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Abstract

This paper shows how a small number of linguistically interpretable fuzzy rules
can be extracted from numerical data for high-dimensional pattern classification
problems. One difficulty in the handling of high-dimensional problems by fuzzy
rule-based systems is the exponential increase in the number of fuzzy rules with the
number of input variables. Another difficulty is the deterioration in the comprehen-
sibility of fuzzy rules when they involve many antecedent conditions. Our task is to
design comprehensible fuzzy rule-based systems with high classification ability. This
task is formulated as a combinatorial optimization problem with three objectives: to
maximize the number of correctly classified training patterns, to minimize the num-
ber of fuzzy rules, and to minimize the total number of antecedent conditions. We
show two genetic-algorithm-based approaches. One is rule selection where a small
number of linguistically interpretable fuzzy rules are selected from a large number
of prespecified candidate rules. The other is fuzzy genetics-based machine learning
where rule sets are evolved by genetic operations. These two approaches search for
non-dominated rule sets with respect to the three objectives.
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1 Introduction

Recently fuzzy rule-based systems have been applied to pattern classification
problems [24]. Main characteristic features of fuzzy rule-based systems are
their nonlinearity and comprehensibility. Since fuzzy rule-based systems are
universal approximators of nonlinear functions [23,37], they can handle highly
nonlinear classification problems. Many studies on fuzzy rule-based classifi-
cation systems tried to improve their classification ability. Some studies used
neuro-fuzzy techniques [1,27,29,30], and other studies employed genetic al-
gorithms for designing fuzzy rule-based classification systems [4,12,17,40]. In
those studies, emphasis is placed on the classification ability of fuzzy rule-based
systems rather than their comprehensibility. That is, error rates on training
patterns are minimized by various techniques. Another research direction in
fuzzy rule-based systems is to extract interpretable knowledge from numer-
ical data in the form of fuzzy rules [11,20,21,31-34,38,39]. In this research
direction, the design of fuzzy rule-based systems is viewed as finding a small
number of comprehensible fuzzy rules with clear interpretations. That is, em-
phasis is placed on the comprehensibility of fuzzy rule-based systems. This
research direction is closely related to data mining and knowledge discovery.

Our task in this paper is to design comprehensible fuzzy rule-based systems
for high-dimensional pattern classification problems. One difficulty in the han-
dling of high-dimensional problems by fuzzy rule-based systems is the expo-
nential increase in the number of fuzzy rules with the dimensionality of input
spaces. While fuzzy rules for two-dimensional problems can be concisely writ-
ten in the form of fuzzy rule tables, it is impractical to generate all fuzzy
rules in the tabular form for high-dimensional problems. A straightforward
approach for avoiding the exponential increase in the number of fuzzy rules
is the input selection [15] where only a few input variables are selected for
designing fuzzy rule-based systems (for general discussions on feature selec-
tion, see [6,22,25,26]). While it was shown that very simple rules performed
well on some classification problems [7,15], the effectiveness of input selection
is problem-dependent. Another approach is the use of multi-dimensional an-
tecedent fuzzy sets [2]. In this approach, antecedent conditions of fuzzy rules
are not linguistically described by single-dimensional fuzzy sets on each axis,
but defined by multi-dimensional fuzzy sets. Clustering techniques are usu-
ally used for identifying multi-dimensional antecedent fuzzy sets, which can
be tuned further by learning algorithms. This approach is applicable to high-
dimensional problems because the number of fuzzy rules is independent of the
number of input variables. From the viewpoint of classification performance,
the use of multi-dimensional antecedent fuzzy sets may be the most effective
approach to the handling of high-dimensional problems by fuzzy rule-based
systems. This approach, however, has an inherent difficulty from the viewpoint
of comprehensibility. That is, it is very difficult for users to linguistically inter-



pret multi-dimensional antecedent fuzzy sets. For generating linguistically in-
terpretable fuzzy rules, multi-dimensional antecedent fuzzy sets are projected
onto each axis [33,34]. Such projection usually deteriorates the performance of
fuzzy rule-based systems. Fuzzy rules generated by the projection have many
antecedent conditions in the case of high-dimensional problems. Another ap-
proach to the handling of high-dimensional problems is the use of hierarchical
fuzzy rule-based systems where a number of low-dimensional fuzzy rule tables
are hierarchically connected [8]. Outputs from fuzzy rule tables in lower layers
are used as inputs to those in higher layers. Since each fuzzy rule table has only
a few input variables, the exponential increase in the number of fuzzy rules is
avoided. This approach has the same difficulty as the use of multi-dimensional
antecedent fuzzy sets. That is, hierarchical fuzzy rule-based systems are not
comprehensible. Especially, it is very difficult for users to interpret fuzzy rule
tables with intermediate variables that are not input or output variables of
the whole fuzzy rule-based system.

We use the following fuzzy rules for an n-dimensional pattern classification
problem with ¢ classes and n continuous attributes:

Rule R;: If z; is A;; and ... and z,, is Aj,
then Class C; with CFj, j =1,2,...,N, (1)

where R, is the label of the j-th fuzzy rule, # = (x,. .., z,) is an n-dimensional
pattern vector, Aj; is a linguistic value such as small and large for the i-th
attribute, C; is a consequent class (i.e., one of the ¢ classes), C'Fj is a certainty
grade in the unit interval [0,1], and N is the number of fuzzy rules. Let us
assume that we have K linguistic values for describing the i-th attribute (i =
1,2,...,n). One of those K; linguistic values is used as the antecedent fuzzy
set Aj; for the i-th attribute in each fuzzy rule. In this case, the total number of
possible combinations of antecedent linguistic values is Ky x Ky x...x K,,. It is
a natural idea to examine all the combinations for generating fuzzy rules when
our pattern classification problem involves only a few attributes (i.e., when n
is small). On the contrary, it is impractical to examine all the combinations
when n is large. Due to the exponential increase in the number of fuzzy rules,
the comprehensibility of fuzzy rule-based systems is drastically impaired as the
dimensionality of the pattern space increases. The increase in the number of
antecedent conditions also impairs the comprehensibility of each fuzzy rule. In
general, it is much easier for users to intuitively understand short fuzzy rules
with only a few antecedent conditions than long rules with many conditions
[20].

We construct comprehensible fuzzy rule-based systems for high-dimensional
pattern classification problems using a small number of short fuzzy rules with
clear linguistic interpretations. Only a few antecedent conditions are specified
by linguistic values in our fuzzy rules. The other conditions are viewed as



“don’t care” conditions. This can be implemented by considering “don’t care”
as an additional linguistic value. In this case, each antecedent fuzzy set Aj;
of our fuzzy rules in (1) is selected from the given K; linguistic values and
“don’t care”. Since “don’t care” conditions can be omitted, fuzzy rules with
many “don’t care” conditions are written as short fuzzy rules. For example, in
a computer simulation described in Section 6, we obtained the following fuzzy
rules for a 13-dimensional pattern classification problem:

If z7 is medium and x, is medium then Class 1 with C'F; = 0.56, (2)
If 219 is small then Class 2 with C'Fy, = 0.94, (3)

If x7 is small then Class 3 with C'F; = 0.85. (4)

Since we use “don’t care” as an additional linguistic value, the total number of
possible combinations of antecedent linguistic values is (K7+1) x...x (K,+1).
Our task in this paper is to design comprehensible fuzzy rule-based systems
by searching for a small number of fuzzy rules in the huge search space with
those combinations. The difficulty of our task lies in the size of the search

space. In the following sections, we show how genetic algorithms can tackle
this difficult task.

2 Problem Formulation

Let us assume that we have m training patterns @, = (Zp1,...,Tp), 0 =
1,2,...,m from c classes. For simplicity of explanation, each attribute value
is assumed to be a real number in the unit interval [0, 1]. This means that
the pattern space of our pattern classification problem is the n-dimensional
unit hyper-cube [0, 1]™. In computer simulations of this paper, every attribute
value was normalized into a real number in the unit interval [0, 1].

We also assume that K; linguistic values have already been given by users
for describing the i-th attribute (i = 1,2,---,n). That is, we assume that the
membership function of each linguistic value has already been specified by the
users based on their domain knowledge and intuition. We do not modify the
given membership function because such modification may cause a gap be-
tween the modified membership function and the users’ understanding of each
linguistic value. Any shapes of membership functions can be handled by our
approaches. The point is that the membership function of each linguistic value
should be consistent with the users’ domain knowledge and intuition. In com-
puter simulations of this paper, we used a typical set of linguistic values with
triangular membership functions for each attribute. Examples of such linguis-
tic values are shown in Fig. 1. These linguistic values are used in our computer



simulations for all attributes. This is just for simplicity of explanation. Our
approaches are applicable to arbitrary given sets of linguistic values.

Membership
1.0

0.0 1.0

Input variable
Fig. 1. Typical examples of linguistic values (S: small, MS: medium small, M:
medium, ML: medium large, and L: large).

Since the consequent class and the certainty grade of each fuzzy rule in (1)
can be easily determined by a heuristic rule generation procedure [18] from
the given training patterns (see Appendix 1), the design of fuzzy rule-based
systems is to determine the number of fuzzy rules and the antecedent part of
each rule. This task is to find a small number of combinations of antecedent
linguistic values from the huge search space with (K; + 1) x ... x (K, + 1)
combinations.

As we have already mentioned, the comprehensibility of fuzzy rule-based sys-
tems is impaired by the increase in the number of fuzzy rules. Thus we try
to minimize the number of fuzzy rules. From the viewpoint of the compre-
hensibility of each fuzzy rule, a large number of antecedent conditions is not
desirable. Thus we also try to minimize the number of antecedent conditions.
At the same time, we want to design fuzzy rule-based systems with high clas-
sification performance. Based on these discussions, we formulate our task of
designing comprehensible fuzzy rule-based classification systems as the follow-
ing three-objective optimization problem:

Maximize f(S), minimize f5(S), and minimize f;3(S5), (5)

where f1(S) is the number of correctly classified training patterns by a rule
set S, f2(S) is the number of fuzzy rules in S, and f5(S) is the total number
of antecedent conditions in S. For example, when the rule set S consists of the
three fuzzy rules in (2)-(4), fo(S) and f3(S) are calculated as f»(S) = 3 and
f3(S) = 4, respectively. The first objective f;(S) is calculated by classifying
all the training patterns by the rule set S. In Appendix 2, we show how each
training pattern is classified by fuzzy rules in the rule set S. Our task is to
find non-dominated rule sets with respect to the three objectives.

Let us briefly explain the concept of non-dominated rule sets for our three-
objective optimization problem. A rule set S is said to be dominated by an-



other rule set S* if all the following inequalities hold:

fi(S) < f1(S7), f2(S) = fo(S7), f3(S) = f3(57), (6)

and at least one of the following inequalities holds:

f1(S) < [u(S7), fa(S) > fo(57), f5(S) > f3(57). (7)

The first condition (i.e., all the three inequalities in (6)) means that no ob-
jective of S* is worse than S. The second condition (i.e., one of the three
inequalities in (7)) means that at least one objective of S* is better than S. If
there exists no S* that satisfies both the above two conditions, the rule set .S
is said to be a non-dominated rule set.

It should be noted that the third objective f3(.S) is not the average number of
antecedent conditions in each fuzzy rule but the total number of antecedent
conditions in the rule set S. Let f3-(S5) be the average number of antecedent
conditions in each fuzzy rule. For example, f3-(.5) is calculated as f3-(S) = 1.33
for the rule set S with Ry, Ry and Rj in (2)-(4). Let us construct another rule
set ST generated by adding the following fuzzy rule with a single antecedent
condition to S:

Ry: If x4 is small then Class 2 with CFy = 0.68. (8)

For the rule set ST with Ry ~ Ry, f3-(S™) is calculated as f3-(S™) = 1.25.
That is, the average number of antecedent conditions is improved by adding
R4 to S while the complexity of the rule set is increased. Even if the added
fuzzy rule R4 does not improve the classification performance of the rule set
(i.e., f1(S) > fi(ST)), ST is not dominated by S when we use the average
number of antecedent conditions as the third objective. This example shows
that the average number of antecedent conditions is not an appropriate index
for measuring the simplicity of fuzzy rules in the context of multi-objective
optimization. Thus we use the total number of antecedent conditions as the
third objective f3(.5).

3 Three-objective genetic algorithms

We use three-objective genetic algorithms for finding non-dominated rule sets.
Standard single-objective genetic algorithms are also applicable to our problem
if the three objectives are integrated into a single scalar fitness function. Before
describing three-objective genetic algorithms, we briefly discuss the handling
of our problem by single-objective genetic algorithms.



A well-known simple trick for handling multi-objective optimization problems
is to combine multiple objectives into a single scalar fitness function using
weight parameters as

fitness(S) = wy - f1(S) — wa - fo(S) —ws - f3(5), (9)

where wy, we and w3 are non-negative real numbers. In (9), the two objectives
f2(S) and f3(S) to be minimized can be viewed as having negative weights
“—wy” and “—ws3”, respectively. The three weights wq, wy and w3 in (9) should
be specified based on the users’ preference in a particular pattern classification
problem. It is, however, difficult to assign appropriate values to the three
weights.

If the users have a desired goal related to a particular objective, such an ob-
jective can be handled as a constraint condition. The constraint condition for
each objective can be written as f1(S) > ff, f2(S) < f5 and f3(5) < fi where
11, f5 and f5 are the desired goals for f1(S), f2(S) and f3(S), respectively. If
desired goals for two objectives are given by the users, our three-objective opti-
mization problem can be rewritten as a single-objective optimization problem
with two inequality conditions. For example, when the desired goals f; and
f5 are given, we have the following single-objective optimization problem:

Minimize f3(S) subject to f1(S) > fi and fo(S) < f5. (10)

This problem can be handled as the maximization problem of the following
scalar fitness function:

fitness(S) = —w - max{0, f; — f1(S)} — w - max{0, fo(S) — f5} — f3(S),
(11)

where w is a large positive weight value (e.g., w = 100). It should be noted that
the first and second terms of (11) are zero when the corresponding inequality
conditions hold in (10).

In this paper, we use a multi-objective genetic algorithm for finding non-
dominate rule sets of our three-objective optimization problem. Multi-objective
genetic algorithms do not require the specification of the weight parameters or
the desired goals. In our former study [11], we showed how a two-objective ge-
netic algorithm can be used for obtaining non-dominated rule sets with respect
to f1(S) and f5(S). In this paper, we use a multi-objective genetic algorithm
[9,28], which is based on the scalar fitness function in (9) with random weight
values. The weight values w;, ws, and w3 are randomly updated whenever a
pair of parent strings are selected. This is one characteristic feature of our



multi-objective genetic algorithm. Another characteristic feature is that non-
dominated rule sets are stored in a tentative pool separately from the current
population. The tentative pool is updated at every generation in order to store
only non-dominated rule sets among examined ones. From the tentative pool,
Nelite Tule sets are randomly selected as elite individuals, which are added to a
new population. The outline of our three-objective genetic algorithm is written
as follows.

[Three-objective genetic algorithm)]

Step 1) Initialization: Generate an initial population of Ny rule sets where
Nset is the population size.

Step 2) Evaluation: Calculate the values of the three objectives for each rule
set in the current population. Then update the tentative pool of
non-dominated rule sets.

Step 3) Selection: Repeat the following procedures to select (Nge; — Nelite)
pairs of rule sets.
(1) Randomly specify the three weight values as

w; =random; /(random; + randomsy + randoms),
i=1,2,3, (12)

where random; is a non-negative random real number.

(2) Calculate the fitness value of each rule set using (9) with the
randomly specified weight values. Then select a pair of rule sets
based on the fitness value of each rule set. We specify the selec-
tion probability of each rule set S in the current population ¥
using the roulette wheel selection with the linear scaling:

_ fitness(S) — fuin(¥)
P(s) >~ {fitness(S) — fumin(T)}

Sev

(13)

where fuin (V) is the minimum fitness value in the current pop-
ulation V.

Step 4) Crossover and mutation: Generate a new rule set from each pair of
selected rule sets by crossover and mutation operations. These two
operations are used with prespecified probabilities. By the genetic
operations, (Nget — Nelite) rule sets are generated.

Step 5) Elitist strategy: Randomly select Nejite non-dominated rule sets from
their tentative pool, and add them to the generated (Nge; — Nelite)
rule sets for constructing a new population of the size Ng.

Step 6) Termination test: If a prespecified stopping condition is satisfied, end
the algorithm. Otherwise, return to Step 2.

The choice of crossover and mutation operations in Step 4 depends on the



coding of rule sets. They are described in the following sections. We use this
three-objective genetic algorithm because it can be easily implemented. This
algorithm involves no additional parameters. It uses only standard parameters
such as the population size, the crossover probability, the mutation probability,
and the number of elite solutions. Other multi-objective genetic algorithms
are also applicable to our three-objective optimization problem. For reviews
of multi-objective genetic algorithms, see [36,41,42].

4 Rule selection

We have already proposed a two-objective rule selection method [11] for max-
imizing the classification performance and minimizing the number of fuzzy
rules. In the rule selection method, all combinations of antecedent linguistic
values were examined to generate candidate rules from which a small number
of fuzzy rules were selected by genetic algorithms. This method can not be
directly applied to high-dimensional problems because the number of candi-
date rules exponentially increases with the dimensionality of pattern spaces.
In this section, we describe how our rule selection method can be extended
to the case of high-dimensional problems. We use a prescreening procedure
of candidate rules that was introduced for rule selection with a scalar fitness
function [10] and two-objective rule selection [14].

4.1 Candidate rule generation

Our trick for prescreening candidate rules is based on the length (i.e., the
number of antecedent conditions) of fuzzy rules. While the total number of
possible combinations of antecedent linguistic values is huge (i.e., (K; + 1) x
-+« x (K, + 1)), the number of short fuzzy rules with only a few antecedent
conditions is not large. Thus we can generate a tractable number of candidate
rules by examining only short fuzzy rules. When we have five linguistic values,
the number of fuzzy rules of the length k is calculated as ,Cy x 5%, which
is the total number of combinations of selecting k attributes (i.e., ,C}) and
assigning linguistic values to the selected attributes (i.e., 5*).

4.2 Genetic operations for rule selection

Let N be the number of generated candidate rules. As in our previous studies
[10,11,14], a subset S of the N candidate rules is denoted by a binary string of
the length NV as S = s;s2--- sy. In this coding, s; = 1 and s; = 0 mean that



the j-th candidate rule R; is included in S and excluded from S, respectively.
The size of the search space with this coding is 2V, which is the total number
of subsets of the N candidate rules. Each rule set S is evaluated by the fitness
function in (9) using randomly specified three weights whenever a pair of
parent strings is selected. Since each rule set is represented by a binary string,
standard genetic operations are applicable. In our computer simulations, we
used the uniform crossover and the biased mutation.

For efficiently searching for small rule sets with high classification ability, we
use two domain-specific techniques. One technique is a kind of local search.
When the fitness value of a binary string S (i.e., rule set S) is calculated, all the
given training patterns are classified by S for calculating the first objective
f1(S). As shown in Appendix 2, a single winner rule is responsible for the
classification of each training pattern (for other kinds of fuzzy reasoning, see
[5]). If a fuzzy rule in S is responsible for the classification of no training
pattern, we can remove that rule without causing any deterioration in the first
objective because that rule has no influence on the classification of any training
pattern. At the same time, the elimination of such a fuzzy rule improves the
second objective fo(S) and the third objective f3(S). Thus we remove all
the fuzzy rules that are not responsible for the classification of any training
pattern. This local search technique is applied to every rule set before its three
objectives are evaluated in Step 2 of our three-objective genetic algorithm.

The other technique is to bias the mutation. A larger probability was assigned
to the mutation from s; = 1 to s; = 0 than the mutation from s; = 0 to
s; = 1. That is, the mutation is biased toward the decrease in the number of
fuzzy rules in order to improve the second and third objectives. The biased
mutation plays an important role especially when the number of candidate
rules is large.

These two techniques are added to the three-objective genetic algorithm in the
previous section. A number of randomly generated initial rule sets (i.e., binary
strings) are evolved by the genetic operations for finding non-dominated rule
sets of our three-objective optimization problem.

5 Fuzzy genetics-based machine learning

The effectiveness of the rule selection method in the previous section strongly
depends on the choice of candidate rules (i.e., on the choice of a prescreening
procedure). If candidate rules are inappropriately specified, it is impossible for
the three-objective genetic algorithm to find good rule sets. In this section, we
describe a fuzzy genetics-based machine learning (GBML) algorithm, which
does not require any prescreening procedure. Non-dominated rule sets are
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found from all combinations of antecedent linguistic values. Our fuzzy GBML
algorithm is a hybridization of the two approaches in the GBML research:
the Michigan approach [3] and the Pittsburgh approach [35]. In the Michigan
approach, a single rule is handled as an individual. On the other hand, a rule
set is handled as an individual in the Pittsburgh approach. Each approach has
its own advantage and disadvantage in the application to the design of fuzzy
rule-based systems [13,16]. In this section, we show how these two approaches
can be combined into a single hybrid algorithm to search for non-dominated
rule sets of our three-objective optimization problem. Hybrid fuzzy GBML
algorithms were proposed for single-objective and two-objective problems in
[13,14].

5.1 Coding of fuzzy rules and rule sets

Since the consequent class and the certainty grade can be easily determined
by a heuristic procedure [18] from the given training patterns as shown in
Appendix 1, our hybrid algorithm is used for determining the number of fuzzy
rules and the antecedent part of each rule. Thus only the antecedent part is
coded as a string. The fuzzy rule R; in (1) is denoted by its n antecedent
linguistic values as R; = A;1Ajo - -+ Aj,. For simplicity of explanation, we use
an alphabet with some simple symbols. For example, when the five linguistic
values in Fig. 1 and “don’t care” are used as antecedent linguistic values for
all the n attributes, they are represented by an alphabet with the following six
symbols. 1: small, 2: medium small, 3: medium, 4: medium large, 5: large, and
#:don’t care. In this case, the fuzzy rule R; is denoted by a string of the length
n consisting of these six symbols. For example, a string “1#35” denotes the
antecedent part “If x1 is small and x5 is don’t care and x3 is medium and x4 is
large”. A rule set S is denoted by a concatenated string where each substring
of the length n denotes a fuzzy rule in S. For example, “1#35 23#4 4411
14#25 1##17 denotes a rule set with five fuzzy rules for a four-dimensional
pattern classification problem.

5.2 Genetic operations in our hybrid algorithm

In our hybrid fuzzy GBML algorithm, a rule set is represented by a concate-
nated string and handled as an individual. In this sense, our algorithm is
based on the Pittsburgh approach. We use the following tricks for improving
the search ability of our algorithm to efficiently find non-dominated rule sets.

(a) Hybridization with a Michigan-style fuzzy GBML algorithm.
(b) Heuristic generation of an initial population.
(c) Rule generation from misclassified or rejected training patterns.
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(d) Adjustable string length for minimizing the number of fuzzy rules.

The first trick is the hybridization of the Pittsburgh approach and the Michi-
gan approach. In our hybrid algorithm, a Michigan-style algorithm (i.e., fuzzy
classifier system [12,17]) is used as a mutation operation of a Pittsburgh-style
algorithm. In our former studies [13,16], we examined advantages and disad-
vantages of these two individual algorithms when they are used for maximizing
the classification performance of fuzzy rule-based systems. The main finding
in those studies is that each individual algorithm has its own advantages and
disadvantages. For example, Michigan-style algorithms have high search abil-
ity to find good fuzzy rules in the huge search space while it does not work
well for finding good rule sets. This is because the classification performance
of a rule set is not used as a fitness function in the Michigan approach. Only
the classification performance of each fuzzy rule is used as a fitness function.
On the contrary, Pittsburgh-style algorithms work well for finding good rule
sets while it does not have high search ability to find good fuzzy rules in the
huge search space. The Pittsburgh approach can directly optimize rule sets by
maximizing a fitness function while the optimization of rule sets is indirect in
the Michigan approach. The aim of the hybridization of these two approaches
is to implement the advantages of each approach in a single hybrid algorithm.
In our hybrid algorithm, a Michigan-style algorithm [12,17] is used as a kind
of mutation for partially modifying each rule set in the current population.
The outline of the Michigan-style fuzzy GBML algorithm used in our hybrid
algorithm is shown in Appendix 3.

Since the search space is huge, the classification performance of randomly
generate rule sets is usually very poor [12,17]. Thus we do not randomly gen-
erate initial rule sets. They are directly generated from training patterns in
a heuristic manner. For generating N, fuzzy rules, first we randomly select
N,y training patterns. A single fuzzy rule is generated from each training
pattern. Let @, = (@p1,...,2p,) be one of the selected training patterns. A
fuzzy rule R; is directly generated from x;, in the following heuristic manner.

[Direct rule generation procedure]

Step 1) Select the most compatible linguistic value for the i-th attribute
value z,; of the training pattern 2, from the given K linguistic values
as the i-th antecedent fuzzy set Ay for ¢ = 1,2,---,n. In this step,
“don’t care” is not selected as antecedent fuzzy sets because it always
has the highest compatibility grade with any attribute values.

Step 2) With a prespecified probability Ppc, replace each antecedent fuzzy
set Aj; with “don’t care”. In our computer simulations, we specified
Ppe as 0.5. This means that half of the antecedent fuzzy sets were
replaced with “don’t care” on the average.
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Step 3) Specify the consequent class C; and the certainty grade C'F; by the
heuristic procedure in Appendix 1 using all the given training pat-
terns.

This trick can be also used for generating new fuzzy rules in the genera-
tion update process of the Michigan-style algorithm. When a training pattern
Zp = (Tp1, ..., Tpy) is misclassified or rejected by the current population (i.e.,
by the rule set S) in the Michigan-style algorithm, a new rule is directly gen-
erated from 2, by the above procedure. That is, some new rules are directly
generated from misclassified or rejected training patterns (for details, see Ap-
pendix 3). Other new rules are generated by genetic operations from existing
rules in the current population. Of course, when all the training patterns are
correctly classified, all new rules are generated by the genetic operations in
the Michigan-style algorithm.

Our objectives are not only to maximize the classification performance of fuzzy
rule-based systems but also to minimize their size. Thus the number of fuzzy
rules in each rule set should be adjustable. For this purpose, the string length
in our hybrid algorithm is not constant. The string length is adjusted by a
crossover operation, which generates a new string whose length is different
from its parent strings. We use a kind of one-point crossover with different
cutoff points illustrated in Fig. 2. In this crossover operation, one of the two
offspring is randomly chosen as a new string.

y
Parent 1 [R1[R2|R3|R4|R5|Ré6|

Parent 2 [RA[RB|RCIRD|RE|RF|

L

Child  [R1|R2|RAIRBIRC| or [R3]R4]R5|R6|RDIRE[RF]

Fig. 2. One-point crossover with different cutoff points.

5.8  Hybrid algorithm

Our hybrid algorithm can be written as follows in the framework of the three-
objective genetic algorithm in Section 3.

[Hybrid fuzzy GBML algorithm)]

Step 1) Initialization: Generate an initial population consisting of Ny rule
sets by the direct rule generation method.

Step 2) Evaluation: Calculate the values of the three objectives for each rule
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set in the current population. Then update the tentative pool of
non-dominated rule sets.

Step 3) Selection: Select (Ngey — Nelite) pairs of rule sets from the current
population as in the three-objective genetic algorithm.

Step 4) Crossover and mutation: Generate a new rule set from each pair of se-
lected rule sets using the one-point crossover in Fig. 2. The crossover
operation is applied to each pair with a prespecified crossover proba-
bility. When the crossover operation is not applied, one of the parent
strings is randomly chosen as a new string. By the crossover oper-
ation, (Nget — Nelite) Tule sets are generated. Then partially modify
each of the generated rule sets using the Michigan-style algorithm
in Appendix 3. This algorithm is applied to each rule set with a
prespecified probability.

Step 5) Elitist strategy: Randomly select Nejje non-dominated rule sets from
their tentative pool, and add the selected elite rule sets to the gen-
erated (Nget — Nelite) rule sets in Step 4.

Step 6) Termination test: If a prespecified stopping condition is satisfied, end
the algorithm. Otherwise, return to Step 2.

6 Computer simulations

6.1 Data sets and conditions of computer simulations

We applied the rule selection method and the hybrid algorithm to commonly
used data sets in the literature: iris data, wine data, and glass data. All the
data sets are available from the UC Irvine machine learning database.

Since we had no domain knowledge on each data set, we used the five linguistic
values with the triangular membership functions in Fig. 1 for every attribute
of each data set. Our two algorithms (i.e., the rule selection method and the
hybrid algorithm) were executed under the framework of the three-objective
genetic algorithm in Section 3 using the following parameter values. The pop-
ulation size was 50 rule sets, the crossover probability was 0.9, the number
of elite solutions was five, and each algorithm was terminated at the 1000th
generation.

For the rule selection method in Section 4, we used biased mutation probabil-
ities: 0.001 for the mutation from s; = 0 to s; = 1 and 0.1 for the mutation
from s; = 1 to s; = 0. Randomly generated 50 initial rule sets were evolved
in the rule selection method. On the other hand, a single iteration of the
Michigan-style algorithm in Appendix 3 was applied to each rule set as a kind
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of mutation with the probability 0.9 in our hybrid algorithm. In the Michigan-
style part, the crossover probability was 0.9, and the mutation probability was
0.1. Our hybrid algorithm searched for non-dominated rule sets by the evolu-
tion from initial rule sets with 20 fuzzy rules.

Each algorithm was applied to each data set 20 times. A set of non-dominated
solutions stored in their tentative pool was obtained as final solutions of each
trial when it was terminated at the 1000th generation. Those solutions are
non-dominated among rule sets examined in the execution of each trial with
respect to our three objectives: the number of correctly classified training pat-
terns, the number of fuzzy rules, and total number of antecedent conditions.
From 20 trials, we obtained 20 sets of non-dominated solutions. For concisely
summarizing simulation results, we merged them into a single solution set and
compared solutions with each other. In such comparison, some solutions were
dominated by other solutions obtained from different trials. All solutions that
were dominated by other solutions from different trials were removed from the
enlarged solution set. The refined solution set is reported as simulation results
by each algorithm for each data set in this section. Since the classification per-
formance is measured by the number of correctly classified training patterns
in our three-objective optimization problem, we report the value of this ob-
jective of each non-dominated solution together with the other two objective
values. All the available training data were used in our computer simulations
and the classification performance on those training data is reported in this
section. For the tradeoff between the generalization ability of fuzzy rule-based
systems and the number of fuzzy rules, see our former study on two-objective
rule selection [19] where the classification performance on test data was evalu-
ated by the leaving-one-out (LV-1) procedure and the ten-fold cross-validation
(10-CV) procedure in computer simulations.

6.2 Simulation results on iris data

The iris data set is a three-class pattern classification problem with four
attributes and 150 patterns. We use the iris data set for illustrating three-
objective rule selection while it is not actually a high-dimensional pattern
classification problem. Fuzzy rules of the following type are used for the iris
data set with four attributes:

Rule R;: If z; is Aj; and ... and x4 is A4 then Class C; with CFj. (14)
Since the iris data set includes only four attributes, we can examine all the
(5 + 1)* = 1296 combinations of antecedent linguistic values for generating

candidate fuzzy rules. By examining those combinations, we generated 587
fuzzy rules from the given 150 training patterns. Some fuzzy rules could not
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be generated because no training patterns are compatible with those rules.
All the generated 587 fuzzy rules were used as candidate rules. In our rule se-
lection method, each rule set was represented by a binary string of the length
587. For obtaining non-dominated rule sets, we applied the three-objective
rule selection method to the 587 candidate rules 20 times using different ini-
tial populations. From the 20 trials, we found six non-dominated rule sets
in Table 1. In this table, the three objectives (i.e., the number of correctly
classified training patterns f;(S), the number of fuzzy rules f5(S), and the
total number of antecedent conditions f3(S)) are shown in the rows labeled
as “number of patterns”, “number of rules”, and “total length”, respectively.
As mentioned in Section 4, the length of a fuzzy rule means the number of its
antecedent conditions. Thus the third row labeled as “average length” shows
the average number of antecedent conditions of each fuzzy rule. The last row
labeled as “rate (%)” shows the classification rate on training patterns. Since
the iris data set is a three-class pattern classification problem, at least three
fuzzy rules are necessary for designing fuzzy rule-based systems with high clas-
sification ability. In this sense, Table 1 includes three rule sets that are not
practically useful. In Table 1, we can observe a tradeoff between the classifi-
cation performance and the size of rule sets.

Table 1
Non-dominated rule sets obtained by the rule selection for iris data.

Number of rules 0 1 2 3 4 5
1 2 3 4 7
1.00 | 1.00 | 1.00 | 1.00 | 1.40

Total length

Average length

Number of patterns 50 | 100 | 142 | 146 | 147

Rate (%)

o | O | o | O

33.3 | 66.7 | 94.7 | 97.3 | 98.0

6.3 Simulation results on wine data

The wine data set is a three-class pattern classification problem with 13 at-
tributes and 178 patterns. It is impractical to generate candidate rules by
examining all the (5 + 1)!3 combinations of antecedent linguistic values. Can-
didate rules were generated by examining only short fuzzy rules of the length 2
or less. Using this prescreening procedure, we generated 1834 candidate rules.
The three-objective rule selection method was applied to the 1834 rules 20
times using different initial populations. We obtained 17 non-dominated rule
sets from the 20 trials. In Table 2, we show 12 non-dominated rule sets with
high classification rates. The other non-dominated rule sets have low classifi-
cation rates because their size is too small. Simulation results in Table 2 show
that compact rule sets with a small number of short fuzzy rules were found
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by the rule selection method. For example, we can design a fuzzy rule-based
system with a 91.6% classification rate using the three fuzzy rules in (2)-(4)
of Section 1. In Table 2, we can observe a tradeoff between the classification
performance and the size of rule sets.

Table 2
Non-dominated rule sets obtained by the rule selection for wine data.

Number of rules 3 3 3 4 4 4

Total length 3 4 ) 4 5 6

Average length 1.00 | 1.33 | 1.67 | 1.00 | 1.25 | 1.50

Number of patterns | 161 | 163 | 164 | 169 | 170 | 171
Rate (%) 90.4 | 91.6 | 92.1 | 94.9 | 95.5 | 96.1

Number of rules 5 5 5 6 7 9

Total length 5 6 7 9 11 17

Average length 1.00 | 1.20 | 1.40 | 1.50 | 1.57 | 1.89

Number of patterns | 172 | 173 | 175 | 176 | 177 | 178
Rate (%) 96.6 | 97.2 | 98.3 | 98.9 | 99.4 | 100

When good rule sets are obtained by the rule selection method, we do not
have to use the hybrid fuzzy GBML algorithm. In practice, our hybrid fuzzy
GBML algorithm may be employed only when the rule selection method does
not work well. Our hybrid algorithm, however, was applied to the wine data
set just for demonstrating its search ability. In the application of our hybrid
algorithm to the wine data set, each fuzzy rule R; is represented by its 13
antecedent linguistic values as R; = A;1Ajo--- Aji3. A rule set is represented
by a concatenated string where each substring of the length 13 represents a
fuzzy rule. Since no prescreening procedure of fuzzy rules is used, the search
space in our hybrid algorithm consists of (5+ 1) combinations of antecedent
linguistic values.

From 20 trials of our hybrid algorithms, we obtained 18 non-dominated rule
sets. Among them, 13 rule sets have more than 90% classification rates. We
compared those 13 rule sets with the 12 rule sets in Table 2. Seven out of the
13 rule sets by the hybrid algorithm have the same objective values (e.g., (3,
3, 161) and (3, 4, 163)) as those in Table 2 by the rule selection method. The
other six non-dominated rule sets are shown in Table 3. One rule set in Table
3 with the three objective values (3, 5, 165) dominates the corresponding rule
set (3, b, 164) in Table 2. Two rule sets (6, 6, 174) and (7, 8, 176) in Table 3 are
not dominated by any rule sets in Table 2. Each of the other three rule sets in
Table 3 is dominated by at least one rule set in Table 2. From this comparison
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between Table 2 and the 13 non-dominated rule sets by the hybrid algorithm,
we can conclude that our two algorithms found non-dominated rule sets of
almost the same quality. If we take into account the huge search space in the
hybrid algorithm, we can see that it has high search ability to find good rule
sets.

Table 3

Non-dominated rule sets obtained by the hybrid algorithm for wine data. This table
does not include non-dominated rule sets that have the same objective values as
those in Table 2.

Number of rules 3 5 6 6 7 8

Total length 5 7 6 10 8 15

Average length 1.67 | 1.40 | 1.00 | 1.67 | 1.14 | 1.88

Number of patterns | 165 | 174 | 174 | 175 | 176 | 177

Rate (%) 92.7 | 97.8 | 97.8 | 98.3 | 98.9 | 99.4

Our two algorithms use antecedent linguistic values with fixed membership
functions. Thus the quality of obtained non-dominated solutions strongly de-
pends on a fuzzy partition. Since our aim is to generate linguistically inter-
pretable fuzzy rules from numerical data, we assume that linguistic values
are given. We do not modify their membership functions. For demonstrating
the dependency of the quality of non-dominated rule sets on the choice of a
fuzzy partition, we applied the rule selection method to the wine data using
three linguistic values and “don’t care”. That is, we assumed that each of
the 13 attributes of the wine data was uniformly partitioned into three tri-
angular membership functions in a similar manner to Fig. 1. We obtained 14
non-dominated rule sets from 20 trials. Seven rule sets with high classification
rates are shown in Table 4. From the comparison between Table 2 and Table
4, we can see that better rule sets with higher classification rates and fewer
linguistic rules were obtained in the case of three linguistic values. It should
be noted that our goal is not to maximize the classification performance but
to generate linguistically interpretable linguistic rules. Thus the choice of a
fuzzy partition should be done according to domain knowledge and intuition
of users.

6.4 Simulation results on glass data

In the previous computer simulations, we have already shown that the rule
selection method can find a small number of short fuzzy rules with high clas-
sification performance for designing comprehensible fuzzy rule-based systems.
In this subsection, we examine the rule selection method and the hybrid al-
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Table 4
Non-dominated rule sets obtained by the rule selection using three linguistic values.

Number of rules 3 3 3 4 4 5 6

Total length 3 4 6 5 6 8 9

Average length 1.00 | 1.33 | 2.00 | 1.25 | 1.50 | 1.60 | 1.50

Number of patterns | 164 | 171 | 173 | 174 | 176 | 177 | 178
Rate (%) 92.1 1 96.1 | 97.2 | 97.8 | 98.9 | 99.4 | 100

gorithm through computer simulations on glass data. The glass data set is a
six-class pattern classification problem with nine attributes and 214 patterns.
The glass data set is a difficult classification problem with large overlaps be-
tween different classes in the pattern space. So it may be difficult to design
compact fuzzy rule-based systems with high classification performance by a
small number of short fuzzy rules.

For applying the rule selection method to the glass data, we generated can-
didate fuzzy rules of the length 2 or less as in the case of the wine data. The
number of the generated candidate rules was 740. The three-objective rule
selection method was applied to the 740 candidate rules. This computer sim-
ulation was iterated 20 times using different initial populations. From the 20
trials, we obtained 23 non-dominated rule sets. Among them, nine rule sets
are shown in Table 5. Fig. 3 shows 20 non-dominated rule sets with more
than 50% classification rates. From Table 5 and Fig. 3, we can see that fuzzy
rule-based systems with high classification rates could not found. We also ex-
amined the case of the three linguistic values and “don’t care”. We could not
obtain high classification rates in this case, either.

Table 5
Non-dominated rule sets obtained by the rule selection for glass data.

Number of rules 3 4 4 4 5 6 8 10 10

Total length 3 4 ) 6 6 9 14 17 18
Average length 1.00 | 1.00 | 1.25 | 1.50 | 1.20 | 1.50 | 1.75 | 1.70 | 1.80
Number of patterns | 127 | 134 | 140 | 142 | 143 | 148 | 153 | 155 | 157
Rate (%) 59.3 | 62.6 | 65.4 | 66.4 | 66.8 | 69.2 | 7T1.5 | 72.4 | 73.4

Since we could not design good classification systems by fuzzy rules of the
length 2 or less, we also generated fuzzy rules of the length 3 as candidate
rules. The number of generated candidate rules of the length 3 was 5085. We
applied the three-objective genetic algorithm to the rule selection problem
with the 5825 candidate rules (i.e., the 740 rules of the length 2 or less and
the 5085 rules of the length 3). Since the rule selection problem involved
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Fig. 3. Projection of non-dominated rule sets obtained by the rule selection on a
two-dimensional objective space.

many candidate rules, large memory storage and long computation time were
required. From 10 trials, we obtained 25 non-dominated solutions. Table 6
shows nine non-dominated rule sets for comparing them with Table 5. From
the comparison between Table 5 and Table 6, we can see that large rule sets
with high classification rates were found by increasing the number of candidate
rules. We can also see that the increase in the number of candidate rules led to
slight deterioration in classification rates of compact rule sets (e.g., 59.3% by
three fuzzy rules in Table 5 and 57.5% in Table 6). This is because the three-
objective rule selection method could not efficiently find good rule sets in the
enlarged search space. That is, the increase in the number of candidate rules
from 740 to 5825 had a bad effect on the search for non-dominated rule sets.
Fig. 4 shows 20 non-dominated rule sets with more than 50% classification
rates and the total rule length of less than 40. From this figure, we can see
that high classifcation rates were realized by large rule sets.
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Fig. 4. Projection of non-dominated rule sets obtained by the rule selection with
5825 candidate rules on a two-dimensional objective space.
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Table 6
Non-dominated rule sets obtained by rule selection with 5825 candidate rules.

Number of rules 3 4 4 4 5 6 8 14 18

Total length 3 4 5 6 7 9 16 37 49

Average length 1.00 | 1.00 | 1.25 | 1.50 | 1.40 | 1.50 | 2.00 | 2.64 | 2.72

Number of patterns | 123 | 134 | 136 | 142 | 143 | 148 | 155 | 162 | 164
Rate (%) 57.5 1 62.6 | 63.6 | 66.4 | 66.8 | 69.2 | 724 | 75.7 | 76.6

We also applied the hybrid algorithm to the glass data set. From 20 trials,
we obtained 25 non-dominated rule sets. Table 7 shows nine dominated rule
sets for comparing them with Table 5 and Table 6. From the comparison
between these tables, we can see that non-dominated solutions in Table 7 by
the hybrid algorihtm are almost the same as those in Table 5. That is, there
is no deterioration in the search ability due to the large search space, which
was observed in Table 6. In Table 7, some rule sets include long fuzzy rules
because there is no restriction on the rule length in the hybrid algorithm.

Table 7
Non-dominated rule sets obtained by the hybrid algorithm for glass data.

Number of rules 3 4 4 4 5 6 8 8 10

Total length 3 4 ) 6 9 10 14 19 20

Average length 1.00 | 1.00 | 1.25 | 1.50 | 1.80 | 1.67 | 1.75 | 2.38 | 2.00

Number of patterns | 127 | 134 | 140 | 142 | 146 | 149 | 152 | 155 | 156

Rate (%) 59.3 | 62.6 | 65.4 | 66.4 | 68.2 | 69.6 | V1.0 | 72.4 | 72.9

7 Concluding remarks

In this paper, we described how comprehensible fuzzy rule-based classification
systems can be designed from numerical data. Emphasis was placed on the
comprehensibility of fuzzy rule-based systems rather than their classification
performance. Thus our fuzzy rules were generated using given linguistic values
for each attribute without modifying their membership functions. That is, we
assumed that a fuzzy partition had already been given. Even in this situa-
tion, rule generation is a difficult task in the case of high-dimensional pattern
classification problems. First we formulated our task of designing comprehen-
sible fuzzy rule-based systems as a three-objective optimization problem. The
three objectives are to maximize the classification performance, to minimize
the number of fuzzy rules, and to minimize the total length of fuzzy rules (i.e.,
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the total number of antecedent conditions). Next we showed how the rule selec-
tion method in our former study could be extended to our three-objective op-
timization problem for high-dimensional pattern classification problems. Then
we proposed a hybrid fuzzy GBML algorithm for finding non-dominated rule
sets of our three-objective optimization problem. Finally we showed through
computer simulations that a small number of linguistically interpretable fuzzy
rules were found by our two algorithms for designing comprehensible fuzzy
rule-based classification systems for high-dimensional pattern classification
problems.

Appendix 1: Heuristic rule generation procedure

A heuristic rule generation procedure [18] for determining the consequent class
and the certainty grade of the fuzzy rule R; in (1) can be written as follows:

Step 1) Calculate the compatibility grade p;(#,) of each training pattern
Ty = (Tp1, . .., Tpn) With the fuzzy rule R; as

pr; (Tp) = pj1 (Tp1) X oo X pjn(Tpn),p = 1,2,...,m,  (15)

where /1;;(+) is the membership function of the antecedent fuzzy set
Step 2) For each class, calculate the sum of the compatibility grades of the
training patterns with the fuzzy rule R;:

ﬂClass h(R]) = Z /’LR]‘ ('/“E_;))J h = 17 27 -5 C (16)

2p€Class h

Step 3) Find Class C; that has the maximum value of Bciass 1(R;):

ﬂClass c; = maX{ﬂClass I(Rj)7 cen :ﬂClass c(R])} (17)

If the consequent class (i.e., Class C;) of the fuzzy rule R; can not
be uniquely determined, we do not generate the fuzzy rule R;. For
example, if feiass n(R;) for all classes, we can not determine Cj.

Step 4) Specify the certainty grade C'F; as follows:

C1F’j = {ﬁClass Cj (R]) - B}/ Z ﬁClass h(Rj)7 (18)
h=1
where
g = Betass n(R;)/(c = 1). (19)

This heuristic rule generation procedure has the following characteristic fea-
tures:
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(1) The consequent class and the certainty grade of each fuzzy rule are locally
determined by compatible training patterns with its antecedent part. The
determination of a fuzzy rule is independent of the other rules.

(2) The certainty grade of each fuzzy rule assumes a real number in the unit
interval [0, 1].

(3) When all the compatible training patterns are from the same class, the
certainty grade is its maximum value 1.

(4) When all classes have almost the same sum of the compatibility grades
in Step 2, the certainty grade is nearly equal to its minimum value 0.

Appendix 2: Fuzzy reasoning method

Let S be the set of fuzzy rules in our fuzzy rule-based classification system. We
use a fuzzy reasoning method based on a single winner rule [18]. The winner
rule R;, for a new pattern @, = (Zp1, ..., %p,) is determined as follows:

i (&) - CFy. = max{pun, () - CF)|R; € S}. (20)

The new pattern a;, is classified by the winner rule R;,. That is, @}, is assigned
to the consequent class of the winner rule. If multiple fuzzy rules with different
consequent classes have the same maximum value in (20), the classification of
the new pattern is rejected.

Appendix 3: Fuzzy classifier system

In this paper, we use a single iteration of a Michigan-style fuzzy GBML al-
gorithm (i.e., fuzzy classifier system [12,17]) as a mutation operation of our
hybrid algorithm. Let S be a rule set to which our Michigan-style algorithm is
applied. Our Michigan-style algorithm replaces « - |S| fuzzy rules in S where
|S| is the number of fuzzy rules in S. In our computer simulations, a was
specified as @ = 0.3. When « - |S| is not an integer, the minimum integer
that is not smaller than « - |S| is used as the number of replaced fuzzy rules.
Let merror be the total number of misclassified and rejected training patterns
by the current rule set S. When mieyo, is larger than « - |S|/2, half of new
rules are generated directly from misclassified or rejected training patterns.
On the other hand, when me, is not larger than « - |S|/2, meyor new rules
are generated directly from the me.,o, misclassified or rejected training pat-
terns. In both cases, the other new rules are generated from existing rules in
the current population (i.e., rule set S) by genetic operations. The outline of
our Michigan-style algorithm used in the hybrid algorithm can be written as
follows:

Step 1) Evaluation: Evaluate the fitness value of each fuzzy rule by classify-
ing all the given training patterns using the rule set S. The fitness
value of a fuzzy rule is defined by the number of training patterns
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correctly classified by that rule.

Step 2) Generation of new fuzzy rules: Generate « - |S| fuzzy rules. At least

half of new rules are generated from the existing rules in the current
rule set S by genetic operations. First the roulette wheel scheme with
the linear scaling is used for selecting pairs of parent rules. From each
pair, two new rules are generated by the uniform crossover. Then
the mutation operation is applied to each antecedent fuzzy set of
the generated rules. The crossover and mutation operations are used
with prespecified probabilities. The other new rules are generated
using the direct rule generation procedure in Subsection 5.2 from
misclassified or rejected training patterns. All the newly generated
fuzzy rules are added to the rule set S.

Step 3) Replacement: Evaluate the fitness value of each fuzzy rule in the en-

larged current rule set S by classifying all the given training patterns
using S. The worst « - |S| fuzzy rules with the smallest fitness values
are removed from S.
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