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Abstract—We examine the evolution of strategies for a spatial 

IPD (Iterated Prisoner’s Dilemma) game, which are encoded 

using different representation schemes. Each agent at a cell in a 

two-dimensional grid-world has its own representation scheme 

for encoding its strategy. In general, strategies with different 

representation schemes cannot be recombined. Thus a population 

of agents can be viewed as a mixture of different species (i.e., an 

ecology with different species). When the size of a neighborhood 

structure is small and/or the number of representation schemes is 

large, it is likely that some agents have no neighbors with the 

same representation scheme. We discuss the handling of those 

agents because they cannot generate their new strategies through 

recombination. In computational experiments, we use four types 

of strings (i.e., four representation schemes). Agents in our spatial 

IPD game are randomly divided into four groups of the same size. 

One string type is assigned to each group. Recombination is 

performed between strings of neighboring agents with the same 

string type. With respect to the IPD game, we compare two 

settings with each other. In one setting, the IPD game is played 

between any pair of neighboring agents regardless of their string 

types. In the other setting, it is played only between neighboring 

agents with the same string type. Using these two settings, we 

examine the effect of the IPD game between agents with different 

representation schemes on strategy evolution. We also examine 

the effect of the number of different representation schemes in a 

population (i.e., the number of species) on strategy evolution.  

Keywords - Iterated prisoner’s dilemma games, spatial IPD 

games, evolutionary games, evolution of game strategies, encoding, 

representation schemes 

I.  INTRODUCTION 

Recently Ashlock et al. [1]-[3] clearly demonstrated that the 
choice of a representation scheme for encoding IPD (Iterated 
Prisoner’s Dilemma) game strategies has large effects on the 
evolution of cooperative behavior. Totally different results 
were obtained from different representation schemes in their 
studies. Spatial structures of agents also have large effects on 
the evolution of cooperative behavior. In our former study on a 
spatial IPD game [4], we examined the effect of using two 
neighborhood structures: One is for local parent selection for 

recombination in strategy evolution and the other is for local 
opponent selection in the IPD game. It was demonstrated in [4] 
that the use of a small neighborhood structure for opponent 
selection had a large positive effect on the evolution of 
cooperative behavior. 

In most studies on the evolution of IPD game strategies, the 
same representation scheme was assigned to all agents. Even 
when different representation schemes were examined through 
computational experiments, a single representation scheme was 
assigned to all agents in each run (while a different scheme was 
used in a different run). In contrast to those studies, two 
representation schemes were simultaneously used in each run 
in our former studies [5], [6]. Agents were divided into two 
sub-populations with different representation schemes. As a 
result, a population of agents was a mixture of two species. The 
main observation in [5], [6] was that similar results were 
obtained from different representation schemes when they were 
used in a single run. When those representation schemes were 
used separately in different runs, totally different results were 
obtained as in [1]-[3]. 

In our former studies [5], [6], we examined a mixture of 
two representation schemes. In this paper, we examine a case 
with four representation schemes. Agents in a two-dimensional 
grid-world are divided into four sub-populations. A different 
representation scheme is assigned to a different sub-population. 
When we use many representation schemes, it is likely that 
some agents have no neighbors with the same representation 
scheme. We cannot generate new strategies for those agents by 
recombination since no neighbors have the same representation 
scheme. Only mutation can be used to generate new strategies. 
It is also impossible for those agents to find their opponents 
with the same representation scheme among their neighbors 
when they play the IPD game.  

This difficulty did not become clear in [5], [6] because we 
used only two representation schemes. We also allowed each 
agent to play the IPD game against itself. This means that each 
agent had at least one opponent (i.e., that agent itself) with the 
same representation scheme. Thus computational experiments 
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could be performed in [5], [6] under the following setting: The 
IPD game was played only between neighbors with the same 
representation scheme. However, the IPD game of each agent 
against itself is somewhat strange since we do not play any 
games against ourselves in our everyday life. Moreover, the 
IPD game of each agent against itself has a strong bias towards 
cooperation when a small neighborhood structure is used for 
local opponent selection [7]. In this paper, we do not allow any 
agent to play the IPD game against itself in a population with 
four different representation schemes where some agents have 
no neighboring opponents with the same representation scheme. 

In order to avoid the above-mentioned difficulty (i.e., some 
agents have no qualified mates for recombination or qualified 
opponents for the IPD game), we use a following simple trick 
in our computational experiments: When an agent has no 
neighbors with the same representation scheme, we use a larger 
neighborhood structure for that agent. In this manner, the 
following situation is always maintained in our computational 
experiments: Each agent has at least one neighboring agent 
with the same representation scheme. 

This paper is organized as follows. In Section II, we briefly 
explain our spatial IPD game with two neighborhood structures 
(i.e., one for local opponent selection in the IPD game and the 
other for local parent selection in strategy evolution). We also 
explain four representation schemes of IPD game strategies in 
Section II. In Section III, we explain the setting of our 
computational experiments where IPD game strategies are 
evolved. We examine various specifications with respect to the 
assignment of representation schemes to agents. In Section IV, 
we report experimental results. We discuss the effect of using 
different representation schemes in a single population on the 
evolution of IPD game strategies. Finally we conclude this 
paper in Section V. 

II. SPATIAL IPD GAME AND REPRESENTATION SCHEMES 

A. IPD Game 

We use a standard payoff matrix of the prisoner’s dilemma 
game in Table I. For example, if both the agent and the 
opponent cooperate, they receive three points (i.e., “Agent: 3” 
and “Opponent: 3” in Table I). The agent receives the highest 
payoff of five by defecting when the opponent cooperates (i.e., 
“Agent: 5” and “Opponent: 0” in Table I). The prisoner’s 
dilemma game is iterated for 100 rounds in our computational 
experiments in this paper. 

TABLE I.  STANDARD PAYOFF MATRIX OF PRISONER’S DILEMMA GAME. 

Agent’s 

Action 

Opponent’s Action 

C: Cooperate D: Defect 

C: Cooperate 
Agent: 3 

Opponent: 3 

Agent: 0 

Opponent: 5 

D: Defect 
Agent: 5 

Opponent: 0 

Agent: 1 

Opponent: 1 

 

B. IPD Game Strategies 

An agent’s strategy determines its next action based on a 
finite memory about previous actions. In this paper, we use the 

following four types of strings (i.e., four representation 
schemes) to represent IPD game strategies: 

Binary strings of length 3, 
Real number strings of length 3, 
Binary strings of length 7, 
Real number strings of length 7. 

In binary strings, “0” and “1” represent “D: Defect” and “C: 
Cooperate”, respectively. Binary strings of length 3 determine 
the next action based on the opponent’s previous action. In 
Table II, we show a binary string of length 3 “101” called TFT 
(tit-for-tat). The TFT in Table II encoded as “101” cooperates 
at the first round and then cooperates at each round only when 
the opponent cooperated in the previous round.  

TABLE II.  TFT BY THE BINARY STRING OF LENGTH 3: “101”. 

Agent’s first action: Cooperate 1 

Opponent’s previous action Suggested action  

D: Defect D: Defect 0 

C: Cooperate C: Cooperate 1 

 

Each bit value of binary strings of length 3 can be viewed 
as the probability of cooperation. For example, the first bit 
value “1” of “101” in Table II can be viewed as the probability 
of cooperation at the first round. Using this interpretation, we 
can generalize binary strings to real number strings. For 
example, “0.2 0.1 0.9” cooperates with the probability 0.2 in 
the first round, cooperates with the probability 0.1 in response 
to the opponent’s defection, and cooperates with the probability 
0.9 in response to the opponent’s cooperation.  

Binary strings of length 7 determine the next action based 
on the opponent’s previous two actions. In Table III, the TFT 
strategy “101” in Table II is shown as a binary string of length 
7 “1010101”. The first bit “1” specifies the action in the first 
round. The next two bits “01” determine the action in the 
second round depending on the opponent’s action in the first 
round. The remaining four bits “0101” determine the action in 
each of the other rounds depending on the opponent’s previous 
two actions. Another example is shown in Table IV where the 
binary string “1110111” defects only when the opponent 
defects in the previous two rounds. Binary strings of length 7 
can be easily generalized to real number strings of length 7. 

 

TABLE III.  TFT BY THE BINARY STRING OF LENGTH 7: “1010101”. 

Agent’s first action: Cooperate 1 

Opponent’s previous action Suggested action  

D: Defect D: Defect 0 

C: Cooperate C: Cooperate 1 

Opponent’s previous two actions Suggested action  

D: Defect  and  D: Defect D: Defect 0 

D: Defect  and  C: Cooperate C: Cooperate 1 

C: Cooperate  and  D: Defect D: Defect 0 

C: Cooperate  and  C: Cooperate C: Cooperate 1 

 

TABLE IV.  ANOTHER BINARY STRING OF LENGTH 7 “1110111”. 



Agent’s first action: Cooperate 1 

Opponent’s previous action Suggested action  

D: Defect C: Cooperate 1 

C: Cooperate C: Cooperate 1 

Opponent’s previous two actions Suggested action  

D: Defect  and  D: Defect D: Defect 0 

D: Defect  and  C: Cooperate C: Cooperate 1 

C: Cooperate  and  D: Defect C: Cooperate 1 

C: Cooperate  and  C: Cooperate C: Cooperate 1 

C. Spatial IPD Game with Two Neighborhood Structures 

We use an 11 11 grid-world with the torus structure. The 
number of agents is 121, which is the same as the number of 
cells in the 11  11 grid-world. In our spatial IPD game, 
opponents of each agent are selected from its neighbors. Let us 
denote the set of neighbors of Agent i by NIPD(i) for local 

opponent selection. That is, NIPD(i) is a neighborhood structure 

for local opponent selection. As we have already explained, 
any agent is not allowed to play the IPD game against itself. 

This means that NIPD(i) does not include Agent i itself. 

In Fig. 1, we show six neighborhood structures used as 
NIPD(i) in this paper. The six neighborhood structures in Fig. 1 

include 4, 8, 12, 24, 40 and 48 neighbors, respectively. We also 

examine an extreme specification of NIPD(i) for Agent i where 

all the other 120 agents in the 11 11 grid-world are included 
in NIPD(i). That is, we examine the seven specifications of 

NIPD(i) including 4, 8, 12, 24, 40, 48 and 120 neighbors. 

                                   
        (a) Size 4.   (b) Size 8.                 (c) Size 12. 

                             
       (d) Size 24.  (e) Size 40.           (f) Size 48. 

Figure 1.  Six neighborhood structures used as NIPD(i). 

In our computational experiments, all neighbors in NIPD(i) 

are selected as opponents of Agent i when NIPD(i) includes five 

or less neighbors as in Fig. 1 (a). When NIPD(i) includes more 

than five neighbors as in Fig. 1 (b)-(f), five neighbors are 
randomly selected from NIPD(i) as opponents of Agent i (i.e., 

random sampling of five neighbors from NIPD(i) without 

replacement). The fitness value of the strategy of Agent i is 
calculated as the average payoff from the IPD game against all 
the selected opponents.  

A new strategy for each agent is generated from strategies 
of its neighbors through selection, crossover and mutation. 
Parent strategies are selected for each agent from its neighbors. 

Let NGA(i) be a set of neighbors of Agent i for local parent 

selection. That is, NGA(i) is a neighborhood structure for local 

parent selection. A new strategy of Agent i can be generated 

from its current strategy. Thus NGA(i) includes Agent i itself. In 

our computational experiments, we examine six specifications 
of NGA(i) corresponding to the six neighborhood structures for 

NIPD(i) in Fig. 1 (note that NGA(i) includes Agent i while 

NIPD(i) does not include Agent i). We also examine an extreme 

specification of NGA(i), which includes all the 121 agents in the 

11 11 grid-world. 

III. COMPUTATIONAL EXPERIMENTS 

A. Evolution of IPD Game Strategies 

In each trial of strategy evolution (i.e., in each run in our 
computational experiments), one of the four types of strings is 
assigned to each agent. The assigned type of strings is never 
changed during strategy evolution in each trial. An initial 
strategy is randomly generated for each agent. For binary 
strings, each bit is randomly specified as 0 or 1 with the same 
probability. Real numbers are randomly specified using the 
uniform distribution over the unit interval [0, 1]. The fitness 
value of each agent is calculated as the average payoff obtained 
from the IPD game with 100 rounds against opponents in its 
local opponent selection neighborhood. 

After the fitness calculation for all agents is completed, two 
parents are selected for each agent from its local parent 
selection neighborhood using binary tournament selection with 
replacement. A new strategy is generated through crossover 
and mutation from the selected two parents for each agent. For 
binary strings, we use one-point crossover and bit-flip mutation. 

For real number strings, we use blend crossover (BLX- [8]) 

with  = 0.25 and uniform mutation. If a real number becomes 
more than 1 (or less than 0) by the crossover operator, it is 
repaired to be 1 (or 0) before the mutation. The same crossover 
probability 1.0 and the same mutation probability 1/(5 121) 
are used for binary and real number strategies. 

The current strategy of each agent is replaced with a newly 
generated one for that agent. The fitness evaluation and the 
generation update are iterated for 1000 generations. 

B. Expansion of Neighborhood Structures 

When we use many representation schemes, it is almost 
always the case that some agents have no neighbors with the 
same representation scheme in their local parent selection 
neighborhood. This means that those agents have no mates for 
recombination. That is, recombination is never used to generate 
new strategies for those agents. In this case, we expand the 
local parent selection neighborhood of those agents. 

Let us assume that the local parent selection neighborhood 

NGA(i) of Agent i includes no neighbors with the same 

representation scheme as Agent i. In this case, we expand 
NGA(i) in the following order: Fig. 1 (a) => Fig. 1 (b) => ... => 

Fig. 1 (f). For example, if NGA(i) with eight neighbors in Fig. 1 

(b) includes no neighbors with the same representation scheme 

as Agent i, NGA(i) is expanded from Fig. 1 (b) to Fig. 1 (c). If 



NGA(i) in Fig. 1 (c) still has no neighbors with the same 

representation scheme as Agent i, it is further expanded from 

Fig. 1 (c) to Fig. 1 (d). In this manner, NGA(i) of each agent is 

expanded until NGA(i) includes at least one neighbor with the 

same representation scheme as Agent i. As a result, each agent 
may have its own local parent selection neighborhood structure 
of a different size in our computational experiments.  

With respect to the IPD game, we examine the following 
two settings. In one setting, the IPD game is played between 
two neighbors regardless of their representation schemes. In the 
other setting, the IPD game is played between neighbors only 
when they have the same representation scheme. That is, Agent 
i can play the IPD game only against its neighbors with 
strategies of the same string type. In this setting, the fitness 
value of Agent i cannot be evaluated through the IPD game if it 
has no neighbors with the same representation scheme in 

NIPD(i). In this case, we expand the local opponent selection 

neighborhood NIPD(i) in the same manner as NGA(i). That is, if 

NIPD(i) has no neighbors with the same representation scheme 

as Agent i under the latter setting (i.e., the IPD game is played 
only between neighbors with the same representation scheme), 
NIPD(i) is expanded in the following order: Fig. 1 (a) => Fig. 1 

(b) =>  ...  => Fig. 1 (f). As a result, each agent may have its 
own local opponent selection neighborhood structure of a 
different size in our computational experiments. It should be 
noted that local opponent selection neighborhood is never 
expanded under the former setting (i.e., when the IPD game 
can be played between any neighbors regardless of their 
representation schemes). 

C. Settings of Computational Experiments 

As we have already mentioned, we use the following four 
representation schemes: 

Four Representation Schemes 
Binary strings of length 3, 
Real number strings of length 3, 
Binary strings of length 7, 
Real number strings of length 7. 

We examined the following three cases with respect to the 
assignment of representation schemes to agents: 

Homogeneous Case with a Single Representation Scheme: 
A single representation scheme is assigned to all of the 121 

agents in our spatial IPD game with the 11  11 grid-world. 
Since we have the four representation schemes, four settings 
are examined. In each setting, one of the four representation 
schemes is assigned to all agents.  

Heterogeneous Case with Two Representation Schemes: 
Two types of strings of the same length are used by agents 

as their representation schemes. We examine two settings with 
respect to string length: length 3 and length 7. In one setting, 
binary or real number strings of length 3 are assigned to each 
agent as its representation scheme. More specifically, we first 
randomly choose 60 agents from the 11 11 grid-world. Then 
we assign binary strings of length 3 to the selected 60 agents 
(and real number strings of length 3 to the remaining 61 agents) 
as their representation schemes. In each trial of strategy 

evolution, the random selection of 60 agents is updated. In the 
other setting, binary or real number strings of length 7 are 
assigned to each agent in the same manner as in the case of 
length 3 strings. For each setting with respect to string length, 
we examine the two settings with respect to the IPD game (as 
we have just explained in the previous subsection: with/without 
the IPD game between different representation schemes). 

Heterogeneous Case with Four Representation Schemes: 
One of the four types of strings is assigned to each agent as 

its representation scheme. More specifically, first 121 agents in 
the 11  11 grid-world are randomly divided into four sub-
populations with 30, 30, 30 and 31 agents. One of the four 
types of strings is assigned to all agents in each sub-population. 
In each trial of strategy evolution, the random partition into 
four sub-populations is updated. The two settings with respect 
to the IPD game (i.e., with/without the IPD game between 
different representation schemes) are examined for such a 
heterogeneous population with the four types of strings. 

In our computational experiments, average results are 
calculated over 500 trials of strategy evolution for each setting 
(i.e., over 500 runs of a cellular genetic algorithm for strategy 
evolution). In each run, we use the following specifications: 

Parameters for the IPD Game: 
Grid-world: 11 11 grid-world with the torus structure, 
Number of agents: 121, 

Neighborhood structure NIPD(i) for opponent selection: 

 Seven structures (Fig. 1 and the grid-world itself), 
Number of opponents: Maximum five neighbors, 
Number of rounds in the IPD game: 100 rounds. 

Parameters for Strategy Evolution: 
Population size: 121 in the 11 11 grid-world, 
Representation schemes:  
 Binary and real number strings of length 3 and 7, 
Initial population: Randomly generated strings, 
Neighborhood structure NGA(i) for parent selection: 

 Seven structures (Fig. 1 and the grid-world itself), 
Parent selection:  
 Binary tournament selection with replacement, 
Crossover: One-point crossover for binary strings, and  

         BLX- with = 0.25 for real number strings,  
Mutation: Bit-flip mutation for binary strings, and  
        uniform mutation for real number strings, 
Crossover probability: 1.0, 
Mutation probability: 1/(5 121), 
Constraint handling for real number strings: 
 Repair to 1 (if larger than 1) or 0 (if smaller than 0), 
Termination condition: 1000 generations. 

As we have already explained, NIPD(i) of Agent i for local 

opponent selection does not include Agent i itself while NGA(i) 

for local parent selection includes Agent i. 

IV. EXPERIMENTAL RESULTS 

A. Results using a Single Representation Scheme 

First we report experimental results using a homogeneous 
population with a single representation scheme. One of the four 
representation schemes is assigned to all agents. The average 



payoff over all agents is calculated through 1000 generations of 
500 runs. This calculation is performed for each of the 7 7 
combinations of the two neighborhood structures: NIPD(i) for 

local opponent selection and NGA(i) for local parent selection. 

Computational experiments are performed for each of the four 
representation schemes. Experimental results are summarized 
in Fig. 2. The vertical axis is the average payoff while the base 
plane shows the 7 7 combinations of the two neighborhood 
structures. In Fig. 3, we show the average payoff at the 1000th 
generation (while Fig. 2 shows the average payoff over 1000 
generations). We can see that the choice of a representation 
scheme has a large effect on the average payoff. That is, the 
evolution of cooperative behavior strongly depends on the 
choice of a representation scheme for encoding IPD game 
strategies. The highest average results are obtained from binary 
strings of length 3 among the four types of strings. We observe 
no large differences between the average results over 1000 
generations and those at the 1000th generation. In the following, 
we report only the average results over 1000 generations. 
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         (a) Binary strings of length 3.           (b) Real number strings of length 3. 
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         (c) Binary strings of length 7.           (d) Real number strings of length 7. 

Figure 2.  Average payoff over 1000 generations from a homogeneous 
population with a single representation scheme. 
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      (a) Binary strings of length 3.           (b) Real number strings of length 3. 
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      (c) Binary strings of length 7.           (d) Real number strings of length 7. 

Figure 3.  Average payoff at the 1000th generation from a homogeneous 
population with a single representation scheme. 

B. Results using Two Representation Schemes 

Next we report experimental results by a mixture of two 
types of strings of the same length. Fig. 4 and Fig. 5 show the 
average payoff over 1000 generations from a mixture of binary 
and real number strings of length 3. The IPD game is not 
played between agents with different representation schemes in 
Fig. 4 while it is played regardless of representation schemes in 
Fig. 5. That is, there exists no interaction between binary and 
real number strings in Fig. 4 while these two types of strings 
interact with each other through the IPD game in Fig. 5.  
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         (a) Binary strings of length 3.           (b) Real number strings of length 3. 

Figure 4.  Results from a mixture of binary and real number strings of length 

3 (without the IPD game between binary and real number strings of length 3).  
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         (a) Binary strings of length 3.           (b) Real number strings of length 3. 

Figure 5.  Results from a mixture of binary and real number strings of length 

3 (with the IPD game between binary and real number strings of length 3).  

In Fig. 4, strategies with one type of stings are evolved 
independently from those with the other type of strings. Thus 
the experimental results are totally different between Fig. 4 (a) 
and Fig. 4 (b). The average payoff in Fig. 4 (a) is decreased 



from Fig. 2 (a). This is because the population size and the 

number of qualified mates in NGA(i) in Fig. 4 (a) are actually a 

half of those in Fig. 2 (a). The negative effect of the decrease in 
the number of qualified mates in NGA(i) is prominent when the 

size of NGA(i) is five (i.e., the left-most seven bars in Fig. 4 (a)). 

In Fig. 5, the two types of strings are interacted with each 
other through the IPD game. This interaction leads to similar 
results in Fig. 5 (a) and Fig. 5 (b). From Fig. 4 and Fig. 5, we 
can see that the interaction through the IPD game leads to a 
large increase in the average payoff of real number strings from 
Fig. 4 (b) to Fig. 5 (b) at the cost of small decrease in the 
average payoff of binary strings from Fig. 4 (a) to Fig. 5 (a). 

As in Fig. 4 and Fig. 5, we show experimental results by a 
mixture of binary and real number strings of length 7 in Fig. 6 
and Fig. 7. Similar results are obtained in Fig. 7 (a) and Fig. 7 
(b) from the two types of length 7 strings when they are 
interacted with each other through the IPD game. In the case of 
no interaction between them, Fig. 6 (a) and Fig. 6 (b) are totally 
different from each other. We can also see that the 
experimental results by length 3 strings in Fig. 4 and Fig. 5 are 
similar to those by length 7 strings in Fig. 6 and Fig. 7. A 
slightly higher average payoff is obtained from length 3 strings 
in Fig. 5 than length 7 strings in Fig. 7. 
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         (a) Binary strings of length 7.           (b) Real number strings of length 7. 

Figure 6.  Results from a mixture of binary and real number strings of length 

7 (without the IPD game between binary and real number strings of length 7).  
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         (a) Binary strings of length 7.           (b) Real number strings of length 7. 

Figure 7.  Results from a mixture of binary and real number strings of length 

7 (with the IPD game between binary and real number strings of length 7).  

C. Results using Four Representation Schemes 

Finally we report experimental results by a mixture of the 
four types of strings. In Fig. 8, we show experimental results 
with no interaction among the four types of strings. Strategies 
with each type of strings are evolved independently from those 

with the other three types. In Fig. 8, a high average payoff 
close to 3.0 is not obtained. This may be because the number of 
agents with each string type is small (i.e., 30 or 31). When 
binary strings of length 3 were assigned to all of the 121 agents, 
we almost always obtained a high average payoff close to 3.0 
in Fig. 2 (a) in Subsection IV.A. Even when this type of strings 
was randomly assigned to a half of the 121 agents, a high 
average payoff close to 3.0 was obtained in Fig. 4 (a) in 
Subsection IV.B. However, the average payoff in Fig. 8 (a) by 
binary strings of length 3 is not so high (i.e., it is lower than Fig. 
1 (a) and Fig. 4 (a)). Moreover, negative effects of using small 

parent selection neighborhood NGA(i) are prominent when 

NGA(i) includes 5 or 9 neighbors in Fig. 8 (a) and Fig. 8 (c). 

This is because only a quarter of neighbors in NGA(i) are 

qualified mates of Agent i in recombination.  

Fig. 9 shows the average payoff of agents with each type of 
strings when the IPD game is performed between neighbors 
regardless of their string types. It is interesting to observe that 
similar results are obtained from the four types of strings in Fig. 
9 where agents with different types of strings are interacted 
with each other through the IPD game. 
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         (a) Binary strings of length 3.           (b) Real number strings of length 3. 
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         (c) Binary strings of length 7.           (d) Real number strings of length 7. 

Figure 8.  Average payoff from a mixture of the four types of strings (without 
the IPD game between agents with different representation schemes). 

Average

Payoff

3.0

2.5

2.0

1.5

1.0
4

8
12

24
40

48
120 5

9
13

25
41

49
121

Average

Payoff

3.0

2.5

2.0

1.5

1.0
4

8
12

24
40

48
120 5

9
13

25
41

49
121

 



         (a) Binary strings of length 3.           (b) Real number strings of length 3. 
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         (c) Binary strings of length 7.           (d) Real number strings of length 7. 

Figure 9.  Average payoff from a mixture of the four types of strings (with 
the IPD game between agents with different representation schemes). 

In Fig. 9, it is also interesting to observe that the size of 

opponent selection neighborhood NIPD(i) has almost no effect 

on the average payoff in Fig. 9. From the comparison between 
Fig. 8 and Fig. 9, we can see that a higher average payoff is 
obtained for almost all combinations of NIPD(i) and NGA(i) 

from Fig. 9 with the interaction between different types of 
strings through the IPD game than Fig. 8 with no interaction. 
That is, the interaction among the four types of strings through 
the IPD game increases the average payoff of agents from Fig. 
8 to Fig. 9.  

D. Discussions on Experimental Results 

In order to compare all experimental results reported in this 
section, we calculate the overall average payoff over all the 121 
agents regardless of their types of strings in all IPD games for 

all combinations of NIPD(i) and NGA(i). For example, the 

overall average payoff is calculated over all experimental 
results in Fig. 9 (i.e., over all experimental results related to all 
bars in the four plots in Fig. 9 (a)-(d)). The calculated overall 
average payoff is summarized in Table V. The third column 
shows the number of agents with each type of strings in a 
population. For example, “121(B3)” means a population of 121 
agents with binary strings of length 3 while “60(B3), 61(R3)” 
means a mixture of 60 agents with binary strings of length 3 
and 61 agents with real number strings of length 3. The last 
column of Table V shows the interaction between different 
species (i.e., between agents with different string types). 

TABLE V.  OVERALL AVERAGE PAYOFF OVER ALL AGENTS.  

Average 
Payoff 

Corresponding 
Figure 

Number of Agents  
with Each Type of Strings 

Interaction 
between Species 

2.76 Fig. 2 (a) 121(B3) - 

1.40 Fig. 2 (b) 121(R3) - 

2.64 Fig. 2 (c) 121(B7) - 

1.59 Fig. 2 (d) 121(R7) - 

1.98 Fig. 4 (a)-(b) 60(B3), 61(R3) No Interaction 

2.28 Fig. 5 (a)-(b) 60(B3), 61(R3) IPD Game 

2.06 Fig. 6 (a)-(b) 60(B7), 61(R7) No Interaction 

2.01 Fig. 7 (a)-(b) 60(B7), 61(R7) IPD Game 

1.87 Fig. 8 (a)-(d) 30(B3), 30(R3), 30(B7), 31(R7) No Interaction 

2.18 Fig. 9 (a)-(d) 30(B3), 30(R3), 30(B7), 31(R7) IPD Game 

 

The first four values of the average payoff in Table V show 
that the evolution of IPD game strategies strongly depends on 

the choice of a representation scheme (when the selected 
representation scheme is used by all agents). When we use a 
mixture of two string types of length 3, the interaction between 
different representation schemes through the IPD game 
increases the overall average payoff by 0.30 from 1.98 to 2.28 
(see the next two values of the average payoff corresponding to 
Fig. 4 (a)-(b) and Fig. 5 (a)-(b)). When we use the four 
representation schemes (i.e., in the last two rows of Table V), 
the interaction through the IPD game increases the overall 
average payoff by 0.31 from 1.87 to 2.18.  

In order to further examine the evolution of IPD game 
strategies, we monitor the percentage of each strategy at each 
generation for binary strings of length 3. It should be noted that 
this representation scheme can represent only eight strategies: 
000 (ALLD: always defect), 001, 010, 011, 100, 101 (TFT), 
110, 111 (ALLC: always cooperate). We calculate the average 
percentage of each strategy at each generation in the five 
settings with this representation scheme in Table V (i.e., the 
five settings with “B3” in Table V). We use experimental 

results from the combination of |NIPD(i)| = 12 and |NGA(i)| =13 

because this seems to be one of the best combinations with a 
high average payoff in all the five settings (i.e., in Fig. 2 (a), 
Fig. 4 (a), Fig. 5 (a), Fig. 8 (a) and Fig. 9 (a)). 

Experimental results are summarized in Figs. 10-12. In Fig. 
10, all agents have binary strings of length 3. We can see from 
Fig. 10 that their strategies are evolved to “101” (TFT) and 
“111” (ALLC). It should be noted that exactly the same payoff 
is obtained from “111” and “101” when there exist no other 
strategies in the population. Thus these two strategies have the 
same fitness value in their population. As a result, both 
strategies can exist in the same population (if no other 
strategies are generated by mutation). 
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Figure 10.  Percentage of each strategy among 121 binary strings of length 3. 
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(a) With no IPD game against 61 real number strings of length 3. 
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(b) With the IPD game against 61 real number strings of length 3. 

Figure 11.  Percentage of each strategy among 60 binary strings of length 3. 
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(a) With no IPD game against 91 agents with the other representation schemes. 
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(b) With the IPD game against 91 agents with the other representation schemes. 

Figure 12.  Percentage of each strategy among 30 binary strings of length 3. 

In Fig. 11 (a) and Fig. 12 (a), agents with binary strings of 
length 3 evolve their strategies independently from other agents 
with different representation schemes. Thus agents with this 
representation scheme in Fig. 10, Fig. 11 (a) and Fig. 12 (a) can 
be viewed as having similar environments. As a result, their 
strategies are evolved towards “111” and “101” in a somewhat 
similar manner (the evolution in Fig. 12 (a) is not easy). 

In Fig. 11 (b) and Fig. 12 (b), agents with binary strings of 
length 3 play the IPD game with stochastic strategies (i.e., real 
number strings). Thus agents in Fig. 11 (b) and Fig. 12 (b) can 
be viewed as having similar environments, which are different 
from Fig. 11 (a) and Fig. 12 (a). As a result, Fig. 11 (b) and Fig. 

12 (b) are somewhat similar to each other and different from 
Fig. 11 (a) and Fig. 12 (a). For example, we can see that the 
average percentage of “111” is much smaller in Fig. 11 (b) and 
Fig. 12 (b) than Fig. 11 (a) and Fig. 12 (a). This may be 
because “111” cannot appropriately handle probabilistic 
strategies represented by real number strings. 

V. CONCLUSIONS 

We discussed the evolution of strategies for a spatial IPD 
game where each agent has a different representation scheme. 
A population of agents in our IPD game can be viewed as a 
mixture of different species (i.e., ecology since strings of 
different representation schemes are not recombined). The 
main difficulty in computational experiments using a mixture 
of different species is the decrease in the number of qualified 
neighbors as mates for recombination. That is, some agents 
may have no neighbors with the same representation scheme. 
In this case, those agents cannot generate their new strategies 
by recombination. If agents are not allowed to play the IPD 
game against their neighbors with different representation 
schemes, some agents may have no opponents to play the IPD 
game. In this paper, we proposed an idea of using a larger 
neighborhood structure only for those agents who have no 
neighbors with the same representation scheme.  

Using this idea, we examined the evolution of IPD game 
strategies through computational experiments where the three 
settings were compared: a homogeneous population of a single 
type of strings, a heterogeneous population of two types of 
strings, and a heterogeneous population of four types of strings. 
It was demonstrated that similar results were obtained from 
different types of strings when they were used in a 
heterogeneous population with the IPD game between different 
types of strings. It was also demonstrated that the IPD game 
between different types of strings increased the average payoff 
in a heterogeneous population of four types of strings. 

Whereas we reported some interesting results, we could not 
clearly explain why those results were obtained (e.g., why 
similar results were obtained from the four representation 
schemes in Fig. 9). In our computational experiments, we 
always used the 11 11 grid-world. A larger grid-world may be 
needed when we examine five or more representation schemes. 
In this paper, we only used string-based representation schemes. 
It would be interesting if we could examine a variety of 
representation schemes (e.g., decision trees and neural 
networks). All of these studies are left as future research topics. 
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