
Interactive evolutionary computation
with minimum fitness evaluation requirement
and offline algorithm design
Hisao Ishibuchi, Takahiko Sudo and Yusuke Nojima*

Background
Interactive evolutionary computation (IEC) is a class of evolutionary algorithms, which
are based on subjective fitness evaluation by a human user (Takagi 2001). IEC is a prom-
ising research area in the field of evolutionary computation (EC). In IEC, no explicit fit-
ness function is assumed since each solution is subjectively evaluated by a human user. A
number of successful applications of IEC have been reported in the literature (Arevalillo-
Herráez et al. 2011; Cho 2002, 2004; Kim and Cho 2000; Lai and Chen 2011; Lameijer
et al. 2006). In a typical scenario of IEC, a small number of solutions (e.g., a population
of ten solutions) are shown to a human user. He/she is supposed to assign one of a pre-
specified set of ranks (e.g., 1: very bad, 2: bad, 3: average, 4: good, 5: very good) to each
solution in the population. In this scenario, it is implicitly assumed that a human user

Abstract

In interactive evolutionary computation (IEC), each solution is evaluated by a human
user. Usually the total number of examined solutions is very small. In some applica-
tions such as hearing aid design and music composition, only a single solution can be
evaluated at a time by a human user. Moreover, accurate and precise numerical evalu-
ation is difficult. Based on these considerations, we formulated an IEC model with the
minimum requirement for fitness evaluation ability of human users under the follow-
ing assumptions: They can evaluate only a single solution at a time, they can memorize
only a single previous solution they have just evaluated, their evaluation result on
the current solution is whether it is better than the previous one or not, and the best
solution among the evaluated ones should be identified after a pre-specified number
of evaluations. In this paper, we first explain our IEC model in detail. Next we propose
a (µ+ 1)ES-style algorithm for our IEC model. Then we propose an offline meta-level
approach to automated algorithm design for our IEC model. The main feature of our
approach is the use of a different mechanism (e.g., mutation, crossover, random initiali-
zation) to generate each solution to be evaluated. Through computational experiments
on test problems, our approach is compared with the (µ+ 1)ES-style algorithm where
a solution generation mechanism is pre-specified and fixed throughout the execution
of the algorithm.

Keywords: Interactive evolutionary computation, Interactive algorithms, Automatic
algorithm design, Meta-level evolutionary algorithms

Open Access

© 2016 Ishibuchi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Ishibuchi et al. SpringerPlus (2016) 5:192
DOI 10.1186/s40064-016-1789-1

*Correspondence: nojima@
cs.osakafu-u.ac.jp
Department of Computer
Science and Intelligent
Systems, Graduate School
of Engineering, Osaka
Prefecture University, 1-1
Gakuen-cho, Naka-ku, Sakai,
Osaka 599-8531, Japan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-1789-1&domain=pdf

Page 2 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

can evaluate multiple solutions at a time. It is also assumed that a human user can assign
a different rank to each solution. However, it is not always easy to assign a different rank
to each solution. A simpler fitness evaluation scheme is the choice of a pre-specified
number of good solutions from a population (e.g., to choose three from a population of
ten solutions). The simplest setting under this scheme is a pair-wise comparison where
two solutions are compared with each other (i.e., a better solution is selected from the
presented two solutions). In pair-wise comparison-based IEC models (Fukumoto et al.
2010; Takagi and Pallez 2009), it is implicitly assumed that two solutions can be evalu-
ated simultaneously. Thus, the comparison of two solutions is usually counted as a single
evaluation. However, in some application tasks of IEC such as hearing aid design (Takagi
and Ohsaki 2007) and music composition (Fernandez and Vico 2013), human users can
evaluate only a single solution at a time. Our focus in this paper is such a situation where
a pair-wise comparison is counted as two evaluations.

In this paper, we assume the following simplest fitness evaluation scenario: a single
solution is evaluated at a time, the current solution is compared with the previous one
that has been just evaluated, and the evaluation result is whether the current solution
is better than the previous one or not. Based on this scenario, we formulated an IEC
model with the minimum requirement for the fitness evaluation ability of human users
(Ishibuchi et al. 2012, 2014a, b). More specifically, our IEC model is based on the follow-
ing assumptions:

(i) A human user can evaluate only a single solution at a time.
(ii) A human user can memorize only a single previous solution. After the evaluation

of a current solution is completed, his/her memory is replaced with the newly
evaluated one independent of its evaluation result.

(iii) A human user can evaluate the current solution in comparison with the previous
solution in his/her memory. The evaluation result is whether the current solution
is better than the previous one or not.

(iv) A human user can evaluate a pre-specified number of solutions in total.
 In addition to these assumptions, we further assume that the following require-

ment should be satisfied in order to identify a single final solution (Ishibuchi
et al. 2012, 2014a, b):

(v) When a pre-specified number of evaluations is completed, the best solution
among the evaluated ones should be identified.

One important issue in IEC is to decrease the burden of a human user in fitness evalu-
ation (Sun et al. 2012). Our IEC model was formulated for this purpose by assuming
the minimum requirement for human user’s fitness evaluation ability. As a result, the
complexity of a human user’s response is minimized. That is, a human user in our IEC
model is supposed to answer the following yes-or-no question after the evaluation of
each solution: “Is the current solution better than the previous one?” The simplicity of
a human user’s response may lead to the possibility of its automated recognition from
his/her facial expression or brain wave activity in the future. This recognition task in our
model is much simpler than the case of a five-rank evaluation scheme. It may be very
difficult to automatically classify a human user’s reaction into one of the five ranks. The

Page 3 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

use of the simple fitness evaluation scheme in our IEC model will make the automated
recognition task much easier. Our future goal is the implementation of an IEC model
with an automated recognition system. However, in this paper, we focus on the design
of evolutionary algorithms to efficiently search for a good solution using a simple fitness
evaluation scheme: Whether the current solution is better than the previous one or not.

This paper is an extended version of our former conference papers (Ishibuchi et al.
(2012, 2014a, b)). In Ishibuchi et al. (2012), we proposed the basic idea of our IEC model
with the minimum requirement for human user’s fitness evaluation ability. We also
implemented a simple evolutionary algorithm for our IEC model, which was based on
the (1+ 1) generation update mechanism of evolution strategy (ES). This algorithm was
referred to as the (1+ 1) ES-style algorithm. In Ishibuchi et al. (2014a), we generalized
the (1+ 1)ES-style algorithm to a (µ+ 1) ES-style algorithm by proposing an archive
maintenance mechanism, which was used to decrease the archive size from µ to 1 before
the termination of the algorithm. Then we proposed an idea of automatically designing
an evolutionary algorithm for our IEC model in Ishibuchi et al. (2014b). Our idea was
to use an offline meta-level approach for the design of an IEC algorithm. An IEC algo-
rithm was designed by specifying an operator (e.g., crossover, mutation, and random ini-
tialization) to generate each solution. In Ishibuchi et al. (2014b), an IEC algorithm with
200 evaluations was represented by an operator string of length 200. The i-th operator
in each string was used to generate a solution for the i-th evaluation (i = 1, 2, . . . , 200).
Each string was evaluated by applying it to a test problem 100 times. In this paper, we
examine the effect of the following factors on the performance of automatically designed
algorithms through computational experiments on a number of test problems:

The number of runs used for evaluating each string

Due to a stochastic nature of EC algorithms, usually a different solution is obtained from
a different run of the same EC algorithm. Thus its performance evaluation needs mul-
tiple runs. This means that the fitness evaluation of a string in our offline meta-level
approach needs multiple runs of the corresponding IEC algorithm. In this paper, we
examine the relation between the number of runs for fitness evaluation and the perfor-
mance of designed algorithms.

The string length

In Ishibuchi et al. (2014b), an IEC algorithm with 200 evaluations was coded by an inte-
ger string of length 200 where each integer shows an operator for generating a single
solution. If we use six candidate operators as in Ishibuchi et al. (2014b), the size of the
search space (i.e., the total number of different strings) is 6200. Since the search space
is large and the fitness evaluation has a stochastic nature, it is not likely that the opti-
mal solution can be obtained. For the same reason, it is not easy to search for a good
approximate solution, either. A simple idea for decreasing the size of the search space
is the use of the same operator to generate a number of solutions. For example, if the
same operator is used to generate 20 solutions, an IEC algorithm with 200 evaluations
is coded by an integer string of length 10. The search space is decreased from 6200 to
610 . The first value of the string of length 10 is used to generate the first 20 solutions. In

Page 4 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

this paper, we examine the relation between the string length and the performance of
designed algorithms.

The number of possible operators

In Ishibuchi et al. (2014b), one of six candidate operators was selected to generate a sin-
gle solution. Other specifications of candidate operators can be possible. For example,
we can use a sequence of operators such as “crossover & mutation” and “mutation &
mutation” as a single candidate operator to generate a new solution. In this manner, we
can increase the number of candidate operators for generating a solution. It is also possi-
ble to decrease the number of candidate operators by removing a specific operator (e.g.,
crossover). In this paper, we examine the relation between the specification of candidate
operators and the performance of designed algorithms.

In this paper [and in our former studies (Ishibuchi et al. 2012, 2014a, b)], we use a test
problem instead of a human decision maker in computational experiments. No actual
IEC experiments with human decision makers are included. Practical usefulness of our
offline meta-level approach totally depends on the similarity between an actual IEC
problem and a test problem used in our computational experiments. Our intention is
not to insist any practical usefulness of our approach in real-world IEC applications, but
to discuss the design of IEC algorithms under severely limited information about the fit-
ness of each solution. We believe that the idea of using a different operator to generate
each generation will give a new insight to the design of IEC algorithms and also to the
design of EC algorithms in general.

This paper is organized as follows. In “Our IEC model” section, we explain our IEC
model. In “Our (µ+ 1)ES-style IEC algorithm” section, we show how an archive main-
tenance mechanism in our former study (Ishibuchi et al. 2014b) was derived. Using the
derived mechanism, we explain our (µ+ 1)ES-style algorithm in its general form includ-
ing the case of µ = 1. Its performance is also examined in “Our (µ+ 1)ES-style IEC algo-
rithm” section for different values of µ. In “Meta-level approach to the design of IEC
algorithms” section, we show an offline meta-level approach for automatically design-
ing an IEC algorithm. The performance of designed algorithms under various settings of
our offline meta-level approach is also evaluated in comparison with the (µ+ 1)ES-style
algorithm in “Meta-level approach to the design of IEC algorithms” section. This paper
is concluded in “Conclusion” section.

Our IEC model
The main feature of our IEC model is the necessity of solution re-evaluation for identi-
fying the best solution among the evaluated ones. Some solutions may be re-evaluated
several times. This is often the case in our everyday life. For example, we usually examine
some pairs of glasses several times to compare them with each other before buying a sin-
gle pair. It is very difficult for us to choose a single best solution after evaluating a num-
ber of solutions just once. Let us explain this feature using the following simple example
with five solutions.

Example 1 Ishibuchi et al. (2014b) Let us assume that we have five solutions:
xA, xB, xC, xD, xE. We also assume that xC ≺ xB ≺ xA ≺ xE ≺ xD holds where x ≺ y

Page 5 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

means that a solution y is preferred to a solution x. Thus xC is the worst and xD is the
best. Let us evaluate the five solutions xA, xB, xC, xD and xE in this alphabetical order.
First xA is shown to a human user. Next xB is evaluated in comparison with xA . The
evaluation result is “xA is better than xB (i.e., xB ≺ xA)”. Then xC is evaluated as
xC ≺ xB . After the evaluation of the three solutions, we can say that xA is the best since
xC ≺ xB ≺ xA holds from the evaluation results xB ≺ xA and xC ≺ xB. Then xD is evalu-
ated as xC ≺ xD. After the evaluation of xD, we cannot say which is the best between xA
and xD (since the available information is xC ≺ xB ≺ xA and xC ≺ xD). Finally xE is eval-
uated as xE ≺ xD. It is clear from this evaluation result that xE is not the best. However,
we cannot still say which is the best between xA and xD (since the available informa-
tion is xC ≺ xB ≺ xA, xC ≺ xD and xE ≺ xD). If xA is evaluated after xE, the evaluation
result is xA ≺ xE. From this result, we can say that xD is the best solution. This example
explains the necessity of solution re-evaluation to identify the best solution among the
examined ones.

In our IEC model, the upper limit on the total number of evaluations is pre-specified
(e.g., 200 in our computational experiments). An important requirement in our IEC
model is that the best solution among the examined ones should be identified after
the pre-specified number of evaluations without any additional re-evaluations. Let us
assume that the upper limit on the total number of evaluations is seven in the above-
mentioned example. The best solution xD was identified after six evaluations in the order
of xAxBxCxDxExA. Since the total number of evaluations is six and its upper limit is
seven, we can evaluate one more solution xF in comparison with the previously evalu-
ated solution xA. If the evaluation result is xF ≺ xA, we can say that xD is the best solu-
tion among the examined six solutions. If the evaluation result is xA ≺ xF, we cannot
say which is better between xD and xF. In order to identify the best solution between
them, we need to re-evaluate xD after the evaluation of xF. However, we cannot per-
form this re-evaluation since the given upper limit on the total number of evaluations
is seven. This means that we cannot identify the best solution among the examined six
solutions when the evaluation result is xA ≺ xF. In order to satisfy both requirements
(i.e., the upper limit on the total number of evaluations and the identification of the best
solutions among the examined ones), we have to terminate the search after the sixth
evaluation in the order of xAxBxCxDxExA. This example suggests the necessity of early
termination before the total number of evaluations reaches the upper limit.

In our IEC model, we assume that the decision maker can always answer the following
question: “Is the current solution xt at the t-th evaluation better than the previous solu-
tion xt−1?” When the decision maker thinks that there is no difference between them,
we assume that the decision maker’s answer is “Yes”. In our computational experiments
on a minimization problem of an objective function f (x), it is assumed that the decision
maker’s answer is “Yes” if and only if f (xt−1) ≥ f (xt).

Let us denote the given upper limit on the total number of evaluations by T. The task
in our IEC model is to search for a good solution using up to T evaluations. From the
assumption (v) in “Background” section, the best solution among the evaluated ones
should be identified when an IEC algorithm is terminated. As we have already explained,
the algorithm may be terminated before T evaluations due to this requirement. In the

Page 6 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

next section, we discuss the identification of the best solution among the evaluated ones
and the termination of an IEC algorithm.

Our (µ+ 1)ES‑style IEC algorithm
Archive maintenance rule

Before explaining our (µ+ 1)ES-style IEC algorithm, we explain how we can identify the
best solution among the examined ones. Let xt be the solution to be evaluated at the t-th
evaluation. We denote a set of candidate solutions for the best solution after the evalua-
tion of xt by St. That is, St includes the examined solutions with the possibility to be the
best solution. In the following, we first explain the update of St depending on the evalu-
ation result of xt at the t-th evaluation. Then we show how the best solution among the
evaluated ones can be identified by re-evaluation.

After the first solution x1 is evaluated, St is specified as S1 = {x1} since no other
solutions are examined. Next x2 is examined. If x2 is better than x1 (i.e., x1 ≺ x2), St is
updated as S2 = {x2} since x2 is the best solution among the examined one. If x1 is better
than x2 (i.e., x1 ≻ x2), St is not changed: S2 = S1 = {x1}. Then x3 is examined. Depending
on the evaluation result of x3, St is updated. For example, when S2 = {x1} and x2 ≺ x3 ,
St is updated as S3 = {x1, x3} since both of x1 and x3 have the possibility to be the best
solution. In this case, we have two options about the choice of the fourth solution x4:
one is to generate a new solution, and the other is to re-evaluate the first solution x1 to
decrease the size of St. When x1 is re-evaluated as the fourth solution (i.e., x4 = x1), St is
updated as follows: S4 = {x4} if x3 ≺ x4, and S4 = {x3} if x3 ≻ x4. When a new solution
x4 is evaluated (instead of re-evaluating x1) in the case of S3 = {x1, x3}, St is updated as
follows: S4 = {x1, x4} if x3 ≺ x4, and S4 = {x1, x3} if x3 ≻ x4.

Let us denote the cardinality of St by |St | (i.e., |St | is the number of candidate solutions
in St). The update of St based on the evaluation result of xt is summarized as follows:

Case A: xt is a new solution:

A-1: If xt−1 ∈ St−1 and xt−1 ≺ xt, then St = St−1 − {xt−1} + {xt}. Thus |St | = |St−1|.
A-2: If xt−1 ∈ St−1 and xt−1 ≻ xt, then St = St−1. Thus |St | = |St−1|.
A-3: If xt−1 /∈ St−1 and xt−1 ≺ xt, then St = St−1 + {xt}. Thus |St | = |St−1| + 1.
A-4: If xt−1 /∈ St−1 and xt−1 ≻ xt, then St = St−1. Thus |St | = |St−1|.

Case B: xt is a re-evaluation of xq (q < t − 1 and xt = xq):

B-1: If xt−1 ∈ St−1 and xt−1 ≺ xt, then St = St−1 − {xt−1, xq} + {xt}. Thus
|St | = |St−1| − 1.

B-2: If xt−1 ∈ St−1 and xt−1 ≻ xt, then St = St−1 − {xq}. Thus |St | = |St−1| − 1.
B-3: If xt−1 /∈ St−1 and xt−1 ≺ xt, then St = St−1 − {xq} + {xt}. Thus |St | = |St−1|.
B-4: If xt−1 /∈ St−1 and xt−1 ≻ xt, then St = St−1 − {xq}. Thus |St | = |St−1| − 1.

Since xt = xq holds in Case B, St in B-1 and B-3 can be also written as
St = St−1 − {xt−1} and St = St−1, respectively. The above formulations of St in B-1 and
B-3 are for explicitly explaining that xt ∈ St always holds after the candidate solution set
update when xt−1 ≺ xt (see also A-1 and A-3).

Page 7 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

The evaluation of a new solution in Case A increases the number of candidate solu-
tions only in A-3. In Case B, the number of candidate solutions can be decreased by the
re-evaluation of a candidate solution whenever xt−1 ∈ St−1 holds (i.e., in B-1 and B-2).
Only in B-3, the re-evaluation of a candidate solution in Case B does not decrease the
number of candidate solutions. However, in B-3, xt ∈ St always holds after the re-evalu-
ation of xt. As a result, the re-evaluation at the (t + 1)th evaluation always decreases the
number of candidate solutions. This means that the number of candidate solutions can
be always decreased by iterating the re-evaluation twice.

Let us discuss whether a new solution xt can be evaluated at the t-th evaluation. As
explained in “Our IEC model” section, the upper limit on the total number of evalu-
ations is given and denoted by T. First, let us consider the case of xt−1 ∈ St−1. In this
case, the evaluation of a new solution xt at the t-th evaluation does not increase the
number of candidate solutions (see A-1 and A-2). After the t-th evaluation, the upper
limit on the number of remaining evaluations is (T − t). Since one candidate solution
can be removed by iterating the re-evaluation twice, we can remove Int((T − t)/2)
candidate solutions by iterating the re-evaluation (T − t) times after the t-th evalu-
ation where Int((T − t)/2) is the integer part of (T − t)/2. Thus we can evaluate a
new solution xt when the following relation holds: |St−1| ≤ Int((T − t)/2)+ 1, i.e.,
|St−1| ≤ Int((T − t + 2)/2). Since the left hand side is also integer, this inequality rela-
tion is equivalent to |St−1| ≤ (T − t + 2)/2.

Next, let us consider the case of xt−1 /∈ St−1. In this case, the evaluation of a new
solution xt at the t-th evaluation increases the number of candidate solutions from
|St−1| to |St | = |St−1| + 1 when the conditions in A-3 hold. In A-3, xt ∈ St always
holds after the evaluation of the new solution xt. Thus the number of candidate solu-
tions can be decreased by the re-evaluation at the (t + 1)th evaluation from |St | to
|St+1| = |St | − 1 = |St−1|. After the (t + 1)th evaluation, the upper limit on the num-
ber of remaining evaluations is (T − t − 1). We can remove Int((T − t − 1)/2) can-
didate solutions by iterating the re-evaluation (T − t − 1) times after the (t + 1)th
evaluation. Thus we can evaluate a new solution xt when the following relation holds:
|St−1| ≤ Int((T − t − 1)/2)+ 1 (i.e., |St−1| ≤ Int((T − t + 1)/2)). Since the left hand
side is also integer, this inequality condition is equivalent to |St−1| ≤ (T − t + 1)/2.

These discussions are summarized as the following archive maintenance rule:

Archive maintenance rule

A new solution xt is evaluated at the t-th evaluation in the following two cases:

(a) xt−1 ∈ St−1 and |St−1| ≤ (T − t + 2)/2,
(b) xt−1 /∈ St−1 and |St−1| ≤ (T − t + 1)/2.

In all the other cases, xt should be a candidate solution randomly selected from St−1
(excluding xt−1).

Let us discuss the solution evaluation at t = T . That is, let us examine whether our
archive maintenance rule is valid for the last evaluation at t = T . When xT−1 ∈ ST−1,
there are two possibilities: |ST−1| = 1 and |ST−1| = 2. If |ST−1| = 1 [i.e., when (a) is satis-
fied in the archive maintenance rule], a new solution xT can be evaluated and compared

Page 8 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

with xT−1. The final solution is the better one between xT−1 and xT. Thus |ST | = 1 is sat-
isfied. If |ST−1| = 2 (i.e., when (a) is not satisfied), one candidate solution in ST−1 is xT−1 .
The other candidate solution in ST−1 is re-evaluated and compared with xT−1 at t = T .
The final solution is the better one in this comparison. Thus |ST | = 1 is satisfied. When
xT−1 /∈ ST−1, |ST−1| = 1 always holds from our archive maintenance rule. In this case,
(b) is never satisfied since |ST−1| = 1 and t = T . Thus a new solution is not examined.
Since we have only a single candidate in ST−1, its re-evaluation is meaningless. Thus no
solution is evaluated at t = T . As a result, |ST | = 1 holds after the termination of the
algorithm.

For demonstrating our archive maintenance rule, let us perform a simple computer
simulation by assuming a minimization problem of f (x) = x. We also assume that a new
solution xt is generated as a random real number in the unit interval [0, 1]. Our archive
maintenance rule is used for 200 evaluations (t = 1, 2, . . . , 200 and T = 200). Average
results over 100 runs are shown by dotted lines in Fig. 1. The average number of candi-
date solutions in St and the average number of evaluated new solutions are calculated in
Fig. 1a, b, respectively. In Fig. 1, results of a single run are also shown by solid lines. We
can see from Fig. 1a that the number of candidate solutions first increases from |St | = 1
at t = 1 to about 40 and then decreases to |ST | = 1 at T = 200.

Archive maintenance for (µ+ 1)ES‑style algorithms

By introducing the upper bound µ on the number of candidate solutions, we modify
our archive maintenance rule in the previous subsection to design a (µ+ 1)ES-style
algorithm. Our idea is to re-evaluate a candidate solution whenever the number of solu-
tions increases from µ to (µ+ 1). That is, a new solution can be evaluated only when the
number of candidate solutions is less than or equal to µ. This idea is combined into our
archive maintenance rule as follows:

a b
Fig. 1 Results of a single run and average results over 100 runs with T = 200. a The number of candidate
solutions. b The number of evaluated solutions

Page 9 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

Archive maintenance rule for (µ+ 1)ES‑style algorithms

A new solution xt is evaluated at the t-th evaluation in the following two cases:

(a) xt−1 ∈ St−1 and |St−1| ≤ min {(T − t + 2)/2,µ},
(b) xt−1 /∈ St−1 and |St−1| ≤ min {(T − t + 1)/2,µ}.

In all the other cases, xt should be a candidate solution randomly selected from St−1
(excluding xt−1).

For demonstrating the effect of incorporating the upper bound µ into our archive
maintenance rule, we specify µ as µ = 10 and perform the same computer simulation as
in Fig. 1. Average results over 100 runs are shown in Fig. 2 together with results of a sin-
gle run. As shown in Fig. 2a, the number of candidate solutions is decreased to 10 by re-
evaluating a candidate solution whenever it becomes 11. In the final stage, the number
of candidate solutions is decreased to one. A little bit more new solutions are examined
in Fig. 2b than Fig. 1b. For examining this issue, we perform the same computer simula-
tion for each of the following six settings of µ: µ = 1, 2, 5, 10, 20, 50. The average total
number of examined new solutions over 100 runs for each setting is as follows: 146.8,
146.1, 144.6, 142.5, 138.8, 134.2 for µ = 1, 2, 5, 10, 20, 50, respectively. A little bit more
new solutions are examined when we use a small value of µ (i.e., a little bit more re-
evaluations are needed when we use a large value of µ).

Generation of new solutions

An important issue in the design of (µ+ 1)ES-style algorithms is how to generate a new
solution xt to be compared with the previous solution xt−1 at the t-th evaluation. A sim-
ple idea is the use of a mutation operator to generate a new solution xt from a randomly
selected candidate solution in St−1. We used this idea in a (1+ 1)ES-style algorithm in
Ishibuchi et al. (2012) and a (µ+ 1)ES-style algorithm in Ishibuchi et al. (2014a). The
basic framework of our (µ+ 1)ES-style algorithm in Ishibuchi et al. (2014a) can be writ-
ten as follows:

a b
Fig. 2 Results of a single run and average results over 100 runs with µ = 10 and T = 200. a The number of
candidate solutions. b The number of evaluated solutions

Page 10 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

The basic framework of our (µ+ 1)ES‑style IEC algorithm

1. An initial solution x1 is randomly generated. Initialize t and St as t = 1 and St = {x1}.
2. Update t as t + 1 (i.e., t = t + 1).
3. Decide whether a new solution can be evaluated at the t-th evaluation using the

archive maintenance rule in “Archive maintenance for (µ+ 1)ES-style algorithms”
section.

4. If a new solution can be evaluated, xt is generated by a mutation operator from a ran-
domly selected candidate solution in St−1. Otherwise, xt is randomly selected from
St−1 − {xt−1}.

5. Compare xt with xt−1. Then update St based on the comparison result.
6. If the termination condition is not satisfied, return to Step 2.

When two or more candidate solutions are stored in St−1, it is possible to use a crosso-
ver operator as in standard genetic algorithms to generate a new solution xt in Step 4.
That is, a crossover operator is applied to a randomly selected pair of different candi-
date solutions for generating an offspring. Then a mutation operator is applied to the
offspring to generate a new solution xt. It should be noted that we cannot use any fit-
ness-based parent selection mechanism since no information is available about the fit-
ness of each candidate solution (i.e., since no comparison has been performed among
the candidate solutions in St−1). Thus, each parent is randomly selected from the candi-
date solution set. When we use a crossover operator, we always select a pair of different
candidate solutions. This is to make the crossover operator always meaningful.

Computational experiments by our (µ+ 1)ES‑style IEC algorithm

In this subsection, we examine the search ability of our (µ+ 1)ES-style IEC algorithm
under various specifications of µ on well-known six continuous test problems: Sphere,
Rosenbrock, Griewank, Ackley, Levy and Rastrigin functions (e.g., see Surjanovic and
Bingham 2013). The number of decision variables is specified as 50: x = (x1, x2, . . . , xn)
where n = 50. This 50-dimensional decision vector is represented by a real number
string of length 50 in our computational experiments. The upper limit on the total num-
ber of evaluations is always specified as T = 200 throughout this paper. Four specifica-
tions of µ are examined: µ = 1, 2, 5, 10.

We examine the search ability of our (µ+ 1)ES-style IEC algorithm for each combina-
tion of the four values of µ and the two settings for new solution generation mechanisms
explained in the previous subsection (i.e., mutation only and crossover & mutation).
For mutation, we use the polynomial mutation operator with Pm = 1 and ηm = 20 [for
details, see Hamdan (2010)]. For crossover, we use the simulated binary crossover (SBX)
with ηc = 15 (Deb and Kumar 1995). When a new solution is to be generated by muta-
tion only, the polynomial mutation is used with the probability 1.0. When a new solution
is to be generated by crossover & mutation, both the SBX crossover and the polynomial
mutation are used with the probability 1.0.

The comparison of the current solution xt with the previous one xt−1 is simulated
by a test function f (x) as follows: xt is preferred to xt−1 by the decision maker when
f (xt) ≤ f (xt−1) for the minimization problem of f (x). That is, the evaluation result is
xt−1 ≺ xt when f (xt) ≤ f (xt−1).

Page 11 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

Each test problem is a minimization problem of the following non-linear function [16]:

Sphere:

Rosenbrock:
f (x) =

n−1
∑

i=1

[100(xi+1 − x2i)
2 + (1− xi)

2], where − 2.048 ≤ xi ≤ 2.048.

Griewank:
f (x) = 1+

1

4000

n
∑

i=1

x2i −
n
∏

i=1

cos

(

xi√
i

)

, where − 512 ≤ xi ≤ 512.

Ackley:

f (x) =− 20 exp

−0.2

�

�

�

�

1

n

n
�

i=1

x2i

− exp

�

1

n

n
�

i=1

cos (2πxi)

�

+ 20+ exp (1), where − 5 ≤ xi ≤ 5.

Levy:
f (x) = sin 2

(πω1)+
n−1
∑

i=1

(ωi − 1)2
[

1+ 10 sin 2
(πωi + 1)

]

+ (ωn − 1)2
[

1+ sin 2
(2πωn)

]

,

where ωi = 1+ (xi − 1)/4 and − 100 ≤ xi ≤ 100.

Rastrigin:
f (x) = 10n+

n
∑

i=1

(x2i − 10 cos (2πxi)), where − 5.12 ≤ xi ≤ 5.12.

In Fig. 3, we show the shape of each function for the case of two decision variables [i.e.,
x = (x1, x2)]. The Sphere function is a simple quadratic function with no local minima.
The Rosenbrock function has no local minima, either. The decision variables are not sep-
arable in the Rosenbrock function whereas they are separable in the Sphere function.
The Griewank function has a large number of small local minima. Since they are very
small, the function shape in Fig. 3c looks very simple. The Ackley function in Fig. 3d has
many small and shallow local minima. The other two functions are complicated non-
linear functions with many small but deep local minima as shown in Fig. 3e, f.

From Fig. 3, one may think that near optimal solutions of the Sphere function can be
easily found. This is almost always the case in the literature. However, it is not the case
in this study due to the following three reasons: (i) the fitness evaluation of each solu-
tion is the comparison with the previous solution, (ii) the upper limit on the number of
evaluations is only 200, and (iii) each test problem has 50 decision variables. One may
also think that multi-point global search algorithms with high diversification ability are
needed to handle the highly non-linear Levy and Rastrigin functions. However, for the
same three reasons, high convergence ability is very important to find a good solution
even for those functions. Our task is to find a good solution of each test problem with 50
decision variables under the severely limited number of evaluations and the very simple
fitness evaluation mechanism.

Average results over 1000 runs of our (µ+ 1)ES-style algorithm are summarized in
Tables 1 and 2. Only mutation is used in Table 1 while both crossover and mutation are
used in Table 2. No crossover is used when µ = 1 even in Table 2. So the same results

f (x) =
n

∑

i=1

x2i , where − 5.12 ≤ xi ≤ 5.12.

Page 12 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

are shown for µ = 1 in the two tables. The best result (i.e., the smallest average function
value) for each test problem is highlighted by bold in each table. In these tables, the best
or near best results are obtained from our (µ+ 1)ES-style algorithm with µ = 1.

Fig. 3 Shape of each test function for the case of two decision variables. a Sphere (−5.12 ≤ xi ≤ 5.12).
b Rosenbrock (−2.048 ≤ xi ≤ 2.048). c Griewank (−512 ≤ xi ≤ 512). d Ackley (−5 ≤ xi ≤ 5). e Levy
(−100 ≤ xi ≤ 100). f Rastrigin (−5.12 ≤ xi ≤ 5.12)

Table 1 Average results over 1000 runs under each setting of our (µ+ 1)ES‑style IEC algo‑
rithm with only mutation (standard deviations are shown in parentheses)

Problem µ = 1 µ = 2 µ = 5 µ = 10

Sphere 135.3 (23.7) 169.9 (28.2) 227.9 (31.8) 266.8 (34.9)

Rosenbrock 4672 (1160) 6066 (1473) 8805 (1946) 11049 (2450)

Griewank 339.1 (59.3) 425.9 (70.6) 570.8 (79.5) 667.9 (87.2)

Ackley 7.848 (0.569) 8.102 (0.478) 8.604 (0.412) 8.994 (0.383)

Levy 36818 (5935) 35740 (6094) 35478 (5566) 36091 (5362)

Rastrigin 734.6 (50.8) 729.0 (47.6) 729.8 (48.1) 738.7 (46.3)

Page 13 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

For the Levy and Rastrigin functions, the best results are obtained from our (µ+ 1)ES-
style algorithm with µ = 5 in Table 2 where both crossover and mutation are used. How-
ever, differences between those best results and the results by µ = 1 are small in Table 2
if compared with their standard deviations in parentheses. For visually examine their dif-
ferences, we show the histogram of 1000 solutions obtained from each of the two settings
(i.e., µ = 1 and µ = 5 in Table 2) for the Levy and Rastrigin functions in Fig. 4. We can see
that the two histograms by µ = 1 and µ = 5 for each test problem are heavily overlapping
in each plot in Fig. 4. In Fig. 4a, a long black bar around 45,000 may show that the search
with µ = 1 is trapped in local minima of the Levy function in its many runs.

Table 2 Average results over 1000 runs under each setting of our (µ+ 1)ES‑style IEC algo‑
rithm with crossover and mutation (standard deviations are shown in parentheses)

Problem µ = 1 µ = 2 µ = 5 µ = 10

Sphere 135.3 (23.7) 156.0 (26.1) 209.0 (33.1) 250.7 (36.2)

Rosenbrock 4672 (1160) 5530 (1453) 7925 (1890) 10217 (2320)

Griewank 339.1 (59.3) 391.1 (65.2) 523.5 (82.7) 627.8 (90.5)

Ackley 7.848 (0.569) 7.878 (0.495) 8.411 (0.438) 8.841 (0.406)

Levy 36819 (5935) 35407 (6118) 35033 (5667) 35872 (5312)

Rastrigin 734.6 (50.8) 728.0 (51.1) 726.6 (44.1) 735.7 (43.3)

a

b
Fig. 4 Histogram of 1000 solutions by our (1+1)ES-style algorithm (i.e., µ = 1) with only mutation and our
(5+1)ES-style algorithm (i.e., µ = 5) with both crossover and mutation. a Levy function. b Rastrigin function

Page 14 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

In Fig. 5, we show how the function value was decreased by 200 evaluations in
each setting of our (µ+ 1)ES-style algorithm with crossover and mutation in Table 2.
Figure 5a–d clearly show the deterioration of the search ability by increasing the value
of µ (i.e., by increasing the upper bound on the number of candidate solutions). In
Fig. 5e, f, the best results are obtained from µ = 5 for the Levy and Rastrigin functions
(see Table 2). However, as shown in Fig. 4, we cannot observe any clear performance
improvement by increasing the value of µ in Fig. 5e, f.

Meta‑level approach to the design of IEC algorithms
In our computational experiments in “Our (µ+ 1)ES-style IEC algorithm” section, good
results are obtained by the (1+1)ES-style algorithm where new solutions are always gen-
erated by mutation. No experimental results strongly support the necessity of multiple
candidate solutions and crossover in our (µ+ 1)ES-style algorithm. In this section, we
further try to improve the performance of our (µ+ 1)ES-style algorithm using an idea
of offline meta-level design of IEC algorithms. The necessity of multiple candidate solu-
tions and crossover is clearly shown for the Levy and Rastrigin functions in this section.

In general, an important issue in evolutionary computation is how to generate new
solutions to be evaluated. This issue is more important in IEC algorithms since only a
small number of solutions can be evaluated. Since re-evaluation of solutions is needed
in our IEC model, standard EC algorithms cannot be directly used. Motivated by these
discussions, we proposed an idea of offline meta-level design of IEC algorithms in our
former study (Ishibuchi et al. 2014b). The basic idea in Ishibuchi et al. (2014b) is to rep-
resent an IEC algorithm by an integer string of length T. Each string (i.e., each IEC algo-
rithm) is evaluated by applying it to a test problem. In this section, we examine various
implementation issues of this idea such as the number of runs for evaluating each string,
the string length, and the number of possible operators to generate a new solution.

Offline meta‑level algorithm design approach in Ishibuchi et al. (2014b)

In this subsection, we explain an offline meta-level approach to the design of IEC algo-
rithms in our former study (Ishibuchi et al. 2014b). In our offline meta-level approach,
each IEC algorithm with T evaluations is coded by a string of length T as τ = τ1τ2 . . . τT
where τt shows how to generate the t-th solution xt. In Ishibuchi et al. (2014b), τt is one
of the following six operators:

Operator 0: Re-evaluation (if inapplicable, random creation is used),
Operator 1: Re-evaluation (if inapplicable, mutation is used),
Operator 2: Random creation,
Operator 3: Crossover (if inapplicable, random creation is used),
Operator 4: Crossover (if inapplicable, mutation is used),
Operator 5: Mutation,

where re-evaluation means the random selection of a candidate solution from St−1
(excluding xt−1). If St−1 includes only xt−1 (i.e., St−1 = {xt−1}), re-evaluation is not appli-
cable. In this case, random creation is used in Operator 0 while mutation is used in
Operator 1. Mutation is applied to a randomly selected candidate solution from St−1.

Page 15 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

a b

c d

e f
Fig. 5 Average results by our algorithm with crossover and mutation for µ = 1, 2, 5, 10. a Sphere. b Rosen-
brock. c Griewank. d Ackley. e Levy. f Rastrigin

Page 16 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

Except for the generation of the first solution, mutation is always applicable since we
have at least one candidate solution. The first solution x1 is always generated by random
creation (since all of the other operators are inapplicable to generate the first solution).
Crossover is applied to two candidate solutions that are randomly selected from St−1. If
the number of candidate solutions in St−1 is one, crossover is not applicable. In this case,
random creation is used in Operator 3 while mutation is used in Operator 4.

It should be noted that the string τ is used to generate solutions together with our
archive maintenance rule in “Archive maintenance rule” section without the upper limit
µ on the number of candidate solutions. More specifically, τt is used to generate the t-th
solution xt only when the generation of a new solution is allowed by the archive mainte-
nance rule. Otherwise, the re-evaluation of a randomly selected candidate solution from
St−1 (excluding xt−1) is performed.

The six operators are denoted by the corresponding integers in Ishibuchi et al. (2014b):
τ = τ1τ2 . . . τT where τt ∈ {0, 1, 2, 3, 4, 5} for t = 1, 2, . . . ,T . Thus the search space size is
6T . A simple evolutionary algorithm with the following components is used to search for
the best integer string (i.e., the best IEC algorithm) in Ishibuchi et al. (2014b):

 • Random creation of initial strings (i.e., randomly generated initial population),
 • Binary tournament selection for choosing a pair of parents,
 • Uniform crossover,
 • Mutation (the current value is replaced with a randomly specified integer),
 • (µ+ 1)ES-style generation update mechanism to construct the next population.

The fitness of each string is evaluated by applying the corresponding IEC algorithm
to a test problem (as in our computational experiments in “Computational experiments
by our (µ+ 1)ES-style IEC algorithm” section). In Ishibuchi et al. (2014b), the average
result over 100 runs of the IEC algorithm on the test function is used as its fitness value.

Various implementation issues of offline meta‑level approach

In this section, we discuss various implementation issues of our offline meta-level
approach to the design of IEC algorithms. The effect of each implementation issue on
the performance of designed IEC algorithms is reported in the next subsection.

The number of possible operators

In Ishibuchi et al. (2014b), one of the six operators is used to generate a new solution
for each evaluation. It is possible to use a different set of operators in our approach. For
example, Operator 3 and Operator 4 can be removed for designing an IEC algorithm
with re-evaluation, random creation and mutation. It is also possible to add “crossover &
mutation” to the set of the six operators in Ishibuchi et al. (2014b). We examine the use
of a different set of operators in the next subsection.

The number of runs used for evaluating each string

In Ishibuchi et al. (2014b), each string (i.e., each IEC algorithm) is evaluated by the aver-
age performance over its 100 runs. In general, the fitness evaluation becomes more
accurate by increasing the number of runs. However, the increase in the number of runs

Page 17 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

leads to the increase in computation time. We examine the effect of the number of runs
for the fitness evaluation on the performance of obtained IEC algorithms in the next
subsection.

The string length

In Ishibuchi et al. (2014b), an IEC algorithm with 200 evaluations is coded by an integer
string of length 200. This is to use a different operator to generate a new solution at each
evaluation. Since we have six operators, the search space size is 6200. One may think that
we do not have to use a different operator to generate a solution at each evaluation. If we
use the same operator for 10 evaluations, the string length is decreased from 200 to 20
as τ = τ1τ2 . . . τ20 where τt is used to generate 10 solutions from the (10t − 9)-th evalu-
ation to the 10t-th evaluation. In the next subsection, we examine various specifications
of string length (i.e., various specifications of the number of evaluations where the same
operator is used).

Computational experiments of meta‑level algorithm design

In our previous study (Ishibuchi et al. 2014b), our offline meta-level approach was
applied to the Sphere and Rastrigin functions under the following setting, which is
referred to as the basic setting in this paper:

Coding: integer string of length 200 with 0, 1, 2, 3, 4, 5,
Population size: 100,
Termination condition: 1000 generations,
Generation update model: (µ+ 1)ES-style,
Crossover: uniform crossover with the crossover probability 1.0,
Mutation: random generation of an integer value with the mutation probability 1/
(string length),
Fitness evaluation of each string: average performance of 100 runs.

In this paper, we apply our approach to all the six test problems in “Our (µ+ 1)ES-style
IEC algorithm” section. Average results are calculated over ten runs of our approach.
After the termination of our approach, a single string with the best fitness value in the
final population is selected as the designed IEC algorithm. The designed IEC algorithm
is evaluated by its additional 100 runs which are different from the 100 runs for fitness
evaluation during the execution of our offline meta-level approach. The design of an IEC
algorithm and its performance evaluation are iterated ten times. This means that the
performance of our approach is evaluated by 1000 runs (i.e., 100 runs of each of the ten
algorithms designed by our approach).

First, let us examine the effect of a set of operators for solution generation on the per-
formance of designed algorithms. As explained in “Offline meta-level algorithm design
approach in Ishibuchi et al. (2014b)” section, the six operators are used to generate new
solutions in our former study (Ishibuchi et al. 2014b). In this paper, we also examine the
following two settings with respect to possible operators in addition to the six operators
in Ishibuchi et al. (2014b).

Page 18 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

Four operators

In order to examine the necessity of crossover, we perform computational experiments
using the set of the following four operators.

Operator 0: Re-evaluation (if inapplicable, random creation is used),
Operator 1: Re-evaluation (if inapplicable, mutation is used),
Operator 2: Random creation,
Operator 5: Mutation.

Eight operators

For comparison, we also perform computational experiments using the following
two operators in addition to the six operators in “Offline meta-level algorithm design
approach in Ishibuchi et al. (2014b)” section (eight operators in total).

Operator 6: Crossover & Mutation (if crossover is inapplicable, random creation is
used),

Operator 7: Crossover & Mutation (if crossover is inapplicable, mutation is used).

Average results over ten runs are summarized in Table 3. For comparison, we show
the average results by the (1+1)ES-style algorithm in the second column of Table 3. The
best average result for each test problem is highlighted by bold. We cannot observe any
clear performance improvement from the (1+1)ES-style algorithm for the first four test
problem in Table 3. This observation is consistent with the performance deterioration
for those test problems by increasing the value of µ in “Our (µ+ 1)ES-style IEC algo-
rithm” section. For the last two test problems, however, we can observe clear perfor-
mance improvement by our approach.

As we have already explained, our approach is applied to each test problem 10 times.
Each of the ten designed algorithms is evaluated by its 100 runs after the termination
of our approach (i.e., 1000 runs in total for each test problem). Figure 6 shows average
results over those 1000 runs for the Levy and Rastrigin functions. For comparison, we
also show the average results over 1000 runs of the (1+1)ES-style algorithm in “Our
(µ+ 1)ES-style IEC algorithm” section. In Fig. 6, we can observe clear performance
improvement by our approach with the six and eight operators. Inferior performance

Table 3 Average results over 10 runs of our offline meta‑level approach with a different
setting of solution generation operators

Standard deviations in parentheses are calculated over 1000 runs by the ten designed IEC algorithms for each problem

Test problem (1+1)ES‑style IEC
with µ = 1

Meta‑level algorithm design approach

Four operators Six operators Eight operators

Sphere 135.3 (23.7) 138.2 (24.3) 140.4 (26.0) 143.6 (25.1)

Rosenbrock 4672 (1160) 4753 (1204) 4742 (1257) 4866 (1246)

Griewank 339.1 (59.3) 346.5 (60.8) 349.8 (61.6) 361.4 (64.9)

Ackley 7.848 (0.569) 7.863 (0.523) 7.885 (0.516) 7.878 (0.500)

Levy 36819 (5935) 31682 (4697) 26023 (4255) 25946 (4274)

Rastrigin 734.6 (50.8) 700.5 (38.4) 625.8 (43.7) 625.5 (43.3)

Page 19 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

of the four-operator setting in comparison with the six-operator and eight-operator set-
tings in Fig. 6 suggests the usefulness of crossover for the Levy and Rastrigin functions.

In Fig. 7, we show the histogram of 1000 solutions obtained by 100 runs of each of
the ten designed algorithms with the six-operator setting. For comparison, we also show

a b
Fig. 6 Average results of the designed IEC algorithms for the three settings of the operators. a Levy function.
b Rastrigin function

a

b
Fig. 7 Histogram of 1000 solutions by the ten designed algorithms with the six-operator setting and the
(1+1)ES-style algorithm in “Our (µ+ 1)ES-style IEC algorithm” section. a Levy function. b Rastrigin function

Page 20 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

the histogram of 1000 solutions by the (1+ 1)ES-style algorithm in “Our (µ+ 1)ES-style
IEC algorithm” section. We can observe clear differences between the two histograms in
each plot in Fig. 7.

Next, let us examine the effect of the number of runs for fitness evaluation on the per-
formance of our offline meta-level approach. In the previous computational experiments,
each string (i.e., each IEC algorithm) is evaluated by its 100 runs on a test problem. That
is, the average result over the 100 runs is used as the fitness of each string. It is likely
that the decrease in the number of runs for fitness evaluation leads to the performance
deterioration of designed IEC algorithms. For discussing this issue, we perform compu-
tational experiments for three settings: 5 runs, 20 runs and 100 runs for fitness evalua-
tion. All the other specifications are the same as the basic setting (e.g., the six operators
for solution generation). Our approach is applied to each test problem ten times using
each setting of the number of runs for fitness evaluation. Average experimental results
are summarized in Table 4. Experimental results on the Levy and Rastrigin functions
are also shown in Fig. 8. As expected, the performance of the designed IEC algorithms
was deteriorated by decreasing the number of runs. However, the deterioration is not so

Table 4 Average results over 10 runs of our offline meta‑level approach with a different
setting of the number of runs for fitness evaluation

Standard deviations in parentheses are calculated over 1000 runs of the ten designed IEC algorithms (100 runs of each
algorithm) for each problem

Test problem (1+1)ES‑style IEC
with µ = 1

Meta‑level algorithm design approach

5 runs 20 runs 100 runs

Sphere 135.3 (23.7) 158.1 (27.8) 147.3 (25.7) 140.4 (26.0)

Rosenbrock 4672 (1160) 5623 (1344) 5046 (1281) 4742 (1257)

Griewank 339.1 (59.3) 398.7 (68.9) 372.3 (64.7) 349.8 (61.6)

Ackley 7.848 (0.569) 8.203 (0.462) 7.968 (0.498) 7.885 (0.516)

Levy 36819 (5935) 28403 (4504) 27281 (4419) 26023 (4255)

Rastrigin 734.6 (50.8) 649.2 (42.4) 637.5 (41.1) 625.8 (43.7)

a b
Fig. 8 Average results of over 1000 runs of the ten designed IEC algorithms (100 runs of each algorithm) for
the three settings of the number of runs for fitness evaluation. a Levy function. b Rastrigin function

Page 21 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

severe if compared with the improvement from the (1+1)ES-style algorithm for the Levy
and Rastrigin functions as shown in the last two rows of Table 4 and Fig. 8.

Finally, let us examine the effect of string length on the performance of our meta-
level algorithm design approach. In our previous computational experiments, an
IEC algorithm with 200 evaluations is coded by an integer string τ of length 200 as
τ = τ1τ2 . . . τ200 where τt is used to generate a solution for the t-th evaluation. When we
use the six operators, the total number of strings is 6200. One may think that the problem
size (i.e., 6200) may be too large. One may also think that it is not needed to use a differ-
ent operator for generating each solution. The string length can be decreased by using τt
for generating multiple solutions. In this paper, we examine the following four settings:
τt is used for generating a single solution (i.e., the basic setting: string length 200), 5 solu-
tions (string length 40), 10 solutions (string length 20), and 50 solutions (string length 4).
Each setting is evaluated by ten runs of our offline meta-level approach.

Experimental results are summarized in Table 5. For the first four test problems, simi-
lar results are obtained from the four settings of the string length and the (1+1)ES-style
IEC algorithm in Table 5. This observation may suggest that we do not have to use dif-
ferent operators for those test problems (i.e., only mutation is enough). This issue will be
further discussed later in “Algorithm design” section. For the Levy and Rastrigin func-
tions, however, we can observe clear performance deterioration when the string length is
specified as 4. Experimental results on the Levy and Rastrigin functions are also shown
in Fig. 9. In the case of string length 4, the same operator continues to be used to gener-
ate 50 solutions. That is, solution generation operators are changed only after the 50th,
100th and 150th evaluations. This leads to an interesting shape of the solid blue line in
each plot in Fig. 9. For example, we can observe slow performance improvement before
the 50th evaluation and speed-up after the 50th evaluation in Fig. 9a, b. Since almost the
same results are obtained from the other settings (i.e., string length of 20, 40, 200), we
can see that a different operator is needed for every ten solutions (whereas a different
operator is not needed for every solution).

Further examination of designed algorithms

As shown in our computational experiments in this section, our offline meta-level
approach found better algorithms than the (1+1)ES-Style algorithm for the Levy and
Rastrigin functions. In this subsection, we further examine the ten designed algorithms

Table 5 Average results over 10 runs of our offline meta‑level approach with a different
setting of the string length

Standard deviations in parentheses are calculated over 1000 runs by the ten designed IEC algorithms for each problem

Test problem (1+1)ES‑style IEC
with µ = 1

Meta‑level algorithm design approach

Length 4 Length 20 Length 40 Length 200

Sphere 135.3 (23.7) 136.8 (22.5) 129.1 (21.8) 130.0 (22.4) 140.4 (26.0)

Rosenbrock 4672 (1160) 4490 (1164) 4447 (1092) 4490 (1152) 4742 (1257)

Griewank 339.1 (59.3) 342.9 (56.3) 323.7 (54.5) 326.8 (56.9) 349.8 (61.6)

Ackley 7.848 (0.569) 7.818 (0.537) 7.769 (0.520) 7.761 (0.532) 7.885 (0.516)

Levy 36819 (5935) 30317 (4386) 25928 (4270) 25326 (4414) 26023 (4255)

Rastrigin 734.6 (50.8) 682.0 (44.5) 622.8 (44.0) 617.8 (46.3) 625.8 (43.7)

Page 22 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

for each test problem by the best setting for each test problem in Table 5 (i.e., six opera-
tors, 100 runs and string length 20 or 40).

Each of the ten designed algorithms is an integer string of length 20 for the first three
problems (Sphere, Rosenbrock and Griewank) and length 40 for the last three problems
(Ackley, Levy and Rastrigin). In Table 6, we show the average percentage of each integer
among the generated ten algorithms for each problem.

Each of the ten designed algorithms for each test problem is applied to the test
problem 100 times. During this computational experiment, we monitor how each solu-
tion is generated. That is, we check which operator is actually used for generating each
solution. Then we calculate the percentage of solutions generated by each operator. Our
experimental results are summarized in Table 7. In Table 7, “Re-evaluation (operator)”
and “Re-evaluation (archive)” mean the re-evaluation by the designed algorithm string
and the archive maintenance rule, respectively.

We can observe clear differences in experimental results in Table 7 between the first
four problems and the last two problems. Crossover is mainly used to generate new solu-
tions for the last two problems whereas mutation is mainly used for the first four prob-
lems. More solutions are generated randomly for the last two problems.

a b
Fig. 9 Average results of the designed IEC algorithms for the four settings of the string length. a Levy func-
tion. b Rastrigin function

Table 6 Average percentage of each integer among the ten IEC algorithms designed
by ten runs of our offline meta‑level approach

Problem 0: re‑evaluation
(random) (%)

1: re‑evaluation
(mutation) (%)

2: random
(%)

3: crossover
(random) (%)

4: crossover
(mutation) (%)

5: mutation
(%)

Sphere 5.0 94.5 0.0 0.0 0.5 0.0

Rosenbrock 4.5 92.5 0.5 0.0 2.5 0.0

Griewank 5.0 94.5 0.0 0.0 0.5 0.0

Ackley 4.0 81.75 1.25 3.75 7.5 1.75

Levy 13.0 22.75 8.0 24.5 28.75 3.0

Rastrigin 17.25 20.75 5.5 30.25 24.25 2.0

Page 23 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

These differences are related to the shape of each function: the Levy and Rastrigin
functions have a number of deep local minima. We can also see that the percentage of
re-evaluations is almost the same for all test problems. This is because a single best solu-
tion should be identified within 200 evaluations. A little bit more re-evaluations are per-
formed by the archive maintenance rule for the Levy and Rastrigin functions. This may
be related to the number of candidate solutions (as we mentioned in “Archive mainte-
nance for (µ+ 1)ES-style algorithms” section with respect to the relation between the
number of re-evaluations and the upper limit µ on the number of candidate solutions).

For discussing this issue, we calculate the average number of candidate solutions in our
computational experiments by the ten designed algorithms for each test problem. Experi-
mental results are shown in Fig. 10. It should be noted that different scales are used for the
vertical axis between Fig. 10a–d and e–f. The number of candidate solutions in Fig. 10e and
f is much larger than the results for the first four test problems in Fig. 10a–d. This difference
may be related to a difference in the average percentage of re-evaluations by the archive
maintenance rule in Table 7 between the first four problems and the last two problems.

For the Levy and Rastrigin functions, we further check which operator is actually used
to generate each solution. Then we calculate the percentage of each operator in each
of the following four different search phases: 1–50th evaluations, 51–100th evaluations,
101–150th evaluations and 151–200th evaluations. Our experimental results are sum-
marized in Tables 8 and 9. We can obtain the following observations from both tables:

(1) New solutions for the first 50 evaluations are mainly generated randomly
whereas percentages of random creation are very low for the other evaluations
(i.e., 51–200th evaluations). This observation suggests that the designed IEC
algorithms first search for promising search areas randomly before generating
new solutions from stored candidate solutions by crossover.

(2) Percentages of re-evaluation in the first 50 evaluations are clearly lower than
those in the other evaluations. This observation corresponds to the increase in
the number of candidate solutions in Fig. 10e, f during the first 50 evaluations.

(3) There exist no large differences in the average percentage of each operator
among the last three search phases: 51–100, 101–150 and 151–200 evaluations.
That is, the average percentages of mutation, crossover, random generation and
re-evaluation (operator) are in [8, 16], [46, 51], [3, 12] and [24, 38], respectively.
This observation may suggest the necessity of totally different search strategies

Table 7 Average percentage of each operator over 100 runs of each IEC algorithm
designed by ten runs of our offline meta‑level approach (i.e., over 1000 runs in total
for each test problem)

Problem Re‑evaluation
(operator) (%)

Re‑evaluation
(archive) (%)

Random
(%)

Crossover
(%)

Mutation
(%)

Sphere 28.1 0.1 4.0 0.2 67.6

Rosenbrock 27.2 0.7 4.1 1.2 66.8

Griewank 28.1 0.1 4.0 0.2 67.6

Ackley 27.3 0.7 4.8 7.7 59.5

Levy 28.2 2.3 13.8 45.6 10.1

Rastrigin 27.2 2.1 16.0 45.5 9.2

Page 24 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

between the early exploration phase and the other exploitation phases for the
Levy and Rastrigin functions. For comparison, we show experimental results
for the Sphere function in Table 10. An interesting observation in Table 10 is a

a b

c d

e f
Fig. 10 Average number of candidate solutions over 1000 runs of the ten designed algorithms. a Sphere. b
Rosenbrock. c Griewank. d Ackley. e Levy. f Rastrigin

Page 25 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

relatively larger percentage of random creation in the first 50 evaluations (i.e.,
15.8 %). It seems that the designed algorithms search for good starting points by
randomly generating solutions in the early search phase. However, even in the
first 50 evaluations, mutation is mainly used in Table 10 for the Sphere function
with no local minima.

Algorithm design

From our experimental results, we can see that the first four problems (Sphere, Rosen-
brock, Griewank and Ackley) and the last two problems (Levy and Rastrigin) need totally
different algorithms. For the first four problems, the (1+ 1)ES-style algorithm worked
well. However, from Tables 8, 9, 10, the examination of randomly generated solutions
in the early generations seems to be a good idea for not only the last two test problems
but also the first four test problems. So, we implement a slightly modified (1+ 1)ES-style
algorithm by using random solutions in the first ten evaluations instead of mutated solu-
tions in the (1+ 1)ES-style algorithm. This algorithm is referred to as the “(1+ 1)ES-
Random-10” algorithm.

Table 8 Average percentage of each operator in a different phase for the Levy function
in Table 7

Search phase Re‑evaluation
(operator) (%)

Re‑evaluation
(archive) (%)

Random
(%)

Crossover
(%)

Mutation
(%)

1–50th evaluations 20.7 0.0 40.8 35.7 2.7

51–100th evaluations 37.2 0.0 4.7 49.4 8.7

101–150th evaluations 28.8 0.0 6.2 49.7 15.4

151–200th evaluations 26.1 9.4 3.3 47.4 13.8

1–200th evaluations 28.2 2.3 13.8 45.6 10.1

Table 9 Average percentage of each operator in a different phase for the Rastrigin func‑
tion in Table 7

Search phase Re‑evaluation
(operator) (%)

Re‑evaluation
(archive) (%)

Random
(%)

Crossover
(%)

Mutation
(%)

1–50th evaluations 21.5 0.0 37.2 37.2 4.1

51–100th evaluations 36.4 0.0 8.3 46.0 9.3

101–150th evaluations 26.5 0.0 11.9 48.7 13.0

151–200th evaluations 24.3 8.3 6.6 50.3 10.5

1–200th evaluations 27.2 2.1 16.0 45.5 9.2

Table 10 Average percentage of each operator in a different phase for the Sphere function
in Table 7

Search phase Re‑evaluation
(operator) (%)

Re‑evaluation
(archive) (%)

Random
(%)

Crossover
(%)

Mutation
(%)

1–50th evaluations 28.3 0.0 15.8 0.0 55.9

51–100th evaluations 28.8 0.0 0.0 0.0 71.2

101–150th evaluations 28.0 0.0 0.0 0.0 72.0

151–200th evaluations 27.2 0.6 0.0 1.0 71.2

1–200th evaluations 28.1 0.1 4.0 0.2 67.6

Page 26 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

For comparison, we also implement the “(1+ 1)ES-Random-50” algorithm where
the first 50 solutions are generated randomly. Experimental results are summarized in
Fig. 11. It is shown by Fig. 11 that the use of random solutions in the first ten evaluations

a b

c d

e f
Fig. 11 Experimental results by the (1+ 1)ES-style algorithm and its two variants: (1+ 1)ES-Random-10 and
(1+ 1)ES-Random-50. a Sphere. b Rosenbrock. c Griewank. d Ackley. e Levy. f Rastrigin

Page 27 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

clearly improves the performance of the (1+ 1)ES-style algorithm for the last two test
problems without degrading its performance for the first four test problems. For the last
two test problems, we can further improve the performance of the (1+ 1)ES-style algo-
rithm by increasing the archive size and using the crossover operator. However, its per-
formance for the first four test problems is deteriorated by those changes.

Finally, we examine the generalization ability of the ten designed algorithms in the best
setting in Table 5. Each algorithm designed for a test problem is applied to other test
problems for examining its generalization ability. In our computational experiments, we
divide our six test problems into two groups: Group A = {Sphere, Griewank, Levy} and
Group B = {Rosenbrock, Ackley, Rastrigin}. Group A and Group B include the three test
problems in the left and right columns of each figure (e.g., Fig. 11), respectively. Each of
the ten algorithms designed for a test problem in one group is applied to each test prob-
lem in the other group 100 times. Experimental results are summarized in Fig. 12. We
can observe from Fig. 12 that the designed algorithms for one of the last two test prob-
lems work well on the other test problem in Fig. 12e, f. That is, the designed algorithms
for Levy (Rastrigin) work well on Rastrigin (Levy). However, those algorithms do not
work well on the first four test problems in Fig. 12a–d. We can also see that the designed
algorithms for one of the first four test problems work well on the other three test prob-
lems in Fig. 12a–d. Our experimental results show that the designed algorithms have a
limited but high generalization ability to similar test problems.

Conclusion
We examined the performance of our offline meta-level approach to the design of IEC
algorithms. The main feature of our approach is that a different operator is used to gen-
erate each solution. In the basic setting of our approach, an IEC algorithm is coded as a
string of operators where the string length is the same as the number of solutions to be
generated. We obtained promising results where efficient multi-point search algorithms
were designed for non-linear test problems with many local minima. The designed algo-
rithms seemed to adjust the diversity-convergence balance over 200 evaluations by fre-
quently changing operators to generate new solutions. With respect to the frequency
of operator change, we obtained similar results from the following three settings: the
same solution generation operator was used to generate a single, five and ten solutions
(Table 5). This observation suggests that we do not need to change operators to generate
each solution. However, when we used the same operator to generate 50 solutions, we
observed clear performance deterioration of designed algorithms. This observation sug-
gests the need of a more frequent change of operators than every 50 solutions.

As expected, different algorithms were designed for different test problems. One com-
mon feature among all the designed algorithms was the use of randomly generated solu-
tions in an early stage of evolution. We demonstrated that the performance of the (1+ 1)
ES-style algorithm was improved by using randomly generated solutions in its first ten
generations (Fig. 11). We also demonstrated that a designed algorithm for one test prob-
lem worked well on another test problem when they were similar to each other with
respect to the shape of the fitness function (Fig. 12). This result suggests the possibility
of designing a high-performance IEC algorithm for a real-world application problem if
we have a similar test problem.

Page 28 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

a b

c d

e f
Fig. 12 Examination of the generalization ability of the designed algorithms under the best setting in
Table 5. Designed algorithms for a test problem in the left (right) column is applied to the other test problems
in the right (left) column. a Sphere. b Rosenbrock. c Griewank. d Ackley. e Levy. f Rastrigin

Page 29 of 29Ishibuchi et al. SpringerPlus (2016) 5:192

Since this study is just a start of research on offline meta-level algorithm design where
a search algorithm is handled as a string of solution generation operators, there exist a
large number of future research topics. For example, the usefulness of our IEC model
should be evaluated by its applications to real-world IEC problems. Its combination with
a brain computer interface is an interesting future research topic. Since the proposed
idea of offline meta-level algorithm design is a general framework, it can be applicable
to not only continuous test problems but also other problems such as combinatorial
and multi-objective problems. The design of an IEC algorithm using a surrogate model
seems to be a promising research topic where a surrogate model can be used instead of a
test problem for fitness evaluation of IEC algorithms in our meta-level approach.
Authors’ contributions
HI conceived the idea and wrote the paper. TS performed computational experiments and prepared figures and tables.
YN supported TS and modified the paper. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by JSPS KAKENHI Grant Numbers 243400090.

Competing interests
The authors declare that they have no competing interests.

Received: 5 October 2015 Accepted: 12 February 2016

References
Arevalillo-Herráez M, Ferri FJ, Moreno-Picot S (2011) Distance-based relevance feedback using a hybrid interactive

genetic algorithm for image retrieval. Appl. Soft Comput. 11:1782–1791
Cho SB (2002) Towards creative evolutionary systems with interactive genetic algorithm. Appl. Intell. 16:129–138
Cho SB (2004) Emotional image and musical information retrieval with interactive genetic algorithm. Proc. IEEE

92:702–711
Deb K, Kumar A (1995) Real-coded genetic algorithms with simulated binary crossover: studies on multimodal and multi-

objective problems. Complex Syst 9:431–454
Fernandez JD, Vico F (2013) Ai methods in algorithmic composition: a comprehensive survey. J Artif Intell Res 48:513–582
Fukumoto M, Inoue M, Imai J (2010) User’s favorite scent design using paired comparison-based interactive differential

evolution. In: Proceedings of 2010 IEEE congress on evolutionary computation, 18–23 July 2010, Barcelona, pp
4519–4524

Hamdan M (2010) On the disruption-level of polynomial mutation for evolutionary multi-objective optimisation algo-
rithms. Comput Inf 29:783–800

Ishibuchi H, Hoshino K, Nojima Y (2012) Problem formulation of interactive evolutionary computation with minimum
requirement for human user’s fitness evaluation ability. In Proceedings of 16th Asia Pacific symposium on intelligent
and evolutionary systems, 12–14 December 2012, Kyoto, pp 52–57

Ishibuchi H, Sudo T, Nojima Y (2014a) Archive management in interactive evolutionary computation with minimum
requirement for human user’s fitness evaluation ability. In: Proceedings of 13th international conference on artificial
intelligence and soft computing, 1–5 June 2014, Zakopane, pp 360–371

Ishibuchi H, Sudo T, Ueba K, Nojima Y (2014b) Offline design of interactive evolutionary algorithms with different genetic
operators at each generation. In: Proceedings of 18th Asia Pacific symposium on intelligent and evolutionary
systems, 10–12 November 2014, Singapore, pp 635–646

Kim HS, Cho SB (2000) Application of interactive genetic algorithm to fashion design. Eng. Appl. Artif. Intell. 13:635–644
Lai CC, Chen YC (2011) A user-oriented image retrieval system based on interactive genetic algorithm. IEEE Trans Instrum

Meas 60:3318–3325
Lameijer EW, Kok JN, Bäck T, Ijzerman AP (2006) The molecule evoluator. An interactive evolutionary algorithm for the

design of drug-like molecules. J Chem Inf Model 46:545–552
Sun X, Gong D, Zhang W (2012) Interactive genetic algorithms with large population and semi-supervised learning. Appl

Soft Comput 12:3004–3013
Surjanovic S, Bingham D (2013) Virtual library of simulation experiments: test functions and datasets. http://www.sfu.

ca/~ssurjano
Takagi H (2001) Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evalua-

tion. Proc. IEEE 89:1275–1296
Takagi H, Ohsaki M (2007) Interactive evolutionary computation-based hearing aid fitting. IEEE Trans Evol Comput

11:414–427
Takagi H, Pallez D (2009) Paired comparisons-based interactive differential evolution. In: Proceedings of 2009 world con-

gress on nature and biologically inspired computing, 9–11 December 2009, Coimbatore, pp 475–480

http://www.sfu.ca/~ssurjano
http://www.sfu.ca/~ssurjano

	Interactive evolutionary computation with minimum fitness evaluation requirement and offline algorithm design
	Abstract
	Background
	The number of runs used for evaluating each string
	The string length
	The number of possible operators

	Our IEC model
	Our ()ES-style IEC algorithm
	Archive maintenance rule
	Archive maintenance rule

	Archive maintenance for ()ES-style algorithms
	Archive maintenance rule for ES-style algorithms

	Generation of new solutions
	The basic framework of our ES-style IEC algorithm

	Computational experiments by our ()ES-style IEC algorithm

	Meta-level approach to the design of IEC algorithms
	Offline meta-level algorithm design approach in Ishibuchi et al. (2014b)
	Various implementation issues of offline meta-level approach
	The number of possible operators
	The number of runs used for evaluating each string
	The string length

	Computational experiments of meta-level algorithm design
	Four operators
	Eight operators

	Further examination of designed algorithms
	Algorithm design

	Conclusion
	Authors’ contributions
	References

