, Osaka, Japan, in 1999 and 2001,
respectively, and the Ph.D. degree in system func-
tion science from Kobe University, Hyogo, Japan, in
2004.

Since 2004, he has been with Osaka Prefecture
University, Osaka, Japan, where he was a Research
Associate and is currently an Assistant Professor with
the Department of Computer Science and Intelligent
Systems. His research interests include multiobjec-

tive genetic fuzzy systems, evolutionary multiobjective optimization, parallel
distributed data mining, and ensemble classifier design.

Dr. Nojima has been a Vice-Chair of Task Force on Evolutionary Fuzzy
Systems in the Fuzzy Systems Technical Committee at the IEEE Computational
Intelligence Society since 2009. He is a Program Co-Chair at International
Workshop on Genetic and Evolutionary Fuzzy Systems in 2010, 2011, and

2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

