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Abstract—Evolution of cooperative behavior has been examined 

in many studies on the IPD (Iterated Prisoner’s Dilemma) game 

under various conditions. In some studies, each agent is allowed 

to play against itself. However, this setting is somewhat strange 

because we do not play any real-world games against ourselves. 

In this paper, we examine the effect of this somewhat strange 

setting on the evolution of cooperative behavior in a spatial IPD 

game. Two cases are compared with each other: Each agent is 

allowed to play against itself in one case and not allowed to do so 

in the other case. It is shown through computational experiments 

that similar results are obtained from these two cases when 

opponents of each agent are selected from a large number of its 

neighbors. However, the difference between the two cases is large 

when the number of neighbors is small. Actually the evolution of 

cooperative behavior is strongly facilitated by allowing each 

agent to play against itself when the number of neighbors is small. 

Our computational experiments are performed on a spatial IPD 

game with various specifications of the neighborhood size where 
binary and real number strings are used as game strategies. 

Keywords - Iterated prisoner’s dilemma, spatial IPD game, 

evolutionary games, evolution of cooperative behavior, strategy 

representation, neighborhood size 

I.  INTRODUCTION 

Prisoner’s dilemma is a well-known two-player zero-sum 
game. Its iterated version, which has been referred to as the 
IPD (iterated prisoner’s dilemma) game, has been used to 
examine the evolution of cooperative behavior [1]-[3]. For 
example, Ashlock et al. [4]-[6] demonstrated that the choice of 
a representation scheme for encoding game strategies has large 
effects on the evolution of cooperative behavior. That is, totally 
different results were obtained from different representation 
schemes in their studies. They examined various representation 
schemes for encoding game strategies such as a finite-state 
machine, a neural network and a look-up table. In our former 
studies [7]-[9], it was shown that the evolution of cooperative 
behavior in a spatial version of the IPD game depends on the 
size of neighborhood structures. We used two neighborhood 

structures: One is for local opponent selection in the IPD game 
and the other is for local parent selection in strategy evolution. 

In the spatial IPD game of our former studies [7]-[9], each 
agent was allowed to play the IPD game against itself. That is, 
each agent was included in its own neighborhood for local 
opponent selection. Whereas this setting of opponent selection 
has been used in some other studies on the IPD game, it is 
somewhat strange for each agent to play the IPD game against 
itself. This is because we do not play any real-world games 
against ourselves. In this paper, we examine the effect of this 
somewhat strange setting of opponent selection on the 
evolution of cooperative behavior in the spatial IPD game.  

In this paper, we use two neighborhood structures for local 
opponent selection and local parent selection as in our former 
studies [7]-[9]. Two parent strategies, which are recombined to 
generate a new strategy, are selected for each agent from its 
local parent selection neighborhood. Since it is not strange for 
an agent to generate a new strategy from its current strategy, 
each agent is included in its parent selection neighborhood. 
However, it is somewhat strange for an agent to play the IPD 
game against itself. So we examine two cases with respect to 
the specification of local opponent selection neighborhood. In 
one case, each agent is included in its local opponent selection 
neighborhood. This means that each agent is allowed to play 
against itself as in our former studies [7]-[9]. In the other case, 
each agent is not included in its local opponent selection 
neighborhood. That is, each agent is not allowed to play against 
itself. We compare these two cases with each other through 
computational experiments on our spatial IPD game with the 
two neighborhood structures. Experimental results demonstrate 
the relation between the neighborhood size for local opponent 
selection and the effect of allowing each agent to play against 
itself. We also show some experimental results for a mixture of 
heterogeneous agents with different representation schemes. 
We use two representation schemes: binary strings and real 
number strings. One of these two types of strings is assigned to 
each agent in a cell of a grid-world. In our spatial IPD game, it 
is possible that some agents have no neighbors with the same 
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representation schemes. We discuss the handling of such a 
situation for local opponent selection and local parent selection.  

This paper is organized as follows. We first explain our 
spatial IPD game with two neighborhood structures in Section 
II. Next we perform simple mathematical analysis of strategy 
evolution using expected payoff values to compare the two 
cases where agents are allowed or not allowed to play against 
themselves in Section III. These two cases are compared with 
each other through computational experiments in Section IV. 
Finally we conclude this paper in Section V. 

II. OUR SPATIAL IPD GAME 

A. IPD Game 

We use a well-known standard payoff matrix in Table I 
where two players (an agent and its opponent) are supposed to 
simultaneously choose one of the two actions: “C: Cooperate” 
or “D: Defect”. When both players cooperate, each receives 
three points as “Agent: 3” and “Opponent: 3” in Table I. When 
both players defect, each receives one point as “Agent: 1” and 
“Opponent: 1”. The highest payoff of five points is obtained by 
defecting when the opponent cooperates. In this case, the 
opponent receives the lowest payoff of zero point (i.e., “Agent: 
5” and “Opponent: 0”). The agent receives the lowest payoff of 
zero point by cooperating when the opponent defects (i.e., 
“Agent: 0” and “Opponent: 5”). 

TABLE I.  STANDARD PAYOFF MATRIX OF PRISONER’S DILEMMA GAME. 

Agent’s 

Action 

Opponent’s Action 

C: Cooperate D: Defect 

C: Cooperate 
Agent: 3 

Opponent: 3 

Agent: 0 

Opponent: 5 

D: Defect 
Agent: 5 

Opponent: 0 
Agent: 1 

Opponent: 1 

 

Such a simultaneous choice of an action by each player is a 
single round of the prisoner’s dilemma game. In its iterated 
version, the game is played between the same two players for a 
pre-specified number of rounds. Such an iterated version has 
been often referred to as the IPD game. In our computational 
experiments in this paper, the prisoner’s dilemma game is 
iterated for 100 rounds. Our computational experiments, 
however, are performed under the following assumption as in 
many other studies on the IPD game: No player knows in 
advance how many rounds of the prisoner’s dilemma game will 
be iterated. That is, no player knows when the iteration of the 
iterated prisoner’s game will be terminated. 

B. IPD Game Strategies 

An agent’s strategy determines its next action based on a 
finite memory of previous plays of the game. In this paper, we 
use only the previous action of the opponent to determine the 
agent’s action. Binary strings have often been used to represent 
strategies where “1” and “0” usually mean “cooperate” and 
“defect”, respectively. In Table II, we show a three-bit binary 
string strategy “101” called TFT (tit-for-tat). This strategy 
cooperates at the first round and then cooperates at each round 
only when the opponent cooperated in the previous round. 

TABLE II.  THREE-BIT BINARY STRATEGY “101” CALLED TFT. 

Agent’s first action: Cooperate 1 

Opponent’s previous action Suggested action  

D: Defect D: Defect 0 

C: Cooperate C: Cooperate 1 

 

Each bit value of the TFT strategy “101” can be interpreted 
as the probability of “C: Cooperate”. For example, the first bit 
value “1” of “101” means that the agent cooperates in the first 
round with the probability 1. Using this interpretation, we can 
easily generalize binary strings to real number strings. For 
example, a real number string “0.9 0.1 0.7” can be viewed as a 
stochastic strategy that cooperates with the probability 0.9 in 
the first round, cooperates with the probability 0.1 in response 
to the opponent’s defection, and cooperate with the probability 
0.7 in response to the opponent’s cooperation. Of course, all 
elements of real number strings should be in the closed interval 
[0, 1]. In this paper, we use binary strings and real number 
strings of length three. Real number strings are stochastic 
strategies while binary strings are deterministic strategies. 

C. Spatial IPD Game with Two Neighborhood Structures 

The IPD game has been extended in various directions in 
the literature. One direction is to introduce a spatial structure of 
agents to the IPD game [10]-[12]. Each agent is usually fixed 
spatially in a cell of a two-dimensional grid-world where the 
IPD game is performed between neighboring players. As in our 
former studies [7]-[9], we use an 11 11 grid-world with the 
torus structure. Since each cell has a single agent, the total 
number of agents is 121. Each agent has its own IPD game 
strategy. Strategies of the 121 agents are evolved by selection, 
crossover and mutation as we will explain in Section III. 

In spatial versions of the IPD game, each agent plays the 
IPD game against its neighbors. We denote the set of neighbors 
of Agent i by NIPD(i). Since opponents of Agent i are selected 

from NIPD(i), NIPD(i) can be viewed as a neighborhood 

structure for local opponent selection. As we have already 
explained, the following two cases are examined in this paper: 

Case 1: NIPD(i) includes Agent i itself. In this case, each 

agent is allowed to play the IPD game against itself. 

Case 2: NIPD(i) does not include Agent i itself. In this case, 

each agent is not allowed to play the IPD game against itself. 

Examples of NIPD(i) in Case 2 are shown in Fig. 1 where 

NIPD(i) has 4, 8, 12, 24, 40 and 48 neighbors excluding Agent i 

itself. In this paper, we examine all of these six specifications 
of the neighborhood structure NIPD(i). For comparison, we also 

examine an extreme specification of NIPD(i) where all the other 

120 agents in the 11 11 grid-world are included in NIPD(i). 

That is, we examine the seven specifications of NIPD(i). Of 

course, we also examine the corresponding seven specifications 

of NIPD(i) in Case 1 where Agent i is included in NIPD(i).  



                                  
          (a) Size 4.   (b) Size 8.                 (c) Size 12. 

                               
         (d) Size 24.  (e) Size 40.           (f) Size 48. 

Figure 1.  Example of NIPD(i) excluding Agent i itself (i.e., Case 2). 

When NIPD(i) includes five or less neighbors as in Fig. 1 (a), 

Agent i plays the IPD game against all of its neighbors in 

NIPD(i). Average payoff of Agent i per round is calculated over 

those executions of the IPD game. The calculated average 
payoff is used as the fitness of the strategy of Agent i. When 

NIPD(i) includes more than five neighbors as in Fig. 1 (b)-(f), 

five opponents are randomly selected from NIPD(i) for Agent i 

(i.e., random sampling of five opponents from NIPD(i) without 

replacement). Average payoff is calculated over the executions 
of the IPD game against the selected five opponents. 

After the fitness value of the strategy of each agent is 
calculated by the IPD game, a new strategy for each agent is 
generated from its neighbors through selection, crossover and 
mutation. Parents of a new strategy of Agent i are selected from 
its neighbors. Let us denote a set of neighbors of Agent i for 
local parent selection by NGA(i). Parents of a new strategy of 

Agent i are selected from NGA(i). Thus NGA(i) can be viewed 

as a neighborhood structure for local parent selection. It should 

be noted that the two neighborhood structures (i.e., NIPD(i) for 

local opponent selection and NGA(i) for local parent selection) 

are not necessarily the same. It should be also noted that NGA(i) 

includes Agent i itself. This means that a new strategy of Agent 
i can be generated from its current strategy. In this paper, we 
examine six specifications of NGA(i), which correspond to the 

six neighborhood structures of NIPD(i) in Fig. 1 (including 

Agent i). We also examine an additional extreme specification 

of NGA(i) with all the 121 agents in the 11 11 grid-world. 

The main characteristic feature of our spatial IPD game in 
this paper and our former studies [7]-[9] is the use of the two 
neighborhood structures: One is for local opponent selection, 
and the other is for local parent selection. This feature has been 
motivated by the idea of structured demes [13]-[16] with two 
neighborhood structures: One is for the modeling of daily 
interaction with others, and the other is for the modeling of 
mating. There exist a number of real-world situations in nature 
with those two neighborhood structures such as territorial 
animals and plants. We use the two neighborhood structures to 
examine the effects of local opponent selection and local parent 
selection on the evolution of cooperative behavior separately 
from each other. Similar ideas of two neighborhood structures 
were used in a different spatial IPD game [17] and a cellular 
evolutionary algorithm for function optimization [18].  

III. MATHEMATICAL ANALYSIS OF STRATEGY EVOLUTION 

A. Evolution of IPD Game Strategies 

An initial population is randomly generated. When three-bit 
binary strings are used, each bit value is randomly specified as 
0 or 1 with the same probability. When real number strings of 
length three are used, real numbers are randomly specified 
using the uniform probability distribution over the unit interval 
[0, 1]. In this manner, an initial population with 121 strategies 
is generated. Each strategy is assigned to a different cell (i.e., to 
a different agent) in the 11 11 grid-world. The fitness of each 
strategy is calculated as its average payoff in the IPD game. 

Two parents are selected for Agent i from its local parent 

selection neighborhood NGA(i) by binary tournament selection 

with replacement. A new strategy is generated by applying 
crossover and mutation to the selected two parents for each 
agent. For binary strings, we use one-point crossover and bit-
flip mutation. For real number strings, we use blend crossover 

(BLX- [19]) with = 0.25 and uniform mutation. If a real 
number becomes more than 1 (or less than 0) by the crossover 
operator, it is repaired to be 1 (or 0) before the mutation. The 
same crossover probability 1.0 and mutation probability 
1/(5 121) are used for binary and real number strategies 

The current strategy of each agent is replaced with a newly 
generated strategy for that agent. That is, the current population 
of 121 strategies is entirely replaced with the newly generated 
121 strategies. The fitness evaluation through the IPD game 
and the generation update by genetic operations are iterated for 
1000 generations in our computational experiments. 

B. Simple Mathematical Analysis 

When we use three-bit binary strings, the total number of 
strategies is 23 = 8. Let us denote these eight strategies by Si 
(i = 0, 1, ..., 7) as shown in the first column of Table III. In this 
case, we can calculate the average payoff of an agent against an 
opponent for each of the 8 8 combinations of their strategy 
assignment. Each entry of Table III shows the calculated 
average payoff of the corresponding agent’s strategy against 
the corresponding opponent’s strategy. For example, the 
average payoff of the agent with “always defect strategy 000” 
is 5.00 against the opponent with “always cooperate strategy 
111”, which is shown in the top-right field corresponding to the 
agent’s strategy “000” and the opponent’s strategy “111” 
among the 8 8 combinations in Table III. Let P(Sj, Sk) be the 
average payoff of the agent’s strategy Sj against the opponent’s 
strategy Sk. For example, P(S3, S0) = 0.01 and P(S3, S3) = 2.98 
in Table III where S0 = “000” and S3 = “011”. The average 
payoff of each strategy against itself is underlined and 
highlighted by boldface in Table III. 

TABLE III.  AVERAGE PAYOFF FROM THE IPD GAME WITH 100 ROUNDS 

BETWEEN BINARY STRING STRATEGIES. 

Strategy 
of Agent 

Strategy of Opponent 
PAve 

S0:000 S1:001 S2:010 S3:011 S4:100 S5:101 S6:110 S7:111 

S0:000 1.00 1.00 4.96 4.96 1.04 1.04 5.00 5.00 3.00 

S1:001 1.00 1.00 2.25 3.00 1.03 2.50 2.25 3.02 2.01 

S2:010 0.01 2.25 2.00 4.94 0.06 2.25 5.00 5.00 2.69 

S3:011 0.01 2.95 0.04 2.98 0.05 2.99 0.08 3.02 1.52 

S4:100 0.99 1.03 4.91 4.95 1.02 1.06 4.94 4.98 2.99 



S5:101 0.99 2.50 2.25 2.99 1.01 3.00 2.25 3.00 2.25 

S6:110 0.00 2.25 0.00 4.93 0.04 2.25 2.00 4.98 2.06 

S7:111 0.00 2.97 0.00 2.97 0.03 3.00 0.03 3.00 1.50 

 

The average payoff PAve(Sj) of each strategy Sj against all 
the eight strategies is calculated as  

 


7

0
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8

1
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which is shown in the last column of Table III using bold font. 
For example, PAve(S0) = 3.00 and PAve(S1) = 2.01. 

In an initial population, strategies are randomly generated. 
This means that each agent has one of the eight strategies with 

the same probability. When NIPD(i) does not include Agent i 

itself (i.e., when each agent is not allowed to play against itself), 
each opponent of Agent i can be viewed as having one of the 
eight strategies with the same probability. Thus the expected 
average payoff of Agent i with the strategy Sj against its 
opponents is the same as its average payoff PAve(Sj) shown in 
the last column of Table III. Let us denote the expected average 
payoff of an agent with the strategy Sj as EC2(Sj), which is the 
same as PAve(Sj). The subscript “C2” of EC2(Sj) denotes Case 2 
where each agent is not allowed to play against itself. Note that 
the expected average payoff EC2(Sj) is independent of the size 
of the neighborhood structure NIPD(i) since any opponent has a 

randomly specified strategy in the initial population. 

Let us discuss the expected average payoff EC1(Sj) of an 
agent with the strategy Sj in Case 1 where each agent is allowed 

to play against itself (i.e., Agent i is in NIPD(i)). When we use 

NIPD(i) with four neighbors in Fig. 1 (a), Agent i plays the IPD 

game against all the four neighbors and Agent i itself in Case 1. 
Since each of the four neighbors has one of the eight strategies 
with the same probability, EC1(Sj) can be calculated as  

 )}(4),({
5

1
)( AveC1 jjjj SPSSPSE  ,  j = 0, 1, ..., 7. 

Now we can compare EC1(Sj) with EC2(Sj) for each strategy 

when we use the neighborhood structure NIPD(i) with four 

neighbors in Fig. 1 (a) as follows: 

 EC1(S0) = 2.60 < 3.00 = EC2(S0) for  S0 = “000” 

 EC1(S1) = 1.81 < 2.01 = EC2(S1) for  S1 = “001” 

 EC1(S2) = 2.55 < 2.69 = EC2(S2) for  S2 = “010” 

 EC1(S3) = 1.81 > 1.52 = EC2(S3) for  S3 = “011” 

 EC1(S4) = 2.60 < 2.99 = EC2(S4) for  S4 = “100” 

 EC1(S5) = 2.40 > 2.25 = EC2(S5) for  S5 = “101” 

 EC1(S6) = 2.05 < 2.06 = EC2(S6) for  S6 = “110” 

 EC1(S7) = 1.80 > 1.50 = EC2(S7) for  S7 = “111” 

These calculations show that the average expected payoff 
of uncooperative strategies “000” and “100” is most heavily 
decreased by allowing each agent to play against itself (i.e., by 
changing the setting from Case 2 to Case 1) while that of 
cooperative strategies “111” and “011” is most heavily 
increased. It should be noted that “100” always defects except 
for the first round while “011” always cooperates except for the 
first round. These discussions suggest that the evolution of 

cooperative behavior is facilitated by the IPD game of each 
agent against itself when the size of the neighborhood structure 
NIPD(i) is very small. This effect will be examined through 

computational experiments later in this paper. 

When NIPD(i) is large, the effect of the IPD game of each 

agent against itself is small. For example, let us assume that 
NIPD(i) with 48 neighbors in Fig. 1 (f) is used. In Case 1, Agent 

i is also in NIPD(i). In this case, EC1(Sj) can be formulated as  

   )}(48),({
49

1
)( AveC1 jjjj SPSSPSE  ,  j = 0, 1, ..., 7. 

As we have already explained, EC2(Sj) is independent of the 
neighborhood size. Thus EC1(Sj) and EC2(Sj) are compared as 
follows when we use NIPD(i) with 48 neighbors in Fig. 1 (f): 

 EC1(S0) = 2.96 < 3.00 = EC2(S0) for  S0 = “000” 

 EC1(S1) = 19.9 < 2.01 = EC2(S1) for  S1 = “001” 

 EC1(S2) = 2.68 < 2.69 = EC2(S2) for  S2 = “010” 

 EC1(S3) = 1.55 > 1.52 = EC2(S3) for  S3 = “011” 

 EC1(S4) = 2.95 < 2.99 = EC2(S4) for  S4 = “100” 

 EC1(S5) = 2.27 > 2.25 = EC2(S5) for  S5 = “101” 

 EC1(S6) = 2.06 = 2.06 = EC2(S6) for  S6 = “110” 

 EC1(S7) = 1.53 > 1.50 = EC2(S7) for  S7 = “111” 

The maximum difference between EC1(Sj) and EC2(Sj) is 
only 0.04, which is much smaller than 0.4 in the previous 
discussions for the neighborhood structure with four neighbors 
in Fig. 1 (a). As shown from these calculations, the increase in 
the size of NIPD(i) deceases the difference between the two 

cases: Case 1 and Case 2. This will be also examined through 
computational experiments later in this paper. 

Let us also calculate the average payoff for five real number 
strings in Table IV: “0.1 0.2 0.1”, “0.9 0.1 0.2”, “0.4 0.6 0.5”, 
“0.9 0.2 0.8” and “0.9 0.8 0.9”. As we have already explained, 
these real number strings are stochastic strategies for the IPD 
game. We assume that the IPD game is performed for 100 
rounds for each of the 5 5 combinations of the five strategies 
in Table IV. Since our strategies are stochastic, different results 
are obtained from each execution of the IPD game even when 
we use the same pair of strategies. So we calculated the average 
results over 10,000 executions of the IPD game with 100 
rounds for each of the 5 5 combinations of the five strategies. 
Experimental results are shown in Table IV in the same manner 
as in Table III with the eight binary strings of length three. 

TABLE IV.  AVERAGE PAYOFF FROM THE IPD GAME WITH 100 ROUNDS 

BETWEEN REAL NUMBER STRING STRATEGIES 

Strategy 
of Agent 

Strategy of Opponent 
PAve 

0.1 0.2 0.1 0.9 0.1 0.2  0.4 0.6 0.5 0.9 0.2 0.8 0.9 0.8 0.9 

0.1 0.2 0.1 1.51 1.30 3.11 2.01 4.04 2.39 

0.9 0.1 0.2 1.60 1.34 3.06 1.97 3.93 2.38 

0.4 0.6 0.5 0.90 0.99 2.33 2.29 3.46 1.99 

0.9 0.2 0.8 1.31 1.21 2.36 2.27 3.13 2.06 

0.9 0.8 0.9 0.56 0.78 1.76 2.40 2.88 1.68 

 

Let us assume that one of these five real number strategies 
is randomly assigned to each agent with the same probability. 



Under this assumption, the expected average payoff EC2(Sj) of 
each strategy Sj in Case 2 is the same as the average payoff 
PAve(Sj) in the last column of Table IV. Let us further assume 

that NIPD(i) with four neighbors in Fig. 1 (a) is used. Under 

these settings, the expected average payoff EC1(Sj) of each 
strategy Sj in Case 1 is calculated from Eq.(2) as follows: 

 EC1(S1) = 2.21 < 2.39 = EC2(S1) for  S1 = “0.1 0.2 0.1” 

 EC1(S2) = 2.17 < 2.38 = EC2(S2) for  S2 = “0.9 0.1 0.2” 

 EC1(S3) = 2.06 > 1.99 = EC2(S3) for  S3 = “0.4 0.6 0.5” 

 EC1(S4) = 2.10 > 2.06 = EC2(S4) for  S4 = “0.9 0.2 0.8” 

 EC1(S5) = 1.92 > 1.68 = EC2(S5) for  S5 = “0.9 0.8 0.9” 

Among these five strategies, the first two frequently defect 
(since all the three real numbers of these strategies are close to 
0). The IPD game of each agent against itself decreases the 
expected average payoff of these two uncooperative strategies 
by about 0.2. On the other hand, the last strategy frequently 
cooperates since the three real numbers of this strategy are 
close to 1. The IPD game of each agent against itself (i.e., the 
change from Case 2 to Case 1) most heavily increases the 
expected average payoff of this cooperative strategy. These 
discussions suggest that the evolution of cooperative behavior 
is easier in Case 1 than Case 2. The two cases will be compared 
through computational experiments later in this paper for real 
number string strategies as well as binary string strategies. 

IV. COMPUTATIONAL EXPERIMENTS 

A. Settings of Computational Experiments 

In this section, we compare the following two cases with 
each other through computational experiments:  

Case 1: NIPD(i) includes Agent i itself. In this case, each 

agent is allowed to play the IPD game against itself. 

Case 2: NIPD(i) does not include Agent i itself. In this case, 

each agent is not allowed to play the IPD game against itself. 

In Case 1, our computational experiments are performed in 
exactly the same manner as in our previous study [9]. Those 
results in Case 1 are compared with experimental results in 
Case 2. Parameter specifications in this paper and our previous 
study [9] are summarized as follows: 

Parameters in the IPD Game: 
Grid-world: 11 11 grid-world with the torus structure, 
Number of agents: 121, 

Neighborhood structure NIPD(i) for opponent selection: 

 Seven structures (Fig. 1 and the grid-world itself), 
Number of opponents: Maximum five neighbors, 
Number of rounds: 100 rounds. 

Parameters in the Evolutionary Algorithm: 
Population size: 121 in the 11 11 grid-world, 
Representation schemes: Three-bit binary strings, and  
     real number strings of length 3, 
Initial population: Randomly generated strings, 
Neighborhood structure NGA(i) for parent selection: 

 Seven structures (Fig. 1 and the grid-world itself), 
Parent selection:  
 Binary tournament selection with replacement, 

Crossover: One-point crossover for binary strings, and  

         BLX- with = 0.25 for real number strings,  
Mutation: Bit-flip mutation for binary strings, and  
        uniform mutation for real number strings, 
Crossover probability: 1.0, 
Mutation probability: 1/(5 121), 
Constraint handling for real number strings: 
 Repair to 1 (if larger than 1) or 0 (if smaller than 0), 
Termination condition: 1000 generations. 

The six neighborhood structures in Fig. 1 were depicted as 
NIPD(i) for Case 2. Thus, in Case 1, Agent i is added to each 

neighborhood structure NIPD(i). Agent i is also included in each 

neighborhood structure NGA(i) for local parent selection.  

All of our experimental results in this section are average 
results over 500 runs for each setting. 

B. Results with Homogeneous Population 

First we show experimental results with a homogeneous 
population of three-bit binary strings. That is, all of the 121 
agents in the 11  11 grid-world use three-bit binary strings. 
Under this setting, we calculate the average payoff of all agents 
over 500 runs through 1000 generations for each of the 7 7 = 
49 combinations of the two neighborhood structures: NIPD(i) 

for local opponent selection in the IPD game and NGA(i) for 

local parent selection in the evolution algorithm for IPD game 
strategies. These computational experiments are performed for 
the two cases of NIPD(i): Case 1 and Case 2. We show 

experimental results in Fig. 2. In Fig. 2, the average payoff is 
slightly decreased by changing from Case 1 to Case 2. In other 
words, the average payoff is slightly decreased by forbidding 
each agent to play against itself. Even in Case 2 (i.e., in Fig. 2 
(b)), the average payoff is always higher than 2.5 independent 
of the specifications of the two neighborhood structures. 

Next we show experimental results with a homogeneous 
population of real number strings. That is, all of the 121 agents 
in the 11 11 grid-world use real number strings of length 3. 
Experimental results are shown in Fig. 3 in the same manner as 
in Fig. 2. The average payoff is much more severely decreased 
by changing from Case 1 to Case 2 in Fig. 3 with real number 
strings than Fig. 2 with binary strings. In Case 2 (i.e., in Fig. 3 
(b)), the average payoff is always lower than 2.0 independent 
of the specifications of the two neighborhood structures. That is, 
the evolution of cooperative behavior among agents with real 
number strings of length 3 is very difficult when each agent is 
not allowed to play against itself (i.e., in Fig. 3 (b) in Case 2). 
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     (a) Experimental results in Case 1.          (b) Experimental results in Case 2. 

Figure 2.  Average payoff obtained from a homogeneous population of 121 

three-bit binary strings. 
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     (a) Experimental results in Case 1.          (b) Experimental results in Case 2. 

Figure 3.  Average payoff obtained from a homogeneous population of 121 

rearl number strings of length 3. 
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        (a) Three-bit binary strings.               (b) Real number strings of length 3. 

Figure 4.  Increase in the average payoff from Case 2 to Case 1. Each agent is 

allowed to play against itself in Case 1 while it is not allowed in Case 2. 

In order to clearly show the effect of allowing each agent to 
play against itself, we calculate the increase in the average 
payoff from Case 2 to Case 1 (i.e., from Fig. 2 (b) to Fig. 2 (a), 
and from Fig. 3 (b) to Fig. 3 (a)). The calculated increase in the 
average payoff is shown in Fig. 4. 

Fig. 4 can be viewed as showing the positive effect of the 
IPD game of each agent against itself on the evolution of 
cooperative behavior in the spatial IPD game. From Fig. 4, we 
can obtain the following observations: 

(i) The effect of allowing each agent to play against itself on 
the evolution of cooperative behavior is large when the 
smallest local opponent selection neighborhood NIPD(i) is 

used in a homogeneous population of real number strings of 
length 3 in Fig. 4 (b). 

(ii) This effect is decreased in Fig. 4 (b) by increasing the size 

of the local opponent selection neighborhood NIPD(i). This 

is because the effect of the IPD game of each agent against 
itself on its expected average payoff is decreased by 

increasing the size of NIPD(i) as explained in Section III. 

(iii) This effect is much smaller in Fig. 4 (a) with three-bit 
binary strings than Fig. 4 (b) with real number strings of 
length 3. This is because the evolution of cooperative 

behavior among three-bit binary strings is not difficult even 
when each agent is not allowed to play against itself in Fig. 
2 (b). However, the evolution of cooperative behavior 
among real number strings of length 3 is very difficult 
when agent is not allowed to play against itself in Fig. 3 (b). 

C. Results with Heterogeneous population 

As in our former studies [8], [9], we randomly choose 50% 
of agents and assign them a three-bit binary string as the 
representation scheme of their IPD strategies. A real number 
string of length 3 is assigned to the remaining agents. An 
example of such a random assignment of the two representation 
schemes is shown in Fig. 5. Each agent continues to use the 
assigned representation scheme during the evolution of game 
strategies with 1000 generations. The assignment of 50% 
binary strings and 50% real number strings to the 121 agents is 
randomly initialized at each of 500 runs for each setting. As in 
the previous subsection, we examine the two cases (i.e., Case 1 
and Case 2) with respect to the local opponent selection 
neighborhood NIPD(i). 

 

Figure 5.  Heterogeneous population with 50% three-bit binary strings 

(closed circles) and 50% real-number strings of length 3 (open circles). In this 

figure, 60 agents have binary strings while 61 agents have real number strings. 

When an offspring strategy is generated for Agent i, a pair 
of parent strategies with the same representation scheme as 
Agent i are selected from its local selection neighborhood 

NGA(i). We never apply any crossover operation to a pair of 

parent strategies with different representation schemes. Since 
Agent i itself is included in NGA(i), NGA(i) always has at least 

one agent with the same representation scheme as Agent i. 
Thus an offspring strategy can be generated for every agent. In 
an extreme situation where all neighbors in NGA(i) have a 

different representation scheme from Agent i, Agent i is always 
selected as a parent to generate its offspring strategy. As a 
result, crossover becomes meaningless. Thus an offspring 
strategy is always generated for Agent i from its current 
strategy by mutation when no other neighbors in NGA(i) have 

the same representation scheme as Agent i. 

With respect to the IPD game between agents with different 
representation schemes, we examine two settings. In one 
setting, the IPD game is performed between two agents 
regardless of their representation schemes. However, in the 
other setting, the IPD game is performed between two agents 
only when they have the same representation scheme. When 
each agent is allowed to play against itself, the local opponent 

selection neighborhood NIPD(i) always includes at least one 

agent (i.e., Agent i itself) with the same representation scheme 
as Agent i. Thus the fitness of Agent i can be always evaluated 



through the execution of the IPD game between Agent i and its 

opponents in NIPD(i). However, when each agent is not allowed 

to play against itself, it is possible that NIPD(i) includes no 

agents with the same representation scheme as Agent i. In this 
situation, the fitness of Agent i cannot be evaluated when the 
IPD game is not played between two agents with different 
representation schemes. Thus an additional troubleshooting 
procedure is needed in such a special situation where the fitness 
of Agent i cannot be evaluated through the IPD game. In our 
computational experiments, we handle such a special situation 
by using a larger neighborhood structure as NIPD(i) only for 

Agent i. For example, the fitness of Agent i cannot be 

evaluated under NIPD(i) of size 4 in Fig. 1 (a), that of size 8 in 

Fig. 1 (b) is used as NIPD(i) only for Agent i. When the fitness 

of Agent i cannot be evaluated under NIPD(i) of size 8 again, 

that of size 12 in Fig. 1 (c) is used as NIPD(i) only for Agent i. 

In this manner, the fitness of each agent is evaluated through 
the execution of the IPD game. It should be noted that this 
trouble shooting procedure is needed only for the following 
setting: Each agent can play the IPD game only against its 
neighbors with the same representation scheme (i.e., each agent 
is not allowed to play the IPD game against itself, and the IPD 
game is not played between agents with different representation 
schemes). 

Experimental results are summarized in Figs. 6-9 for the 
following four settings: 

1. The IPD game is played between two agents with different 
representation schemes. Each agent is allowed to play against 
itself (Case 1). Results are shown in Fig. 6. 

2. The IPD game is played between two agents with different 
representation schemes. Each agent is not allowed to play 
against itself (Case 2). Results are shown in Fig. 7. 

3. The IPD game is not played between two agents with 
different representation schemes. Each agent is allowed to 
play against itself (Case 1). Results are shown in Fig. 8. 

4. The IPD game is not played between two agents with 
different representation schemes. Each agent is not allowed 
to play against itself (Case 2). Results are shown in Fig. 9. 

First, let us compare between Fig. 6 (a) and Fig. 6 (b). 
When a homogeneous population was used, totally different 
results were obtained from three-bit binary strings in Fig. 2 and 
real number strings of length 3 in Fig. 3. However, similar 
results are obtained from these two representation schemes in 
Fig. 6 when a heterogeneous population is used as in Fig. 5 
with 50% binary strings and 50% real number strings. The 
same observation is obtained from Fig. 7. 
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         (a) Three-bit binary strings.               (b) Real number strings of length 3. 

Figure 6.  Average payoff from heterogeneous populations. The IPD game is 

played between two agents with different representation schemes. Each agent 

is allowed to play against itself (i.e., Case 1). 
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         (a) Three-bit binary strings.               (b) Real number strings of length 3. 

Figure 7.  Average payoff from heterogeneous populations. The IPD game is 

played between two agents with different representation schemes. Each agent 

is not allowed to play against itself (i.e., Case 2). 

Now, let us compare between Fig. 6 and Fig. 7. The 
average payoff is increased from Fig. 7 to Fig. 6 by allowing 
each agent to play against itself. We can see that the IPD game 
of each agent against itself has a large positive effect on the 
evolution of cooperative behavior when a small neighborhood 
structure is used as the local opponent selection neighborhood 

NIPD(i) in Fig. 6. This positive effect is similar between the two 

representation schemes (i.e., the increase in the average payoff 
of binary string agents from Fig. 7 (a) to Fig. 6 (a) is similar to 
that of real number string agents from Fig. 7 (b) to Fig. 6 (b)). 

While the IPD game is played between two agents with 
different representation schemes in Fig. 6 and Fig. 7, it is not 
played between two agents with different representation 
schemes in Fig. 8 and Fig. 9. That is, strategies with one 
representation scheme are evolved in Fig. 8 and Fig. 9 
independently from strategies with the other representation 
scheme. Since there exists no interaction between agents with 
different representation schemes, experimental results in Fig. 8 
and Fig. 9 are more similar to Fig. 2 and Fig. 3 with 
homogeneous populations than Fig. 6 and Fig. 7 with the 
interaction between the two representation schemes through the 
IPD game (e.g., Fig. 9 (b) is more similar to Fig. 3 (b) than Fig. 
7 (b)). The effect of allowing each agent to play against itself in 
Fig. 8 and Fig. 9 is also similar to that in Fig. 2 and Fig. 3. 
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         (a) Three-bit binary strings.               (b) Real number strings of length 3. 



Figure 8.  Average payoff from heterogeneous populations. The IPD game is 

not played between two agents with different representation schemes. Each 

agent is allowed to play against itself (i.e., Case 1). 
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         (a) Three-bit binary strings.               (b) Real number strings of length 3. 

Figure 9.  Average payoff from heterogeneous populations. The IPD game is 

not played between two agents with different representation schemes. Each 

agent is not allowed to play against itself (i.e., Case 2). 

In our former studies [8], [9], similar results were obtained 
from different representation schemes when the IPD game was 
played between them in Case 1 (i.e., when each agent is 
allowed to play against itself) as shown in Fig. 6. We can see 
from Fig. 7 that the same observation is obtained in Case 2 (i.e., 
when each agent is not allowed to play against itself). It was 
also observed in [8], [9] that totally different results were 
obtained from different representation schemes when the IPD 
game was not played between different representation schemes 
as shown in Fig. 8. Differences between the two representation 
schemes are more clearly shown in Fig. 9 in Case 2 than Fig. 8 
in Case 1. This is because the positive effect of the IPD game 
of each agent against itself made the experimental results from 
the two representation schemes similar to each other when 

NIPD(i) is very small (e.g., compare the experimental results 

between Fig. 8 (a) and Fig. 8 (b) for NIPD(i) of size 5). 

V. CONCLUSIONS 

In this paper, we examined the effect of allowing each 
agent to play against itself in the spatial IPD game. It was 
clearly shown through computational experiments that the IPD 
game of each agent against itself has a large positive effect on 
the evolution of cooperative behavior when the local opponent 
selection neighborhood is small. This is because (i) each agent 
is more likely to play against itself under a smaller local 
opponent selection neighborhood and (ii) cooperative strategies 
can get a high average payoff from the IPD game against 
themselves. When we removed this positive effect (i.e., when 
we did not allow each agent to play against itself), the 
evolution of cooperative behavior became very difficult among 
agents with real number strings of length 3. However, a high 
average payoff was still obtained from real number agents 
when they were played against binary string agents in a 
heterogeneous population of 50% binary string agents and 50% 
real number string agents. Moreover, similar experimental 
results were obtained from those two representation schemes in 
such a heterogeneous population when the IPD game was 
played between them independent of the setting about the IPD 
game of each agent against itself. 

We also discussed the handling of a special situation where 
an agent has no qualified opponent in its local opponent 
selection neighborhood. In our computational experiments, we 
handled such a situation by using a lager neighborhood 
structure. This idea can be also used for local parent selection 
when an agent has no qualified parents in its local parent 
selection neighborhood except for the agent itself. This is left 
as a future research topic.  

When each agent is allowed to play against itself, the size 
of the local opponent selection neighborhood has a dominant 
effect on the evolution of cooperative behavior. That is, a high 
average payoff is almost always obtained when we use a very 
small neighborhood for local opponent selection. However, 
when each agent is not allowed to play against itself, the size of 
the local opponent selection neighborhood does not have such a 
dominant effect. As a result, we will be able to examine more 
clearly the effect of other settings such as the size of the local 
parent selection neighborhood and the percentage of agents 
with each representation scheme while forbidding each agent to 
play the IPD game against itself. Examination of the effect of 
those settings on the evolution of cooperative behavior is also 
left for future study. Of course, the use of heterogeneous 
populations with more than two representation schemes is also 
an interesting future research issue.  
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