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Abstract 

 This paper discusses the linguistic knowledge extraction from the iterative execution of a multi-

player non-cooperative repeated game. Linguistic knowledge is automatically extracted in the form of 

fuzzy if-then rules. Our knowledge extraction is mainly based on the on-line incremental learning of 

fuzzy rule-based systems. In this sense, our linguistic knowledge extraction is the learning of fuzzy 

rules. We first briefly describe a market selection game, which is formulated as a non-cooperative 

repeated game with many players and several alternative actions. We also describe some simple 

strategies for our market selection game. In our market selection game, the payoff of each player 

depends on the actions of all players. When a particular action is chosen by many players, those 

players receive low payoff. High payoff is obtained from actions chosen by only a small number of 

players. This means that minority players with respect to their actions receive high payoff. Next we 

show how our market selection game can be handled as a pattern classification problem where a single 

training pattern is successively generated from every round of our game. A fuzzy rule-based 

classification system is used as a decision-making system by each player for choosing an action in 

every round. An on-line incremental learning algorithm is proposed for adjusting the fuzzy rule-based 

classification system. Then we show how our market selection game can be handled as a function 

approximation problem. A fuzzy rule-based approximation system is used as a value function for 

approximating the expected payoff from each action. Finally simulation results show that 

comprehensible linguistic knowledge is extracted by the learning of fuzzy rule-based systems. 

 

Keywords: Knowledge extraction, non-cooperative game, repeated game, learning, linguistic modeling, 

decision analysis, fuzzy rule-based system. 

 

 

1. Introduction 

 Recently various approaches have been proposed for extracting comprehensible linguistic 

knowledge from numerical data [6,12,13,19,20,22,23,28]. In those studies, emphasis was placed on 

the comprehensibility or transparency of extracted knowledge as in the field of knowledge discovery 

and data mining [5,21]. In this paper, we show how linguistic knowledge can be extracted from the 
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iterative execution of a market selection game, which is a multi-player non-cooperative repeated game 

formulated in our former study [7]. Our linguistic knowledge extraction is mainly based on the on-line 

incremental learning of fuzzy rule-based systems. In this sense, our linguistic knowledge extraction is 

the learning of fuzzy rules. We propose two learning schemes. In one scheme, our market selection 

game is handled as a pattern classification problem where a single training (i.e., labeled) pattern is 

successively generated from every round of our game. A fuzzy rule-based classification system 

[3,4,6,8,9,16,17] is used as a decision-making system for choosing an action in the current round 

based on the result of the previous round. In the other scheme, our market selection game is handled as 

a function approximation problem where a single input-output pair is successively generated from 

each round. A fuzzy rule-based approximation system is used as a value function for approximating 

the expected payoff from each action. In this learning scheme, fuzzy rule-based systems can be viewed 

as function approximators as in their applications to function approximation problems and control 

problems [14,26]. 

 Evolution of game strategies has been mainly studied for the Iterated Prisoner’s Dilemma (IPD) 

game [1,2,15,27]. In those studies, game strategies were evolved by genetic operations. Our market 

selection game is much more complicated than the IPD game in its payoff mechanism. The payoff 

mechanism in our market selection game cannot be represented in a simple tabular form while it is 

usually represented by a 22×  payoff matrix in the IPD game. Moreover our market selection game 

has several alternative actions while the IPD game usually has only two actions (i.e., “ cooperate”  and 

“ defect” ).  

 The main characteristic feature of our knowledge extraction task is that the amount of available 

information gradually increases during the iterative execution of our game. That is, a piece of 

available information is successively generated from every round of our game. A fuzzy rule-based 

system, which is used for game-playing by each player, is also successively adjusted by an on-line 

incremental learning scheme after every round. Such on-line learning of the fuzzy rule-based system 

affects the game-playing in future rounds. That is, the learning affects the generation of available 

information in future rounds. In this sense, our knowledge extraction task is dynamic while most of the 

above-mentioned studies on linguistic knowledge extraction were applied to static tasks where the 

available information was given in advance. 

 This paper is organized as follows. In the next section, we briefly describe our market selection 

game formulated as a non-cooperative repeated game with many players (e.g., 100 players) and 

several alternative actions (e.g., five markets) in our former work [7]. Some game strategies examined 

in [7,10,11] are described in Section 3. In Section 4, we propose an on-line incremental learning 

scheme of fuzzy rule-based classification systems. In this learning scheme, our market selection game 

is handled as a pattern classification problem where a single training pattern is successively generated 

from every round of our game. In Section 5, our market selection game is handled as a function 

approximation problem. A fuzzy rule-based approximation system is used for approximating the value 
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of each action. Simulation results are reported in Section 6 for demonstrating that comprehensible 

linguistic knowledge can be extracted by our two learning schemes. Finally Section 7 concludes this 

paper. 

 

2. Formulation of a market selection game 

 In this section, we briefly describe a market selection game formulated in our former study [7]. Our 

market selection game involves n players and m markets. All players and markets are located in a two-

dimensional world. Fig. 1 shows an example of our market selection game with 100 players (i.e., 

=n 100) and five markets (i.e., =m 5). Locations of players and markets in this figure are available 

from http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e/index.html. Every player i ( ni ...,,2,1= ) is 

supposed to simultaneously choose one of the m markets in every round of our game as shown in Fig. 

2. Let is  be the action of the i-th player. The action is  is to choose one of the given m markets: 

}...,,2,1{ msi ∈ .  
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Fig. 1.  An example of our market selection game. 
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Fig. 2.  An example of the market selection by 100 players. 

 

 Every player has a single product to be sold in a market in every round of our game. A fixed 
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transportation cost ijc  is required for the transportation of the product from the i-th player’s location 

to the j-th market. In our computer simulations on the market selection game in Fig. 1, we simply 

defined ijc  by the Euclidean distance from the i-th player’s location to the j-th market. The payoff of 

each player is defined by the market price at the selected market and the transportation cost to that 

market. It is assumed that the market price at each market is determined by a linear decreasing 

function of the number of players who choose that market. Let jX  be the number of players who 

choose the j-th market. It should be noted that the equality nXXX m =+++ ...21  holds from the 

definition. The market price jp  at the j-th market is defined as 

jjjj Xbap ⋅−= ,                          (1) 

where ja  and jb  are positive constants that specify the market price mechanism in the j-th market. In 

our computer simulations on the market selection game in Fig. 1, we used the same linear decreasing 

function for all the five markets: 

jj Xp 3200 −=   for  =j 1, 2, 3, 4, 5.                    (2) 

 The payoff of the i-th player who chooses the market is  (i.e., the i-th player with the action is ) is 

defined as 

)()()()()()()( isiisisisisiisisi cXbacpr −⋅−=−= .                (3) 

In this formulation, )( is
X  is the number of players who choose the market is . Thus the payoff of the 

i-th player depends on the actions of all players. 

 The main characteristic feature of our market selection game is its payoff mechanism in (3). High 

payoff cannot be obtained from an action that is also chosen by many other players. That is, majority 

players with respect to their actions receive low payoff. High payoff can be obtained from an action 

that is chosen by only a small number of players. Such deterioration in payoff due to the concentration 

of players can be observed in many everyday situations. For example, the chance to pass the entrance 

examination of a particular department of a university may decrease as the number of applicants to 

that department increases. Various choices related to plans for the summer vacation also have similar 

payoff mechanisms. For example, the choice of the same route to a summer resort by many people 

may decrease their payoff due to heavy traffic jams. The choice of the same resort by many people 

may also decrease their payoff due to several negative effects such as the hike in travel expenses and 

the difficulty in booking.  
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 Another important characteristic feature shared by our market selection game and these everyday 

situations is the dependence of future decision-making on previous results. For example, if the 

competition to pass the entrance examination of a particular department is unusually tough this year, 

the number of applicants to that department may decrease next year. If people have a hard time on a 

highway due to a heavy traffic jam, they will try to avoid that route next time. As shown by these 

discussions, our market selection game shares some interesting features with many everyday decision-

making problems.  

 

3. Some simple strategies 

 In this section, we briefly explain some simple strategies examined in our previous studies 

[7,10,11]. We also propose a maximum expected payoff strategy. These strategies will be compared 

with two on-line incremental learning schemes proposed in later sections.  

 

3.1 Random selection strategy 

 The point of our market selection game is to avoid the undesired concentration of players to a few 

markets. The simplest way for avoiding the concentration is to randomly select a market. In this 

random selection strategy, each market is selected as the action is  of the i-th player with the 

probability m/1 . When all players use this strategy, the undesired concentration is avoided. Fig. 3 is 

an example of the market selection by the 100 players with the random selection strategy. As shown in 

Fig. 3, the market selection is totally in disorder. Since the transportation cost is not taken into account, 

we cannot obtain high payoff from this strategy. We performed computer simulations on our market 

selection game in Fig. 1 by assigning this strategy to all the 100 players. We performed ten 

independent trials, each of which consisted of 1000 rounds of our market selection game. The average 

payoff was 84.8 over the ten trials. This average payoff is used for evaluating the performance of other 

strategies in this paper. 
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Fig. 3. Example of the market selection using the random selection strategy. 
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3.2 Minimum transportation cost strategy 

 While the undesired concentration of players was avoided in Fig. 3, high payoff was not obtained. 

This is because the transportation cost was not taken into account. The transportation cost can be 

minimized by choosing the nearest market from each player. The minimum transportation cost 

strategy always chooses the nearest market in every round of our market selection game. Fig. 2 in the 

previous section was depicted using this strategy. When all players adopt this strategy, the market 

selection in Fig. 2 is simply iterated. In this case, the average payoff is 108.0. This average payoff is 

larger than the result by the random selection strategy (i.e., average payoff 84.8). 

 

3.3 Optimal strategy for the previous actions 

 Since every player is supposed to simultaneously choose a market in every round of our market 

selection game, no player knows the best action for the current round. Every player, however, knows 

the best action in the previous round that has already been completed. The optimal strategy for the 

previous actions chooses the best action in the previous round as the current action. This strategy first 

calculates the potential payoff from each market in the previous round. Let ijtr  be the actual or 

potential payoff from the j-th market in the t-th round for the i-th player. When the j-th market was 

actually selected in the t-th round by the i-th player, ijtr  is the actual payoff calculated by (3) in 

Section 2. For the other markets that were not actually selected, ijtr  is calculated by considering how 

much payoff would have been obtained from the j-th market if the i-th player had chosen that market 

in the t-th round. That is, the actual or potential payoff is calculated as: 

��
�� �

−+⋅−

=−⋅−
=

otherwise,   ,)1(

round, th-  thein   if   ,

i jjjj

ii jjjj
i jt cXba

tjscXba
r                (4) 

where jX  is the number of players who actually chose the j-th market in the t-th round. When the 

potential payoff is calculated for each market that was not actually chosen by the i-th player in the t-th 

round, the i-th player is added to iX  as )1( +iX  in (4). 

 In the )1( +t th round of our market selection game, the optimal strategy for the previous actions 

chooses the market with the maximum value of ijtr  among the m markets. If multiple markets have the 

same maximum value, this strategy randomly chooses one from those markets. Of course, the selected 

market is not always the best in the current round. When all the other players do not change their 

market selection, the optimal strategy for the previous actions is also optimal in the current round. On 

the other hand, when all players use this strategy, the undesired concentration of players is rapidly 

self-organized as shown in Fig. 4.  

 In the first round, no market was selected in the previous round (i.e., jsi ≠  and 0=jX  for all 
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markets in (4)). Thus the optimal strategy for the previous actions chooses the nearest market with the 

minimum transportation cost (see Fig. 4 (a)) when ja  and jb  are the same for all markets. In the 

second round, the optimal market of each player is chosen for the actions of the other players in the 

first round. In Fig. 4 (b), many players choose the left-bottom market with only a few players in the 

first round. In the third round, the optimal market for the actions in the second round is chosen as 

shown in Fig. 4 (c) where two markets are selected by no player. In the fourth round, many players 

choose those two markets (see Fig. 4 (d)). The market selection was iterated until the 1000th round. 

The average payoff was 47.2 over the 1000 rounds. This average payoff is terribly poor (i.e., much 

smaller than the result 84.8 by the random selection strategy) due to the undesired concentration of 

players.  

 While the average payoff was very small when all players used this strategy, we can obtain the best 

result when a single player with this strategy plays against all the other players with the minimum 

transportation cost strategy. We can also obtain good results from the optimal strategy for the previous 

actions when this strategy is adopted by only a small number of players. Competition among different 

strategies will be discussed in Section 6. 
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   (a) 1st round.          (b) 2nd round.  
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 (c) 3rd round.          (d) 4th round.  

Fig. 4. Selected markets by the optimal strategy for the previous actions in the first four rounds. 
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3.4 Maximum expected payoff strategy 

 In the optimal strategy for the previous actions, only the previous single round was taken into 

account. Such limited utilization of previous results may cause the synchronized oscillation of the 

market selection in Fig. 4. In this subsection, the expected payoff from each market is estimated from 

all the previous results. Let ijv  be the value of the j-th market (i.e., the expected payoff from the j-th 

market) for the i-th player. After the t-th round of our market selection game is completed, ijv  is 

updated as 

i jti ji j rvv ⋅+⋅−= αα OldNew )1(:   for  mj ,...,2,1= ,                (5) 

where α  is a learning rate ( 10 ≤< α ), and ijtr  is the actual or potential payoff of the i-th player from 

the j-th market in the t-th round of our market selection game, which is calculated by (4).  

 In the framework of reinforcement learning [25], only the value of the actually selected action is 

updated. Such a learning scheme was examined in our previous studies [7,10]. In this paper, we update 

the values of all markets (i.e., all alternative actions) because the potential payoff from each market 

can be calculated by (4) even if that market was not actually selected in the previous round. 

 In every round of our market selection game, the market with the largest value is selected among 

the m markets. When multiple markets have the same largest value, one market is randomly selected 

from those markets. We use such a simple greedy method because the values of all markets are 

updated by (5). If the value of only the actually selected market were updated, the greedy method 

would not work well. In this case (i.e., in the framework of reinforcement learning), some exploration 

mechanism should be included [25]. Our maximum expected payoff strategy in this subsection always 

chooses the market with the largest value. Before the first round of our market selection game, the 

values ijv ’s of all markets are specified as the same initial real number. As a result, the market 

selection is randomly performed in the first round. In our computer simulations, we specified the 

initial value of each market as 200Initial =i jv , which is the upper bound of the market price (see (2)). 

The specification of the initial value of each action is very important for facilitating the exploration of 

actions in reinforcement learning [25]. The effect of the initial value of each action, however, is 

limited to the first several rounds in our maximum expected payoff strategy when the same initial 

value is used. When we use random initial values in a wide range (e.g., interval [0, 200]), many rounds 

are required for adjusting the values ijv ’s. 

 Our maximum expected payoff strategy is illustrated in Fig. 5 where all players adopt this strategy 

with =α 0.1. In the first round, every player randomly chooses a market (see Fig. 5 (a)). When the 

first round is completed, the value ijv  of each market for each player is updated by (5) based on the 

market selection in the first round. In the second round, every player chooses the market with the 
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largest value for that player (see Fig. 5 (b)). We iterated this computer simulation until the 1000th 

round. In the tenth round (see Fig. 5 (c)), good coordination of the market selection was realized. Such 

good coordination of the market selection continued after the tenth round (see Fig. 5 (d)). We 

performed this computer simulation ten times. The average payoff over ten independent trials was 

118.9. This result is better than the average payoff by the other strategies mentioned in the previous 

subsections. 

 When =α 1, the market selection by the maximum expected payoff strategy is almost the same as 

the optimal strategy for the previous actions. This is because the value ijv  is defined only by the result 

of the previous single round in the case of =α 1 (see the update mechanism in (5)). In this case, we 

obtained the average payoff 41.2 from ten independent trials. This average payoff is almost the same 

as the result 47.2 by the optimal strategy for the previous actions. On the other hand, when α  is very 

small, the value ijv  cannot be rapidly adjusted to sudden changes of environment.  
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   (a) 1st round.          (b) 2nd round.  
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 (c) 10th round.          (d) 11th round. 

Fig. 5. Selected markets by the maximum expected payoff strategy. 
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4. Handling as a pattern classification problem 

 In this section, we show how our market selection game can be handled as a pattern classification 

problem. An on-line incremental learning scheme is proposed for adjusting fuzzy rule-based 

classification systems. 

4.1 Data acquisition 

 As we have already explained in the previous section, every player knows the optimal market 

selection when the current round of our market selection game is completed. It is, however, difficult to 

effectively utilize the information about the optimal market selection in previous rounds for the market 

selection in future rounds. As shown in Fig. 4, the optimal strategy for the previous actions leads to the 

undesired concentration of players to a few markets when all players adopt this strategy. Thus we need 

a trick for effectively utilizing the information about the optimal market selection in previous rounds. 

 In this section, we associate the market prices in the t-th round to the market selection in the 

)1( +t th round. That is, we generate a labeled pattern ),( )1( +tit cp  where )1( +tic  is the best market 

for the i-th player in the )1( +t th round and tp  is the price vector in the t-th round: 

)...,,,( 21 tmttt ppp=p ,                         (6) 

where tjp  is the market price at the j-th market in the t-th round of our market selection game. It 

should be noted that the best market )1( +tic  is identified after the )1( +t th round is completed. 

 The market selection of each player is performed by a single fuzzy rule-based classification system. 

The first labeled pattern ),( 21 icp  is obtained after the second round is completed. This means that we 

have no training data until the second round is completed. Thus the market selection in the first two 

rounds is performed randomly. The first labeled pattern is utilized for the learning of the fuzzy rule-

based classification system before the market selection in the third round. When the third round is 

completed, the second labeled pattern ),( 32 icp  is obtained. In this manner, we have )1( −t  labeled 

patterns when the t-th round of our market selection game is completed. Those labeled patterns 

{ ),( 21 icp , ),( 32 icp , ..., ),( 1 itt c−p }  can be used in the learning of the fuzzy rule-based 

classification system for the market selection of the i-th player in the )1( +t th round. 

 

4.2 Fuzzy rule-based classification systems for market selection 

 For the market selection, we use the following fuzzy if-then rules: 

Rule kR : If 1p  is 1kA  and ... and mp  is kmA  then kc  with kCF , Kk ,...,2,1= ,       (7) 
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where kjA  is an antecedent fuzzy set with a linguistic label, kc  is a consequent market, kCF  is a 

certainty grade, and K  is the number of fuzzy if-then rules. The fuzzy if-then rule kR  in (7) is 

interpreted as “ If the market prices in the previous round are )...,,( 1 kmk AA  then choose the market 

kc  in the current round” . The certainty grade kCF  is used for representing the weight of the fuzzy if-

then rule kR .  

 In our computer simulations of this paper, we used two antecedent fuzzy sets “ low”  and “ high”  in 

Fig. 6 for all the five markets. Thus 3225 =  fuzzy if-then rules, which were generated by combining 

these two antecedent fuzzy sets for the five markets, were used for the market selection of each player. 

That is, the fuzzy rule-based classification system for each player consisted of 32 fuzzy if-then rules in 

our computer simulations. The membership functions of the two antecedent fuzzy sets were specified 

in an ad hoc manner. When the 100 players are evenly distributed over the five markets, the market 

price of each market is 140 because 20 players choose each market (see (2) in Section 2). The two 

membership functions intersect with each other at this market price as shown in Fig. 6. When the 

number of players choosing a particular market is doubled (i.e., from 20 to 40), the market price 

decreases from 140 to 80. The membership values of “high”  and “ low”  are 0 and 1 at this market price, 

respectively. The upper bound of the market price of each market is 200 (see (2) in Section 2). The 

membership values of “high”  and “ low”  are 1 and 0 at this market price, respectively. We also 

examined a different pair of membership functions with three parameter values (100, 150, 200) instead 

of (80, 140, 200) in Fig. 6. That is, membership functions with a smaller overlapping area were also 

examined. Simulation results from these membership functions were almost the same as the case of 

Fig. 6. We also examined an interval partition where “ low”  and “high”  were represented by two 

intervals [0, 140] and [140, 200], respectively. Simulation results by this interval partition were 

slightly inferior to those by the fuzzy partition in Fig. 6. The automated specification of linguistic 

labels and their membership functions are beyond the scope of this paper while it is a very important 

issue. This issue is left for future research on our market selection game. The main difficulty in the 

handling of this issue for our market selection game is that training data are incrementally obtained 

from the iterative execution of our game. 
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Fig. 6. Two antecedent fuzzy sets “ low”  and “ high” . 
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 For the market selection in the )1( +t th round, the price vector )...,,,( 21 tmttt ppp=p  in the t-th 

round is used as the input vector to the fuzzy rule-based classification system with the K fuzzy if-then 

rules in (7). The market selection is performed using a fuzzy reasoning method based on a single 

winner rule [6,8,9,17]. In this fuzzy reasoning method, first the compatibility of the input vector with 

each fuzzy if-then rule is calculated as  

)(...)()()( 2211 tmkmtktktk ppp µµµµ ⋅⋅⋅=p ,                 (8) 

where )(⋅kjµ  is the membership function of the antecedent fuzzy set kjA . The winner rule *kR  is 

defined as  

},...,2,1:)(max{)( ** KkCFCF ktkktk =⋅=⋅ pp µµ .               (9) 

The consequent market *kc  of the winner rule *kR  is chosen for the market selection in the )1( +t th 

round. When multiple rules have the same maximum value in (9), the winner rule cannot be uniquely 

specified. In this case, a single rule is randomly chosen from those rules as the winner rule *kR  for the 

market selection in the )1( +t th round. 

 

4.3 Learning algorithm  

 We have already explained how training patterns can be successively obtained from the iterative 

execution of our market selection game. We have also explained how the market selection can be 

performed by the fuzzy rule-based classification system. Our next issue is the learning of the fuzzy 

rule-based classification system. Our learning algorithm is based on a heuristic procedure [6,8,9,17] 

for generating fuzzy if-then rules for pattern classification problems. 

 Let kjβ  be the discounted sum of the compatibility grades of training patterns labeled as the j-th 

market (i.e., jcit = ) with the fuzzy if-then rule kR . When the t-th round is completed, a training 

pattern ),( 1 itt c−p  is obtained. Using this training pattern, kjβ  is updated as 

)()( 1
OldNew

itjtkkjkj cδµβγβ ⋅+⋅= −p   for  mj 1,2,...,= ,                 (10) 

where γ  is a kind of a discount rate )10( ≤≤ γ  introduced for discounting the effect of the previously 

obtained training patterns, and )( itj cδ  is the following function for identifying the market itc  of the 

current training pattern ),( 1 itt c−p : 

�� �
≠
=

=
.if,0

,if,1
)(

jc

jc
c

it

it
itjδ                           (11) 
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When 1=γ , the compatibility grades of the previously obtained training patterns are not discounted in 

(10). On the other hand, when 0=γ , kjβ  is calculated only from the current training pattern 

),( 1 itt c−p . 

 The consequent market kc  of the fuzzy if-then rule kR  is determined in the same manner as a 

heuristic rule generation procedure in our former studies [6,8,9,17]: 

},...,2,1:max{)( mjkjkck == ββ .                       (12) 

That is, the consequent market kc  has the maximum discounted sum of the compatibility grades 

among the m markets. When the consequent market kc  cannot be uniquely determined (i.e., multiple 

markets have the same maximum value in (12)), we specify kc  as φ=kc  for indicating that the fuzzy 

if-then rule kR  is a dummy rule with no effect on the market selection. For the dummy rule kR , we 

specify the certainty grade kCF  as 0=kCF . From the definition of the winner rule in (9), we can see 

that any dummy rule with 0=kCF  is never selected as the winner rule.  

 When kR  is not a dummy rule, its certainty grade kCF  is defined from kjβ  and kc  as follows 

[6,8,9,17]: 
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 The above heuristic procedure can be easily understood if we consider a two-class pattern 

classification problem (i.e., market selection with two markets). For example, when 21 kk ββ > , the 

consequent market kc  and the certainly grade kCF  are determined as 1=kc  and 

)/()( 2121 kkkkkCF ββββ +−= , respectively. 

 Our fuzzy rule-based classification system is adjusted after every round of our market selection 

game using the updated kjβ  in (10). That is, the consequent market and the certainty grade of each 

fuzzy if-then rule are redefined after every round using the updated kjβ . The initial value of kjβ  is 



 -14- 

specified as 0=kjβ  because we have no training pattern before the first round. As we have already 

mentioned, the market selection in the first two rounds is performed randomly. When the second 

round is completed, each fuzzy if-then rule is adjusted. Then the market selection for the third round is 

performed using the adjusted fuzzy rule-based classification system. 

 

4.4 Computer simulations 

 We performed computer simulations on the market selection game in Fig. 1 using fuzzy rule-based 

classification systems with 32 fuzzy if-then rules. Each rule was generated using the two antecedent 

fuzzy sets “ low”  and “ high”  in Fig. 6. In our computer simulations of this subsection, every player 

used its own fuzzy rule-based classification system for the market selection. That is, our market 

selection game was executed by 100 fuzzy rule-based classification systems. The discount rate γ  was 

specified as =γ 0.9 for all players. The specification of γ  is discussed later in this subsection. It will 

be also discussed in Section 6 in a non-stationary situation with sudden changes of environment. 

 Fig. 7 shows the results in several rounds. As we have already mentioned, the market selection in 

the first two rounds was randomly performed (see Fig. 7 (a) and Fig. 7 (b)). After the second round, 

each fuzzy rule-based classification system was adjusted by the first training pattern. As a result, each 

player used the adjusted fuzzy rule-based classification system in the third round (see Fig. 7 (c)). In 

some rounds, we observed the undesired concentration of players (see Fig. 7 (d)). Such undesired 

concentration appeared periodically through 1000 iterations of our market selection game. As in the 

computer simulations in Section 3, the market selection was iterated until the 1000th round. This 

computer simulation was performed ten times. The average payoff over ten independent trials was 

61.6. This average payoff is not good due to the undesired concentration of players as the optimal 

strategy for the previous actions (its average payoff was 47.2). These two strategies are based on the 

information about the optimal market selection in the previous round. While the simulation result was 

not good when all players adopted the fuzzy rule-based classification strategy, this strategy works very 

well in competitive situations with other strategies as shown in Section 6. We also performed the same 

computer simulation using different values of γ . When 8.0≤γ , the average payoff was almost the 

same as the case of the optimal strategy for the previous actions. For example, it was 42.0 when 

8.0=γ . That is, the learning of each fuzzy rule-based system was mainly governed by the currently 

obtained single training pattern. On the other hand, by increasing the value of γ , we could improve 

the average payoff. For example, it was 100.6 when 0.1=γ . In this case, the effect of previously 

obtained training patterns is not discounted. This leads to poor adaptability of fuzzy rule-based 

systems to changes of environment. The adaptability of fuzzy rule-based systems will be discussed in 

Section 6.  
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   (a) 1st round.          (b) 2nd round.  
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 (c) 3rd round.          (d) 5th round.   

Fig. 7. Selected markets by the fuzzy rule-based classification systems. 

 

 By monitoring the winner rule in each round during the iterative execution of our market selection 

game, we can extract a small number of frequently used fuzzy if-then rules for each player. For 

example, let us consider Player 1 in Fig. 1. We monitored the winner rule for this player in each round 

of a single trial with 1000 rounds, and counted the number of rounds where each rule was selected as 

the winner rule. Table 1 shows frequently used fuzzy rules over the 1000 rounds. Since the fuzzy rule-

based classification system was successively updated during the execution of our market selection 

game, we show the final consequent class and the final certainty grade of each rule after the 1000th 

round. From Table 1, we can see that the market selection of Player 1 was mainly performed by only a 

few rules. We can also see that all the listed rules have the same final consequent: Market 5 (see Fig. 

1). This means that Market 5 was selected independent of the market prices in the previous round. 

Actually, Player 1 in Fig. 1 almost always chose Market 5 while the market selection of many players 

was governed by the synchronized oscillation as shown in Fig. 7. Table 1 also suggests that the target 

market )1( +tic  in the training data set would be almost always Market 5. We monitored the generated 

training data for Player 1 during the 1000 rounds of our market selection game. The target market was 

Market 5 in 864 labeled patterns (i.e., 864 rounds) during the execution of our market selection game. 
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It should be noted that these observations were obtained from a single trial. Simulation results in this 

subsection strongly depended on the random market selection in the first two rounds. Actually each 

trial showed totally different behaviors. That is, we obtained different average payoff and different 

fuzzy rules from each trial. The dependency of simulation results on the random market selection in 

the first two rounds can be decreased by specifying the initial value of kjβ  by a random real number 

instead of the same initial value 0=kjβ . The average payoff was improved from 61.6 to 114.6 when 

we specified the initial value of kjβ  by a random real number in the closed interval [0, 1]. In Section 6, 

we will show different situations where the market selection in each round is determined by the market 

prices in the previous round. 

Table 1. Frequently used fuzzy if-then rules. “ H”  and “ L”  denote the antecedent fuzzy set “ high”  and 

“ low” , respectively. 
 

Antecedent part Number 
of rounds 1q  2q  3q  4q  5q  

Consequent

kc  
Certainty

kCF  

447 L H H H H Market 5 0.95 
394 H H H L H Market 5 0.6 

77 H H L L H Market 5 0.54 
24 L H H H L Market 5 0.97 

13 H L H L H Market 5 0.68 

11 H L L L H Market 5 0.58 
7 L L H H H Market 5 0.95 

 

 

5. Handling as a function approximation problem 

 In this section, we show how our market selection game can be handled as a function 

approximation problem. A fuzzy rule-based approximation system is used for approximating the value 

of each market for each player. 

 

5.1 Data acquisition 

 As in the previous section, the market prices are used in the antecedent part of each fuzzy if-then 

rule. The consequent part is related to the expected payoff from each market (i.e., the value of each 

market). When the t-th round of our market selection game is completed, the actual or potential payoff 

ijtr  of the i-th player from the j-th market in the t-th round is calculated by (4) in Section 3. An m-

input and single-output fuzzy rule-based approximation system is used for approximating the mapping 

from the price vector )...,,( 1 tmtt pp=p  in the t-th round to the value ijv  of the j-th market in the 

)1( +t th round. Each player uses m fuzzy rule-based approximation systems for the market selection. 
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Each approximation system is used as an approximator of the value of each market. 

 The first input-output pair ),( 21 ijrp  is obtained for the j-th market when the second round of our 

market selection game is completed. This input-output pair is used for the learning of the j-th fuzzy 

rule-based approximation system. Such an input-output pair is obtained for each market. That is, a set 

of m input-output pairs is obtained for the learning of m fuzzy rule-based approximation systems. Each 

approximation system is adjusted by the corresponding input-output pair. The market selection in the 

third round is performed using the adjusted m approximation systems. When the third round is 

completed, the next input-output pair ),( 32 ijrp  is obtained from the j-th market for the learning of the 

j-th fuzzy rule-based approximation system. In this manner, )1( −t  input-output pairs { ),( 21 ijrp , 

),( 32 ijrp , ..., ),( 1 ijtt r−p }  are obtained for the learning of the j-th fuzzy rule-based approximation 

system before the market selection in the )1( +t th round. As in the previous section, the market 

selection in the first two rounds is performed randomly. 

 

5.2 Fuzzy rule-based systems for value approximation 

 For approximating the value ijv , we use the following fuzzy if-then rules: 

Rule kR : If 1p  is 1kA  and ... and mp  is kmA  then ijv  is ijkv , Kk ,...,2,1= ,          (15) 

where ijkv  is a consequent real number. These fuzzy if-then rules are the simplest form of the Takagi-

Sugeno model [24]. While conventional fuzzy if-then rules in the Takagi-Sugeno model have a 

consequent linear function, our rules in (15) have a consequent real number. The fuzzy if-then rule kR  

in (15) is interpreted as “ If the market prices in the previous round are )...,,( 1 kmk AA  then the value of 

the j-th market in the current round is ijkv ” .  

 We use the same weighted averaging scheme as the Takagi-Sugeno model for calculating the 

output ijv̂  from the fuzzy rule-based approximation system with the K fuzzy if-then rules in (15). 

When the input vector tp  (i.e., the market price vector in the t-th round) is presented to the 

approximation system, the output ijv̂  is calculated as follows:  
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where )( tk pµ  is the compatibility grade of the input vector tp  with the fuzzy if-then rule kR defined 
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by (8), and )(*
tk pµ  is the normalized compatibility grade: 
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 For the market selection in the )1( +t th round, we first calculate the output ijv̂  from each fuzzy 

rule-based approximation system by (16). Then we choose the market with the largest output among 

the m markets. When multiple markets have the same largest output, one market is randomly selected 

from those markets. The same greedy method was used in the maximum expected payoff strategy in 

Subsection 3.4.  

5.3 Learning algorithm 

 The learning of each fuzzy rule-based system is performed by updating the consequent real number 

ijkv  of each fuzzy if-then rule. When the t-th round is completed, the input-output pair ),( 1 ijtt r−p  is 

obtained from the j-th market for the i-th player. This input-output pair is used for the learning of the K 

fuzzy if-then rules in the j-th fuzzy rule-based approximation system of the i-th player. 

 The learning of each fuzzy if-then rule is performed by updating the consequent real number ijkv  

using the actual or potential payoff ijtr  as  

i jttkijktkijk rvv ⋅⋅+⋅⋅−= −− )())(1( 1
*Old

1
*New pp µαµα  

  ijtijk rv ⋅+⋅−= *Old* )1( αα ,                        (18) 

where 

)( 1
**

−⋅= tk pµαα .                           (19) 

 This update rule is almost the same as (5) in the maximum expected payoff strategy except that the 

learning rate α  is multiplied by the normalized compatibility grade )( 1
*

−tk pµ . The amount of the 

adjustment is proportional to the normalized compatibility grade in (18). Fuzzy if-then rules with 

small compatibility grades are slightly adjusted while those with large compatibility grades are 

significantly adjusted. The same update rule was used in fuzzy Q-learning for the market selection 

game in our former studies [7, 10]. While only the fuzzy rule-based system for the actually selected 

market was adjusted in those studies based on reinforcement learning, all the m fuzzy rule-based 

systems are adjusted in this paper.  

 The adjustment of each fuzzy if-then rule by (18) tries to decrease the difference between its 
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consequent real number ijkv  and the target ijtr  (i.e., actual or potential payoff). Thus (18) can be 

viewed as a kind of local learning [29]. A heuristic method for determining the consequent real 

number was proposed based on a similar idea to local learning in [18].  

 It is also possible to adjust the consequent real number for decreasing the difference between the 

output ijv̂  and the target ijtr . In such global learning [29], the following squared error is usually used 

as an error function to be minimized: 

=E 2/)ˆ( 2
i ji jt vr − .                           (20) 

An update rule for the consequent real number ijkv  is written as  

−= OldNew
i jkijk vv

i jkv

E

∂
∂⋅α .                         (21) 

From (16), this update rule is rewritten as  

)ˆ()( 1
*OldNew

ijijttkijkijk vrvv −⋅⋅+= −pµα  

  )ˆ(*Old
i ji jti jk vrv −⋅+= α .                        (22) 

 In our computer simulations reported in this paper, we used the update rule in (18) based on the 

concept of local learning. This is because our main aim is to extract comprehensible fuzzy if-then rules. 

In general, local learning improves the interpretability of fuzzy if-then rules while global learning 

improve the accuracy of fuzzy rule-based systems (see Yen et al.[29]). We also examined (20)-(22) in 

some computer simulations. Almost the same results in terms of the average payoff were obtained 

from these two learning schemes. Of course, trained fuzzy if-then rules were not the same because the 

consequent real number of each rule was updated in different manners.  

 

5.4 Computer simulation  

 We performed computer simulations on the market selection game in Fig. 1 using fuzzy rule-based 

approximation systems with 32 fuzzy if-then rules generated from the two antecedent fuzzy sets “ low”  

and “ high”  in Fig. 6. Our market selection game was executed by 100 players with five fuzzy rule-

based approximation systems, each of which was used for approximating the value of each market. 

The learning rate α  was specified as 1.0=α  for all players. The specification of α  will be discussed 

in Section 6 in non-stationary situations with sudden changes of environment. The consequent real 

numbers of all fuzzy if-then rules were specified as 200=ijkv  before the learning.   

 Fig. 8 shows the results in several rounds. Since the first input-output pair was obtained after the 
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second round, the market selection in the first two rounds was randomly performed as in the case of 

the fuzzy rule-based classification strategy (see Fig. 7 (a)-(b) in Section 4). As in the market selection 

by fuzzy rule-based classification systems in Section 4, each fuzzy rule-based approximation system 

was adjusted after the second round. In the third round, the market selection was performed by the 

adjusted fuzzy rule-based system (see Fig. 8 (a)). Good coordination of the market selection was 

gradually realized as shown in Fig. 8 (b)-(d). The average payoff over ten independent trials with 1000 

rounds was 118.8. This average payoff is almost the same as the results by the maximum expected 

payoff strategy (i.e., average payoff 118.9). 
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   (a) 3rd round.          (b) 5th round.  
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 (c) 10th round.          (d) 15th round.   

Fig. 8. Selected markets by the fuzzy rule-based approximation systems. 

 

 

 As shown in the fuzzy reasoning method in (16), the effect of each fuzzy if-then rule kR  on the 

calculation of the output ijv̂  from the fuzzy rule-based approximation system is proportional to the 

normalized compatibility grade )(*
tk pµ . Thus we can find some influential fuzzy if-then rules for 
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each player by monitoring the normalized compatibility grade of each rule. As in the previous section, 

let us consider Player 1 in Fig. 1. We monitored the normalized compatibility grade )(*
tk pµ  of each 

fuzzy if-then rule for this player and calculated its sum over 1000 rounds in a single trial. Table 2 

shows some influential fuzzy if-then rules. Five fuzzy if-then rules with the same antecedent 

conditions for the five markets are shown in a single row in this table. The consequent real number of 

each fuzzy if-then rule in this table is its final value after the 1000th round. From this table, we can see 

that all fuzzy if-then rules in this table have almost the same consequent real numbers for each market. 

This means that the value of each market did not depend on the previous market prices in our 

computer simulations in this subsection. We monitored the marker price of each market during the 

1000 rounds. Except for the first 14 rounds, the market price of each market was the same during the 

1000 rounds because no player changed its action after the 14th round. Thus the target output for each 

market was the same after the 14th round. As a result, the consequent real numbers for each market 

were almost the same in the seven fuzzy if-then rules in Table 2. While Table 2 was obtained from a 

single trial, almost the same results were obtained from other trials with different random market 

selection in the first two rounds. Contrary to the case of fuzzy rule-based classification systems, 

simulation results by fuzzy rule-based approximation systems did not strongly depend on the market 

selection in the first two rounds. In the next section, we will show different situations where the value 

of each market is strongly affected by the previous market prices. 

 

 

Table 2. Influential fuzzy if-then rules for estimating the value of each market. 
 

Antecedent part Consequent part Sum of 
compatibility  1q  2q  3q  4q  5q  1v  2v  3v  4v  5v  

41.4 L L L H L 70.6 87.3 94.3 58.1 121.8 

41.3 L L L H H 70.6 87.3 94.3 58.1 121.8 
37.7 L L H H L 71.5 88.1 95.0 59.1 122.4 

37.7 L L H H H 71.5 88.1 95.1 59.1 122.4 
37.6 L H L H L 71.6 88.1 95.1 59.1 122.4 

37.6 H L L H H 71.6 88.1 95.1 59.1 122.4 

37.6 L H L H H 71.6 88.1 95.1 59.1 122.4 
 

 

6. Illustration of linguistic knowledge extraction   

 In this section, simulation results on various situations are reported for examining the performance 

of each strategy. First, competition between two strategies is examined. Then, competition among 

several strategies is examined. Finally, a non-stationary situation with a sudden change of environment 

is examined. Through computer simulations, we demonstrate that comprehensible fuzzy if-then rules 
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are extracted from our two learning schemes.  

 

6.1 Competition between two strategies 

 We have already examined the performance of each strategy by computer simulations where a 

single strategy was adopted by all the 100 players. Table 3 summarizes the average payoff obtained 

from each strategy in such computer simulations. In this table, good results were obtained from the 

maximum expected payoff strategy and the fuzzy rule-based approximation strategy. The common 

feature shared by these strategies is the accumulation of available information in the form of the value 

(i.e., expected payoff) of each market using on-line incremental learning schemes. For comparison, we 

used the optimal strategy for the previous actions for finding an equilibrium state of our market 

selection game. This strategy was applied to a randomly selected single player after each round by 

changing its market selection. That is, only a randomly selected single player could change its market 

selection after each round. In this manner, we iterated our market selection game until an equilibrium 

state was found. We performed this computer simulation 100 times from random initial market 

selection. Each of all the 100 trials found an equilibrium state where no player changed its action any 

more. In such an equilibrium state, the market selection of every player was optimal for the actions of 

all the other players. Among these computer simulations, 27 different equilibrium states were found. 

The average payoff over the 100 players in those equilibrium states was between 119.0 and 119.1. We 

also examined our market selection game in the framework of cooperative games. The best average 

payoff was 119.2 when the average payoff was maximized by genetic algorithms (see [11]). From the 

comparison of Table 3 with these results, we can see that the results by the maximum expected payoff 

strategy and the fuzzy rule-based approximation strategy are very good.  

 

 

Table 3. Average payoff from each strategy when all the players used the same strategy. 

 
Strategy Average payoff 

Random selection 84.8 
Minimum transportation cost 108.0 

Optimal for previous actions 47.2 
Maximum expected payoff 118.9 

Fuzzy classification 61.6 

Fuzzy approximation 118.8 
 

 

 As we have already mentioned, the performance of each strategy strongly depends on strategies 

adopted by other players. We examined the performance of each strategy against other strategies by 

computer simulations where a single player used one strategy and the other 99 players used another 

strategy. That is, a player with one strategy played against the other 99 players with another strategy. 
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This performance examination was executed for all combinations of the six strategies. For each 

combination, our computer simulation was performed 100 times so that all players were selected as a 

minority player. That is, when the performance of Strategy A was examined against Strategy B, first 

Player 1 with Strategy A played against the other 99 players with Strategy B for 1000 rounds. Next 

Player 2 with Strategy A played against the other 99 players with strategy B. In this manner, the 

performance of Strategy A against Strategy B was evaluated by calculating the average payoff 

obtained by Strategy A over 100 trials with 1000 rounds. Such evaluation was performed for all 

combinations of the six strategies. Simulation results are summarized in Table 4. From this table, we 

can see that the performance of the optimal strategy for the previous actions strongly depends on the 

strategy of the other 99 players. When the other 99 players also used this strategy (see Table 3), the 

average payoff was very small (i.e., 47.2). This strategy, however, can play very well against the other 

strategies. Actually, high average payoff was obtained from this strategy in Table 4 when the other 99 

players adopted another strategy. We can observe similar characteristic features in the simulation 

results by the fuzzy rule-based classification strategy in Table 4 

 

 

Table 4. Average payoff of a single player with a minority strategy when it played against the other 99 

players with a majority strategy. 
 

Strategy of the other 99 players Strategy of 
a single player Random Cost Optimal Payoff Fuzzy C. Fuzzy A. 

Random selection (84.8) 84.4 84.9 84.7 85.1 84.7 

Minimum cost 118.1 (108.0) 121.9 118.2 117.5 118.3 
Optimal for previous 115.3 131.8 (47.2) 118.9 104.8 119.1 

Maximum payoff 117.9 131.8 114.9 (118.9) 121.8 119.0 
Fuzzy classification 117.9 131.7 164.2 118.7 (61.6) 118.7 

Fuzzy approximation 118.0 131.7 164.2 119.3 120.4 (118.8) 
 

 

 In Table 4, we can also see that exceptionally high average payoff was obtained from the two fuzzy 

rule-based strategies when they played against the other 99 players with the optimal strategy for the 

previous actions. As we have already shown in Fig. 4 of Subsection 3.3, the synchronized oscillation 

of selected markets was self-organized by the optimal strategy for the previous actions. If such 

oscillation is recognized during the iterative execution of our market selection game, a player can 

enjoy high payoff by choosing a market that will not be selected by the other 99 players with the 

optimal strategy for previous actions. Very high payoff was obtained from the two fuzzy rule-based 

strategies because they learned such market selection knowledge from the game-playing against the 

other 99 players with the optimal strategy for the previous actions.  

 We monitored the winner rule in the fuzzy rule-based classification system for Player 1 in the same 
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manner as in Section 4.  Table 5 shows frequently used fuzzy if-then rules when Player 1 with the 

fuzzy rule-based classification strategy played against the other 99 players with the optimal strategy 

for the previous actions. From the fuzzy if-then rules in Table 5, we can see that the fuzzy rule-based 

classification system learned the market selection knowledge that can make use of the synchronized 

oscillation of selected markets. The trained fuzzy rule-based classification system chooses Market 3 

when the previous market prices at Market 3 and Market 5 were low and high respectively. On the 

other hand, when they were high and low respectively, Market 5 is chosen. That is, the fuzzy rule-

based classification system learned to choose a market with a lower previous market price between 

Market 3 and Market 5. We can also find two patterns of the market price vectors (low, high, low, high, 

high) and (high, low, high, low, low) from the antecedent parts of the most frequently used two fuzzy 

if-then rules in Table 5. 

 

 

Table 5. Frequently used fuzzy if-then rules by Player 1 during the game-playing against the other 99 

players with the optimal strategy for the previous actions. 
 

Antecedent part Number 
of rounds 1q  2q  3q  4q  5q  

Consequent

kc  
Certainty

kCF  

499 L H L H H Market 3 1 

494 H L H L L Market 5 1 
4 H H H L L Market 5 1 

 

 

 We also monitored the fuzzy reasoning process in each fuzzy rule-based approximation system for 

Player 1 when Player 1 with the fuzzy rule-based approximation strategy played against the other 99 

players with the optimal strategy for the previous actions. In the same manner as in Section 5, we 

show influential fuzzy if-then rules in Table 6. As in Table 5, the two patterns of the market price 

vector can be observed from the most influential fuzzy if-then rules in Table 6. We can also see that 

the fuzzy rule-based approximation systems learned the market selection knowledge that can make use 

of the synchronized oscillation of selected markets. That is, each fuzzy if-then rule in Table 6 says that 

high payoff will be obtained in the current round from markets where the previous market prices were 

low. Player 1 with the trained fuzzy rule-based approximation systems in Table 6 chooses a market 

with a lower previous market price between Market 3 and Market 5. As shown in Table 5 and Table 6, 

the two fuzzy rule-based strategies learned the same market selection knowledge through different 

learning schemes. 
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Table 6. Influential fuzzy if-then rules of Player 1 during the game-playing against the other 99 

players with the optimal strategy for the previous actions. 
 

Antecedent part Consequent part Sum of 
compatibility  1q  2q  3q  4q  5q  1v  2v  3v  4v  5v  

485.340 L H L H H 131.5 64.5 152.6 -1.2 75.6 

338.720 H L H L L -45.5 148.5 38.6 106.8 174.6 

147.334 H H H L L -45.5 148.5 38.6 106.8 174.6 
12.434 L H L H L 151.1 103.5 166.1 56.2 111.2 

8.716 H L L L L 57.1 169.9 106.1 145.7 185.2 
 

6.2 Competition among several strategies 

 We also examined the competition among all the six strategies. The performance of each strategy 

was examined by 200 independent trials with 1000 rounds. In each trial, one of the six strategies was 

randomly assigned to each player. Thus each strategy was used by 16 or 17 players on the average. 

During each trial, each player continued to use the randomly assigned strategy through 1000 rounds. 

Average payoff obtained by each strategy over 200 trials is summarized in Table 7.  

 

 

Table 7. Average payoff from each strategy when the six strategies were randomly assigned to the 100 

players. 
 

Strategy Average payoff 

Random selection 84.5 
Minimum transportation cost 118.1 

Optimal for previous actions 115.9 

Maximum expected payoff 118.7 
Fuzzy classification 118.8 

Fuzzy approximation 118.6 
 

 

 Good results were obtained from the five strategies except for the random selection strategy. This 

means that the undesired concentration of players to a few markets was avoided. We examined the two 

fuzzy rule-based strategies by focusing our attention on Player 1. That is, we assigned one of the two 

fuzzy rule-based strategies to Player 1. The six strategies were randomly assigned to the other 99 

players. In the same manner as in the previous subsection, we monitored the winner rule in the fuzzy 

rule-based classification strategy and the fuzzy reasoning process in the fuzzy rule-based 

approximation strategy. Final fuzzy if-then rules after the 1000th round are summarized in Table 8 and 

Table 9. In these tables, all the trained fuzzy if-then rules insisted that Market 5 should be chosen by 

Player 1 independent of the previous market prices. These learning results suggest that the price at 
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each market would not change so much during the 1000 rounds of our market selection game. We 

monitored the price at each market during the 1000 rounds. The market price did not change so much. 

Thus the best market for each player was almost the same during the execution of our market selection 

game.  

 

 

Table 8. Frequently used fuzzy if-then rules by Player 1 in the competition among the six strategies. 
 

Antecedent part Number 
of rounds 1q  2q  3q  4q  5q  

Consequent

kc  
Certainty

kCF  

216 L L L H H Market 5 1 

164 L H L H H Market 5 1 
94 L H L H L Market 5 1 

64 L L H H H Market 5 1 
62 H L L H H Market 5 1 

61 L L L H L Market 5 1 

42 L L H H L Market 5 1 
 

 

Table 9. Influential fuzzy if-then rules of Player 1 in the competition among the six strategies. 
 

Antecedent part Consequent part Sum of 
compatibility  1q  2q  3q  4q  5q  1v  2v  3v  4v  5v  

48.1 L L L H H 68.4 87.0 90.7 58.8 122.7 

45.1 L L L H L 68.7 87.4 91.0 59.3 122.9 
44.3 L H L H H 68.9 87.4 91.0 59.4 123.0 

41.9 L H L H L 69.2 87.9 91.3 59.9 123.3 

40.1 H L L H H 68.4 88.1 92.0 61.3 123.5 
39.5 L L H H H 70.3 88.3 91.7 60.3 123.5 

38.0 H L L H L 68.8 88.6 92.5 61.9 123.9 
 

 

6.3 Adaptation to sudden changes of environment 

 In the previous computer simulations, the market selection game involved no drastic changes of 

environment. In this subsection, we examine the adaptability of each strategy through computer 

simulations on a non-stationary situation with a sudden change of the strategy of the other players. In 

our computer simulations of this subsection, one of the six strategies was assigned to a single player 

and another strategy was assigned to the other 99 players. We suddenly changed the strategy of the 

other 99 players after the 500th round from the minimum transportation cost strategy to the optimal 

strategy for the previous actions. That is, a single minority player played against the other 99 players 

with the minimum transportation cost strategy in the first 500 rounds, and it played against those with 
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the optimal strategy for the previous actions in the last 500 rounds. As in Subsection 6.1, the 

performance of each minority strategy adopted by a single player was examined by computer 

simulations of 100 trials. In each trial, the examined strategy was assigned to a different player. Over 

those 100 trials for examining a particular strategy, we calculated the average payoff obtained by the 

examined minority strategy in each round. Simulation results are summarized in Fig. 9.  
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Fig. 9. Average payoff from each strategy adopted by a single player in the non-stationary situation 

where the strategy of the other 99 players was suddenly changed. 
 

 

 From this figure, we can see that the two fuzzy rule-based strategies could rapidly adapt to the new 

situation. As in Subsection 6.1, we examined the fuzzy rule-based classification system used for the 

market selection of Player 1 when the fuzzy rule-based classification strategy was assigned to this 
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player. The final fuzzy rule-based classification system after the 1000th round was almost the same as 

Table 5 in Subsection 6.1. We also examined the five fuzzy rule-based approximation systems for 

Player 1 when the fuzzy rule-based approximation strategy was assigned to this player. The final five 

fuzzy rule-based approximation systems were almost the same as Table 6 in Subsection 6.1. These 

results suggest that the two fuzzy rule-based strategies could find correct market selection knowledge 

for the new situation. 

 We also examined the effect of parameter specifications on the adaptability of the two fuzzy rule-

based strategies by computer simulations on the same non-stationary situation. In the fuzzy rule-based 

classification strategy, we used the discount rate γ  for discounting the effect of previous rounds. The 

value of γ  was 0.9 in Fig. 9. When =γ 1, all the previous rounds have the same effect on the 

determination of fuzzy if-then rules. On the contrary, =γ 0 means that the effect of the previous 

rounds is not accumulated. In this case, fuzzy if-then rules are determined only by the result of the 

previous single round that has just been completed. That is, the fuzzy rule-based classification strategy 

with =γ 0 is almost the same as the optimal strategy for the previous actions. We examined four 

specifications of γ : =γ 0.4, 0.8, 0.99, 1.0. Simulation results are summarized in Fig. 10. This figure 

shows the average payoff at each round over 100 trials. In each trial, a different player adopted the 

fuzzy rule-based classification strategy. In Fig. 10, this strategy could not rapidly adapt to the new 

situation when the discount rate was too large (i.e., 0.99 and 1.0).  
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Fig. 10. Effect of the discount rate γ  on the adaptability of the fuzzy rule-based classification strategy. 
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 In the fuzzy rule-based approximation strategy, we used the learning rate α  for updating the 

consequent real number of each fuzzy if-then rule. In Fig. 9, the value of α  was 0.1. When the 

learning rate is large, the consequent real number is mainly determined by the result of the previous 

single round. On the other hand, when the learning rate is very small, all the previous results have a 

significant effect on the determination of the consequent real number. We examined four 

specifications of the learning rate α : =α 0.001, 0.01, 0.1, 1.0. Simulation results are summarized in 

Fig. 11 in the same manner as in Fig. 10. When the learning rate was too small (i.e., 0.001 and 0.01), 

the fuzzy rule-based approximation strategy could not rapidly adapt to the new situation. 
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Fig. 11. Effect of the learning rate α  on the adaptability of the fuzzy rule-based approximation 

strategy. 

 

 

7. Conclusion 

 In this paper, we illustrated how linguistic knowledge can be extracted from the iterative execution 

of our market selection game. Linguistic knowledge for game-playing was extracted in the form of 

fuzzy if-then rules. Our linguistic knowledge extraction was based on the learning of fuzzy rule-based 

systems. We proposed two on-line incremental learning schemes of fuzzy rule-based systems for the 

linguistic knowledge extraction. In one scheme, fuzzy rule-based classification systems were used as 
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decision-making systems. In the other scheme, fuzzy rule-based systems were used for approximating 

the value of each action (i.e., expected payoff from each market). Through computer simulations, we 

demonstrated that high payoff can be obtained from these two learning schemes. We also showed that 

our two learning schemes can predict the synchronized oscillation of selected markets by other players. 

We showed that linguistic knowledge with respect to such prediction can be obtained by extracting 

frequently used rules and influential rules. We also demonstrated that our two learning schemes can 

rapidly adapt to sudden changes of environment. 

 As we mentioned in Section 2, our market selection game has a special payoff mechanism: High 

payoff can be obtained from actions that are not selected by many players. This payoff mechanism is a 

general characteristic feature of many everyday decision-making problems. Thus our learning schemes 

may be employed for analyzing or simulating various decision-making problems. High 

comprehensibility of extracted knowledge is one advantage of our learning schemes. In this paper, we 

used very primitive tricks for extracting a small number of important rules. That is, we picked up 

frequently used rules in fuzzy rule-based classification systems or influential rules in fuzzy rule-based 

approximation systems. Combination of more sophisticated rule extraction methods involving rule 

selection and input selection with our learning schemes is left for future research. Utilization of more 

efficient learning methods including the automated generation of membership functions is also left for 

future research. Competition against more complicated strategies will be examined using our market 

selection game with other environmental changes in future research. 
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