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Abstract

This paper discusses the linguistic knowledge extraction from the iterative execution of a multi-
player non-cooperative repeated game. Linguistic knowledge is automatically extracted in the form of
fuzzy if-then rules. Our knowledge extraction is mainly based on the on-line incremental learning of
fuzzy rule-based systems. In this sense, our linguistic knowledge extraction is the learning of fuzzy
rules. We first briefly describe a market selection game, which is formulated as a hon-cooperative
repeated game with many players and several alternative actions. We also describe some simple
strategies for our market selection game. In our market selection game, the payoff of each player
depends on the actions of all players. When a particular action is chosen by many players, those
players receive low payoff. High payoff is obtained from actions chosen by only a small number of
players. This means that minority players with respect to their actions receive high payoff. Next we
show how our market selection game can be handled as a pattern classification problem whereasingle
training pattern is successively generated from every round of our game A fuzzy rule-based
classification system is used as a decision-making system by each player for choosing an action in
every round. An on-line incremental learning algorithm is proposed for adjusting the fuzzy rule-based
classification system. Then we show how our market sdection game can be handled as a function
approximation problem. A fuzzy rule-based approximation system is used as a value function for
approximating the expected payoff from each action. Finally simulation results show that

comprehensible linguistic knowledge is extracted by the learning of fuzzy rule-based systems.

Keywords: Knowledge extraction, non-cooperative game, repeated game, learning, linguistic modeling,

decision analysis, fuzzy rule-based system.

1. Introduction

Recently various approaches have been proposed for extracting comprehensible linguistic
knowledge from numerical data [6,12,13,19,20,22,23,28]. In those studies, emphasis was placed on
the comprehensibility or transparency of extracted knowledge as in the field of knowledge discovery

and data mining [5,21]. In this paper, we show how linguistic knowledge can be extracted from the



iterative execution of a market selection game, which is a multi-player non-cooperative repeated game
formulated in our former study [7]. Our linguistic knowledge extraction is mainly based on the on-line
incremental learning of fuzzy rule-based systems. In this sense, our linguistic knowledge extraction is
the learning of fuzzy rules. We propose two learning schemes. In one scheme, our market selection
game is handled as a pattern classification problem where a single training (i.e., labeled) pattern is
successively generated from every round of our game. A fuzzy rule-based classification system
[3,4,6,8,9,16,17] is used as a decision-making system for choosing an action in the current round
based on the result of the previous round. In the other scheme, our market selection gameis handled as
a function approximation problem where a single input-output pair is successively generated from
each round. A fuzzy rule-based approximation system is used as a value function for approximating
the expected payoff from each action. In this learning scheme, fuzzy rule-based systems can be viewed
as function approximators as in their applications to function approximation problems and control
problems [14,26].

Evolution of game strategies has been mainly studied for the Iterated Prisoner’s Dilemma (1PD)
game [1,2,15,27]. In those studies, game strategies were evolved by genetic operations. Our market
selection game is much more complicated than the IPD game in its payoff mechanism. The payoff
mechanism in our market selection game cannot be represented in a simple tabular form while it is
usually represented by a 2x2 payoff matrix in the IPD game. Moreover our market selection game
has several aternative actions while the IPD game usually has only two actions (i.e., “ cooperate” and
“ defect”).

The main characteristic feature of our knowledge extraction task is that the amount of available
information gradually increases during the iterative execution of our game That is, a piece of
available information is successively generated from every round of our game. A fuzzy rule-based
system, which is used for game-playing by each player, is also successively adjusted by an on-line
incremental learning scheme after every round. Such on-line learning of the fuzzy rule-based system
affects the game-playing in future rounds. That is, the learning affects the generation of available
information in future rounds. In this sense, our knowledge extraction task is dynamic while most of the
above-mentioned studies on linguistic knowledge extraction were applied to static tasks where the
available information was given in advance.

This paper is organized as follows. In the next section, we briefly describe our market selection
game formulated as a non-cooperative repeated game with many players (eg., 100 players) and
several alternative actions (e.g., five markets) in our former work [7]. Some game strategies examined
in [7,10,11] are described in Section 3. In Section 4, we propose an on-line incremental learning
scheme of fuzzy rule-based classification systems. In this learning scheme, our market selection game
is handled as a pattern classification problem where a single training pattern is successively generated
from every round of our game. In Section 5, our market selection game is handled as a function

approximation problem. A fuzzy rule-based approximation system is used for approximating the value
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of each action. Simulation results are reported in Section 6 for demonstrating that comprehensible

linguistic knowledge can be extracted by our two learning schemes. Finally Section 7 concludes this

paper.

2. Formulation of a market selection game

In this section, we briefly describe a market selection game formulated in our former study [7]. Our
market selection game involves n players and m markets. All players and markets are located in a two-
dimensional world. Fig. 1 shows an example of our market selection game with 100 players (i.e,
n =100) and five markets (i.e, m=5). Locations of players and markets in this figure are available
from http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab e/index.html. Every player i (i=12,...,n) is
supposed to simultaneously choose one of the m markets in every round of our game as shown in Fig.

2. Let s be the action of the i-th player. The action s; is to choose one of the given m markets:

s 0{L2,....m}.
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Fig. 1. Anexample of our market seection game.

O Market ® Player

A

C Il
0 50 100

Fig. 2. An example of the market sdection by 100 players.

Every player has a single product to be sold in a market in every round of our game. A fixed
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transportation cost Cj is required for the transportation of the product from the i-th player’s location

to the j-th market. In our computer simulations on the market selection game in Fig. 1, we simply

defined Cj by the Euclidean distance from the i-th player’s location to the j-th market. The payoff of

each player is defined by the market price at the selected market and the transportation cost to that
market. It is assumed that the market price at each market is determined by a linear decreasing

function of the number of players who choose that market. Let X j be the number of players who

choose the j-th market. It should be noted that the equality X; + X, +... + X, =n holds from the

definition. The market price p; at the j-th market is defined as

where a; and bj are positive constants that specify the market price mechanism in the j-th market. In

our computer simulations on the market selection game in Fig. 1, we used the same linear decreasing

function for all the five markets:

p; =200-3X; for j=1,2,34,5. )

The payoff of thei-th player who chooses the market s; (i.e, thei-th player with the action s;) is
defined as

fis) = Ps) ~Cics) = &) TR PXes) ~Cics)- (3

In this formulation, X (s) is the number of players who choose the market s; . Thus the payoff of the

i-th player depends on the actions of all players.

The main characteristic feature of our market selection game is its payoff mechanism in (3). High
payoff cannot be obtained from an action that is also chosen by many other players. That is, majority
players with respect to their actions receive low payoff. High payoff can be obtained from an action
that is chosen by only a small humber of players. Such deterioration in payoff due to the concentration
of players can be observed in many everyday situations. For example, the chance to pass the entrance
examination of a particular department of a university may decrease as the number of applicants to
that department increases. Various choices related to plans for the summer vacation also have similar
payoff mechanisms. For example, the choice of the same route to a summer resort by many people
may decrease their payoff due to heavy traffic jams. The choice of the same resort by many people
may also decrease their payoff due to several negative effects such as the hike in travel expenses and

the difficulty in booking.



Another important characteristic feature shared by our market selection game and these everyday
situations is the dependence of future decision-making on previous results. For example, if the
competition to pass the entrance examination of a particular department is unusually tough this year,
the number of applicants to that department may decrease next year. If people have a hard time on a
highway due to a heavy traffic jam, they will try to avoid that route next time. As shown by these
discussions, our market selection game shares some interesting features with many everyday decision-

making problems.

3. Some simple strategies
In this section, we briefly explain some simple strategies examined in our previous studies
[7,10,11]. We also propose a maximum expected payoff strategy. These strategies will be compared

with two on-lineincremental learning schemes proposed in later sections.

3.1 Random selection strategy
The point of our market selection game is to avoid the undesired concentration of players to a few

markets. The simplest way for avoiding the concentration is to randomly select a market. In this

random selection strategy, each market is selected as the action s; of the i-th player with the

probability 1/m. When all players use this strategy, the undesired concentration is avoided. Fig. 3 is
an example of the market selection by the 100 players with the random selection strategy. As shown in
Fig. 3, the market selection istotally in disorder. Since the transportation cost is not taken into account,
we cannot obtain high payoff from this strategy. We performed computer simulations on our market
selection game in Fig. 1 by assigning this strategy to all the 100 players. We performed ten
independent trials, each of which consisted of 1000 rounds of our market selection game. The average
payoff was 84.8 over theten trials. This average payoff is used for evaluating the performance of other
strategies in this paper.

Fig. 3. Example of the market sdection using the random sdlection strategy.



3.2 Minimum transportation cost strategy

While the undesired concentration of players was avoided in Fig. 3, high payoff was not obtained.
This is because the transportation cost was not taken into account. The transportation cost can be
minimized by choosing the nearest market from each player. The minimum transportation cost
strategy always chooses the nearest market in every round of our market selection game. Fig. 2 in the
previous section was depicted using this strategy. When all players adopt this strategy, the market
selection in Fig. 2 is simply iterated. In this case, the average payoff is 108.0. This average payoff is
larger than the result by the random sdlection strategy (i.e., average payoff 84.8).

3.3 Optimal strategy for the previous actions

Since every player is supposed to simultaneously choose a market in every round of our market
selection game, no player knows the best action for the current round. Every player, however, knows
the best action in the previous round that has already been completed. The optimal strategy for the
previous actions chooses the best action in the previous round as the current action. This strategy first

calculates the potential payoff from each market in the previous round. Let r.. be the actual or

ijt
potential payoff from the j-th market in the t-th round for the i-th player. When the j-th market was
actually selected in the t-th round by the i-th player, Fit is the actual payoff calculated by (3) in

Section 2. For the other markets that were not actually selected, Fit is calculated by considering how

much payoff would have been abtained from the j-th market if the i-th player had chosen that market
inthet-th round. That is, the actual or potential payoff is calculated as:

(4)

r _{aj—bj X; -, if § =] inthet-thround,
ijt =

a; —bj EQX]- +1)—cij, otherwise,

where X j is the number of players who actually chose the j-th market in the t-th round. When the

potential payoff is calculated for each market that was not actually chosen by the i-th player in the t-th
round, thei-th player isadded to X; as (X; +1) in(4).
In the (t+1) th round of our market selection game, the optimal strategy for the previous actions

chooses the market with the maximum value of jt @mong the m markets. If multiple markets have the

same maximum value, this strategy randomly chooses one from those markets. Of course, the sdected
market is not always the best in the current round. When al the other players do not change their
market selection, the optimal strategy for the previous actions is also optimal in the current round. On
the other hand, when all players use this strategy, the undesired concentration of players is rapidly
sdf-organized as shown in Fig. 4.

In the first round, no market was selected in the previous round (i.e, s, # j and Xj =0 for all
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markets in (4)). Thus the optimal strategy for the previous actions chooses the nearest market with the

minimum transportation cost (see Fig. 4 (a)) when a; and bj are the same for all markets. In the

second round, the optimal market of each player is chosen for the actions of the other players in the
first round. In Fig. 4 (b), many players choose the |eft-bottom market with only a few players in the
first round. In the third round, the optimal market for the actions in the second round is chosen as
shown in Fig. 4 (c) where two markets are sdected by no player. In the fourth round, many players
choose those two markets (see Fig. 4 (d)). The market sdection was iterated until the 1000th round.
The average payoff was 47.2 over the 1000 rounds. This average payoff is terribly poor (i.e., much
smaller than the result 84.8 by the random selection strategy) due to the undesired concentration of
players.

While the average payoff was very small when all players used this strategy, we can obtain the best
result when a single player with this strategy plays against all the other players with the minimum
trangportation cost strategy. We can also obtain good results from the optimal strategy for the previous
actions when this strategy is adopted by only a small number of players. Competition among different
strategies will be discussed in Section 6.

O Market ® Player O Market ® Player

(c) 3rd round. (d) 4th round.

Fig. 4. Sdected markets by the optimal strategy for the previous actions in the first four rounds.
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3.4 Maximum expected payoff strategy

In the optimal strategy for the previous actions, only the previous single round was taken into
account. Such limited utilization of previous results may cause the synchronized oscillation of the
market selection in Fig. 4. In this subsection, the expected payoff from each market is estimated from
al the previous results. Let Vij be the value of the j-th market (i.e., the expected payoff from the j-th

market) for the i-th player. After the t-th round of our market selection game is completed, Vij is

updated as

New .— (1 _ old
v =1 a) V7 +a O

i it for j=12,...m, 5)

where a isalearning rate (O<a <1), and Tt is the actual or potential payoff of the i-th player from

the j-th market in the t-th round of our market sdection game, which is calculated by (4).

In the framework of reinforcement learning [25], only the value of the actually selected action is
updated. Such alearning scheme was examined in our previous studies [7,10]. In this paper, we update
the values of all markets (i.e., all alternative actions) because the potential payoff from each market
can be calculated by (4) even if that market was not actually selected in the previous round.

In every round of our market selection game, the market with the largest value is selected among
the m markets. When multiple markets have the same largest value, one market is randomly selected
from those markets. We use such a simple greedy method because the values of all markets are
updated by (5). If the value of only the actually selected market were updated, the greedy method
would not work well. In this case (i.e., in the framework of reinforcement learning), some exploration
mechanism should be included [25]. Our maximum expected payoff strategy in this subsection always
chooses the market with the largest value. Before the first round of our market selection game, the

values Vij 's of all markets are specified as the same initial real number. As a result, the market

selection is randomly performed in the first round. In our computer simulations, we specified the

initial value of each market as vi'j”itial =200, which is the upper bound of the market price (see (2)).

The specification of theinitial value of each action is very important for facilitating the exploration of
actions in reinforcement learning [25]. The effect of the initia value of each action, however, is
limited to the first several rounds in our maximum expected payoff strategy when the same initial
valueis used. When we use random initial values in awiderange (e.g., interval [0, 200]), many rounds

are required for adjusting the values Vij 's.

Our maximum expected payoff strategy isillustrated in Fig. 5 where all players adopt this strategy
with @ =0.1. In the first round, every player randomly chooses a market (see Fig. 5 (a)). When the

first round is completed, the value Vij of each market for each player is updated by (5) based on the

market selection in the first round. In the second round, every player chooses the market with the
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largest value for that player (see Fig. 5 (b)). We iterated this computer simulation until the 1000th
round. In the tenth round (see Fig. 5 (c)), good coordination of the market selection was realized. Such
good coordination of the market selection continued after the tenth round (see Fig. 5 (d)). We
performed this computer simulation ten times. The average payoff over ten independent trials was
118.9. This result is better than the average payoff by the other strategies mentioned in the previous
subsections.

When a =1, the market selection by the maximum expected payoff strategy is ailmost the same as

the optimal strategy for the previous actions. This is because the value Vij is defined only by the result

of the previous single round in the case of a =1 (see the update mechanism in (5)). In this case, we
obtained the average payoff 41.2 from ten independent trials. This average payoff is almost the same

as the result 47.2 by the optimal strategy for the previous actions. On the other hand, when a isvery

small, the value v, j cannot be rapidly adjusted to sudden changes of environment.

O Market ® Player

0
0 100
(b) 2nd round.
1 O Market ® Player 1 O Market ® Player
SORLQ: SORLQ:
C0 50 100 C0 50 100
(c) 10th round. (d) 11th round.

Fig. 5. Sdected markets by the maximum expected payoff strategy.



4. Handling as a pattern classification problem
In this section, we show how our market selection game can be handled as a pattern classification
problem. An on-line incremental learning scheme is proposed for adjusting fuzzy rule-based

classification systems.

4.1 Data acquisition

As we have already explained in the previous section, every player knows the optimal market
sel ection when the current round of our market selection game is completed. It is, however, difficult to
effectively utilize the information about the optimal market selection in previous rounds for the market
selection in future rounds. As shown in Fig. 4, the optimal strategy for the previous actions leads to the
undesired concentration of playersto afew markets when all players adopt this strategy. Thus we need
atrick for effectively utilizing the information about the optimal market selection in previous rounds.

In this section, we associate the market prices in the t-th round to the market selection in the

(t+1) th round. That is, we generate a labeled pattern (p;, ¢; (t +1)) where ¢ (t+1) is the best market

for thei-th player inthe (t +1) thround and p, isthe price vector in thet-th round:

P; :(pt]_v Pioyeees ptm)' (6)

where Py is the market price at the j-th market in the t-th round of our market selection game. It

should be noted that the best market c; (t+1) is identified after the (t +1) th round is completed.
The market selection of each player is performed by a single fuzzy rule-based classification system.
Thefirst labeled pattern (p;, ¢;,) is obtained after the second round is completed. This means that we

have no training data until the second round is completed. Thus the market selection in the first two
rounds is performed randomly. The first labeled pattern is utilized for the learning of the fuzzy rule-
based classification system before the market sdection in the third round. When the third round is
completed, the second labeled pattern (p,, ¢;5) is obtained. In this manner, we have (t—1) labeled

patterns when the t-th round of our market selection game is completed. Those labeled patterns
{ (P CG2) s (P2:CGg) s - (Pr—1,Cy) } can be used in the learning of the fuzzy rule-based

classification system for the market selection of thei-th player in the (t +1) th round.

4.2 Fuzzy rule-based classification systems for market selection

For the market sdection, we use the following fuzzy if-then rules:

Rule R :If p;is A, and...and p,, is A, then ¢, with CF, , k=12,..K, @)
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where Ak] is an antecedent fuzzy set with a linguistic label, ¢, is a consequent market, CF, is a

certainty grade, and K is the number of fuzzy if-then rules. The fuzzy if-then rule R in (7) is
interpreted as “ If the market prices in the previous round are (A4, ..., A,,,) then choose the market
¢, inthe current round”. The certainty grade CF, is used for representing the weight of the fuzzy if-

thenrule R .
In our computer simulations of this paper, we used two antecedent fuzzy sets“ low” and “ high” in

Fig. 6 for all the five markets. Thus 2° = 32 fuzzy if-then rules, which were generated by combining
these two antecedent fuzzy sets for the five markets, were used for the market selection of each player.
That is, the fuzzy rule-based classification system for each player consisted of 32 fuzzy if-thenrulesin
our computer simulations. The membership functions of the two antecedent fuzzy sets were specified
in an ad hoc manner. When the 100 players are evenly distributed over the five markets, the market
price of each market is 140 because 20 players choose each market (see (2) in Section 2). The two
membership functions intersect with each other at this market price as shown in Fig. 6. When the
number of players choosing a particular market is doubled (i.e., from 20 to 40), the market price
decreases from 140 to 80. The membership values of “high” and “low” are 0 and 1 at this market price,
respectively. The upper bound of the market price of each market is 200 (see (2) in Section 2). The
membership values of “high” and “low” are 1 and O at this market price, respectively. We also
examined a different pair of membership functions with three parameter values (100, 150, 200) instead
of (80, 140, 200) in Fig. 6. That is, membership functions with a smaller overlapping area were also
examined. Simulation results from these membership functions were ailmost the same as the case of
Fig. 6. We also examined an interval partition where “low” and “high” were represented by two
intervals [0, 140] and [140, 200], respectively. Simulation results by this interval partition were
dightly inferior to those by the fuzzy partition in Fig. 6. The automated specification of linguistic
labels and their membership functions are beyond the scope of this paper while it is a very important
issue. This issue is left for future research on our market selection game. The main difficulty in the
handling of this issue for our market selection game is that training data are incrementally obtained

from the iterative execution of our game.

1.0

low high

Membership

1
1
i
0.0 | >
0 80 140 200 Market Price

Fig. 6. Two antecedent fuzzy sets“ low” and “ high” .
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For the market selection in the (t +1) th round, the price vector p, = (P, Pip, - Pyyy) N thet-th

round is used as the input vector to the fuzzy rule-based classification system with the K fuzzy if-then
rules in (7). The market selection is performed using a fuzzy reasoning method based on a single
winner rule [6,8,9,17]. In this fuzzy reasoning method, first the compatibility of the input vector with

each fuzzy if-then ruleis calculated as
Hi () = M (Peg) Ly () L eve Dbty (Py) )

where 4 () is the membership function of the antecedent fuzzy set A . The winner rule R . is
h i (0 is th bership functi f th edent f he wi I [

defined as
Hyx (Py) [CF = max{ 4, (p;) [CF, 1 k=12,...,K} . )

The consequent market ¢, . of the winner rule R, is chosen for the market selection in the (t +1) th

round. When multiple rules have the same maximum value in (9), the winner rule cannot be uniquely

specified. In this case, asingleruleis randomly chosen from those rules as the winner rule R for the

market sdection in the (t +1) th round.

4.3 Learning algorithm

We have aready explained how training patterns can be successively obtained from the iterative
execution of our market selection game. We have also explained how the market selection can be
performed by the fuzzy rule-based classification system. Our next issue is the learning of the fuzzy
rule-based classification system. Our learning algorithm is based on a heuristic procedure [6,8,9,17]
for generating fuzzy if-then rules for pattern classification problems.

Let ,Bkj be the discounted sum of the compatibility grades of training patterns labeled as the j-th
market (i.e, ¢;; = ]) with the fuzzy if-then rule R . When the t-th round is completed, a training

pattern (p,_4, ;) isobtained. Using this training pattern, ,Bkj is updated as

B =y B+ 4 (P B (cp) for j=12,.,m, (10)

where y isakind of adiscount rate (0< y <1) introduced for discounting the effect of the previously

obtained training patterns, and o j (c;;) is the following function for identifying the market c;; of the

current training pattern (p,_q, Gi¢)

_JL it g =i
d (C‘t)_{o, if c # . ()
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When y =1, the compatibility grades of the previously obtained training patterns are not discounted in
(20). On the other hand, when y =0, ,Bkj is calculated only from the current training pattern
(Pt-1, Git) -

The consequent market ¢, of the fuzzy if-then rule R, is determined in the same manner as a

heuristic rule generation procedurein our former studies [6,8,9,17]:

,Bk(ck) = max{,é’kj D j=12,...,m}. (12)

That is, the consequent market ¢, has the maximum discounted sum of the compatibility grades
among the m markets. When the consequent market ¢, cannot be uniquely determined (i.e., multiple
markets have the same maximum value in (12)), we specify ¢, as ¢, = ¢ for indicating that the fuzzy
if-then rule R, is a dummy rule with no effect on the market selection. For the dummy rule R, , we
specify the certainty grade CF, as CF, =0. From the definition of the winner rulein (9), we can see
that any dummy rulewith CF, =0 is never selected as the winner rule.

When R, is not a dummy rule, its certainty grade CF, is defined from ,Bkj and ¢, as follows

[6,8,9,17]:

F:m%ym,

k (13)
B
where
— m 'Bk]
= . 14
ﬁjgamn (14)

]¢Ck

The above heuristic procedure can be easily understood if we consider a two-class pattern

classification problem (i.e., market selection with two markets). For example, when S, > f,,, the

consequent market ¢, and the certainly grade CF, are determined as ¢, =1 and

CF =(Byq — Bia) By * Byo) » respectively.
Our fuzzy rule-based classification system is adjusted after every round of our market selection
game using the updated ,Bkj in (10). That is, the consequent market and the certainty grade of each

fuzzy if-then rule are redefined after every round using the updated ,Bkj . The initial value of ,Bkj is
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specified as ,Bkj =0 because we have no training pattern before the first round. As we have already

mentioned, the market selection in the first two rounds is performed randomly. When the second
round is completed, each fuzzy if-then ruleis adjusted. Then the market selection for the third round is
performed using the adjusted fuzzy rule-based classification system.

4.4 Computer simulations

We performed computer simulations on the market selection gamein Fig. 1 using fuzzy rule-based
classification systems with 32 fuzzy if-then rules. Each rule was generated using the two antecedent
fuzzy sets “low’ and “high” in Fig. 6. In our computer simulations of this subsection, every player
used its own fuzzy rule-based classification system for the market selection. That is, our market

selection game was executed by 100 fuzzy rule-based classification systems. The discount rate y was
specified as y =0.9 for al players. The specification of y is discussed later in this subsection. It will

be also discussed in Section 6 in a non-stationary situation with sudden changes of environment.

Fig. 7 shows the results in several rounds. As we have already mentioned, the market selection in
the first two rounds was randomly performed (see Fig. 7 (a) and Fig. 7 (b)). After the second round,
each fuzzy rule-based classification system was adjusted by the first training pattern. As aresult, each
player used the adjusted fuzzy rule-based classification system in the third round (see Fig. 7 (¢)). In
some rounds, we observed the undesired concentration of players (see Fig. 7 (d)). Such undesired
concentration appeared periodically through 1000 iterations of our market selection game. As in the
computer simulations in Section 3, the market selection was iterated until the 1000th round. This
computer simulation was performed ten times. The average payoff over ten independent trials was
61.6. This average payoff is not good due to the undesired concentration of players as the optimal
strategy for the previous actions (its average payoff was 47.2). These two strategies are based on the
information about the optimal market selection in the previous round. While the simulation result was
not good when all players adopted the fuzzy rule-based classification strategy, this strategy works very
well in competitive situations with other strategies as shown in Section 6. We also performed the same

computer simulation using different values of y. When y <0.8, the average payoff was almost the

same as the case of the optimal strategy for the previous actions. For example, it was 42.0 when

y=0.8. That is, the learning of each fuzzy rule-based system was mainly governed by the currently
obtained single training pattern. On the other hand, by increasing the value of y, we could improve
the average payoff. For example, it was 100.6 when y =1.0. In this case, the effect of previously

obtained training patterns is not discounted. This leads to poor adaptability of fuzzy rule-based
systems to changes of environment. The adaptability of fuzzy rule-based systems will be discussed in
Section 6.
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Fig. 7. Sdected markets by the fuzzy rule-based classification systems.

By monitoring the winner rule in each round during the iterative execution of our market selection
game, we can extract a small number of frequently used fuzzy if-then rules for each player. For
example, let us consider Player 1 in Fig. 1. We monitored the winner rule for this player in each round
of a single trial with 1000 rounds, and counted the number of rounds where each rule was sdlected as
the winner rule. Table 1 shows frequently used fuzzy rules over the 1000 rounds. Since the fuzzy rule-
based classification system was successively updated during the execution of our market selection
game, we show the final consequent class and the final certainty grade of each rule after the 1000th
round. From Table 1, we can see that the market selection of Player 1 was mainly performed by only a
few rules. We can also see that all the listed rules have the same final consequent: Market 5 (see Fig.
1). This means that Market 5 was sdected independent of the market prices in the previous round.
Actually, Player 1in Fig. 1 almost always chose Market 5 while the market selection of many players
was governed by the synchronized oscillation as shown in Fig. 7. Table 1 also suggests that the target
market cj (t+1) inthetraining data set would be almost always Market 5. We monitored the generated

training data for Player 1 during the 1000 rounds of our market selection game. The target market was
Market 5 in 864 labded patterns (i.e., 864 rounds) during the execution of our market selection game.
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It should be noted that these observations were obtained from a single trial. Simulation results in this
subsection strongly depended on the random market selection in the first two rounds. Actually each
trial showed totally different behaviors. That is, we obtained different average payoff and different
fuzzy rules from each trial. The dependency of simulation results on the random market selection in

the first two rounds can be decreased by specifying the initial value of 3, by arandom real number
instead of the same initial value )4 =0. The average payoff was improved from 61.6 to 114.6 when

we specified theinitial valueof )4 by arandom real number in the closed interval [0, 1]. In Section 6,

we will show different situations where the market selection in each round is determined by the market

prices in the previous round.

Table 1. Frequently used fuzzy if-then rules. “ H” and“ L” denote the antecedent fuzzy set “ high” and

“low”, respectively.
Number Antecedent part Conseguent | Certainty

ofrounds| g g, 03 Q, Og Cy CF,
447 L H H H H| Makeb5 0.95
394 H H H L H| Maketb 0.6
77 H H L L H| Make5b 0.54

24 L H H H L | Makeb 0.97

13 H L H L H| Maketb 0.68

11 H L L L H| Make5b 0.58

7 L L H H H| Makeb 0.95

5. Handling as a function approximation problem
In this section, we show how our market selection game can be handled as a function
approximation problem. A fuzzy rule-based approximation system is used for approximating the value

of each market for each player.

5.1 Data acquisition

As in the previous section, the market prices are used in the antecedent part of each fuzzy if-then
rule. The consequent part is related to the expected payoff from each market (i.e, the value of each
market). When the t-th round of our market selection game is completed, the actual or potential payoff

Fit of thei-th player from the j-th market in the t-th round is calculated by (4) in Section 3. An m-

input and single-output fuzzy rule-based approximation system is used for approximating the mapping

from the price vector p; =(pyy, - Pyy) 10 the t-th round to the value Vij of the j-th market in the

(t +1) th round. Each player uses m fuzzy rule-based approximation systems for the market selection.
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Each approximation system is used as an approximator of the value of each market.

The first input-output pair (py, rijz) is obtained for the j-th market when the second round of our
market selection game is completed. This input-output pair is used for the learning of the j-th fuzzy
rule-based approximation system. Such an input-output pair is obtained for each market. That is, a set
of minput-output pairs is obtained for the learning of m fuzzy rule-based approximation systems. Each
approximation system is adjusted by the corresponding input-output pair. The market selection in the
third round is performed using the adjusted m approximation systems. When the third round is

completed, the next input-output pair (p,, rijs) is obtained from the j-th market for the learning of the
j-th fuzzy rule-based approximation system. In this manner, (t—1) input-output pairs { (p;, rijz) ,
(P, rijg), e (Py_qs rijt)} are obtained for the learning of the j-th fuzzy rule-based approximation

system before the market selection in the (t +1) th round. As in the previous section, the market

sdection in thefirst two rounds is performed randomly.

5.2 Fuzzy rule-based systems for value approximation

For approximating the value Vij » We use the following fuzzy if-then rules:

Rule R :If p;is A, and...and p,, is A, then Vij is Vi » k=12...,K, (15)

where Viik is a consequent real number. These fuzzy if-then rules are the simplest form of the Takagi-

Sugeno model [24]. While conventional fuzzy if-then rules in the Takagi-Sugeno model have a
consequent linear function, our rulesin (15) have a consequent real number. The fuzzy if-thenrule R
in (15) isinterpreted as “ If the market pricesin the previousround are (Ay,,...,A,,) then the value of
the j-th market in the current round is Viik .

We use the same weighted averaging scheme as the Takagi-Sugeno model for calculating the
output \7”- from the fuzzy rule-based approximation system with the K fuzzy if-then rules in (15).

When the input vector p, (i.e, the market price vector in the t-th round) is presented to the

approximation system, the output \7”- is calculated as follows:

K
2 Hic(py) D
A. = k=1

Vij K
> i (py)
k=1

e

Fie(Pe) Wi » (16)

where £, (p;) is the compatibility grade of the input vector p, with the fuzzy if-then rule R, defined
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by (8), and ,u;; (p;) isthenormalized compatibility grade:

”li(pt):M- @n

> i (py)
k=1

For the market sdection in the (t +1) th round, we first calculate the output \7”- from each fuzzy

rule-based approximation system by (16). Then we choose the market with the largest output among
the m markets. When multiple markets have the same largest output, one market is randomly sdected
from those markets. The same greedy method was used in the maximum expected payoff strategy in
Subsection 3.4.

5.3 Learning algorithm
Thelearning of each fuzzy rule-based systemis performed by updating the consequent real number

Vijk of each fuzzy if-then rule. When the t-th round is completed, the input-output pair (p,_,, rijt) is

obtained from the j-th market for the i-th player. This input-output pair is used for the learning of the K
fuzzy if-then rules in the j-th fuzzy rule-based approximation system of thei-th player.

The learning of each fuzzy if-then rule is performed by updating the consequent real humber Viik

using the actual or potential payoff it @

VNS = (1-ar (g (pyp)) VM9 + Ll (py_y)

where

a’ =a T (p_q)- (19

This update rule is ailmost the same as (5) in the maximum expected payoff strategy except that the
learning rate a is multiplied by the normalized compatibility grade ,uﬁ(pt_l) . The amount of the

adjustment is proportional to the normalized compatibility grade in (18). Fuzzy if-then rules with
small compatibility grades are dlightly adjusted while those with large compatibility grades are
significantly adjusted. The same update rule was used in fuzzy Q-learning for the market selection
game in our former studies [7, 10]. While only the fuzzy rule-based system for the actually selected
market was adjusted in those studies based on reinforcement learning, all the m fuzzy rule-based
systems are adjusted in this paper.

The adjustment of each fuzzy if-then rule by (18) tries to decrease the difference between its

-18-



consequent real number Viik and the target Fit (i.e., actual or potential payoff). Thus (18) can be

viewed as a kind of local learning [29]. A heuristic method for determining the consequent real
number was proposed based on a similar ideato local learning in [18].
It is also possible to adjust the consequent real number for decreasing the difference between the

output \7”- and the target Fit - In such global learning [29], the following squared error is usually used

as an error function to be minimized:
An update rule for the consequent real number Viik iswritten as

Vi"\L =Vi‘k|d -a ["—aE . (21)
] ] ov
ijk

From (16), this updateruleis rewritten as

Vi = iﬁld +a [ (Pr-y) W =)

In our computer simulations reported in this paper, we used the update rule in (18) based on the
concept of local learning. This is because our main aim is to extract comprehensible fuzzy if-then rules.
In general, local learning improves the interpretability of fuzzy if-then rules while global learning
improve the accuracy of fuzzy rule-based systems (see Yen et al.[29]). We also examined (20)-(22) in
some computer simulations. Almost the same results in terms of the average payoff were obtained
from these two learning schemes. Of course, trained fuzzy if-then rules were not the same because the

consequent real number of each rule was updated in different manners.

5.4 Computer simulation

We performed computer simulations on the market selection gamein Fig. 1 using fuzzy rule-based
approximation systems with 32 fuzzy if-then rules generated from the two antecedent fuzzy sets “ low”
and “high” in Fig. 6. Our market selection game was executed by 100 players with five fuzzy rule-
based approximation systems, each of which was used for approximating the value of each market.
The learning rate a was specified as a =0.1 for al players. The specification of a will be discussed
in Section 6 in non-stationary situations with sudden changes of environment. The consequent real

numbers of all fuzzy if-then rules were specified as Vijk = 200 before the learning.

Fig. 8 shows the results in several rounds. Since the first input-output pair was obtained after the
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second round, the market selection in the first two rounds was randomly performed as in the case of
the fuzzy rule-based classification strategy (see Fig. 7 (a)-(b) in Section 4). As in the market selection
by fuzzy rule-based classification systems in Section 4, each fuzzy rule-based approximation system
was adjusted after the second round. In the third round, the market selection was performed by the
adjusted fuzzy rule-based system (see Fig. 8 (a)). Good coordination of the market selection was
gradually realized as shown in Fig. 8 (b)-(d). The average payoff over ten independent trials with 1000
rounds was 118.8. This average payoff is almost the same as the results by the maximum expected
payoff strategy (i.e., average payoff 118.9).

O Market ® Player O Market ® Player

50-
% 50 100 100
(a) 3rd round. (b) 5th round.
1 O Market ® Player 1 O Market ® Player
1 %% %53 m-%
% 50 100 % 50 100
(c¢) 10th round. (d) 15th round.

Fig. 8. Sdected markets by the fuzzy rule-based approximation systems.

As shown in the fuzzy reasoning method in (16), the effect of each fuzzy if-then rule R, on the

calculation of the output \7”- from the fuzzy rule-based approximation system is proportional to the

normalized compatibility grade ,ui(pt). Thus we can find some influential fuzzy if-then rules for
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each player by monitoring the normalized compatibility grade of each rule. Asin the previous section,
let us consider Player 1in Fig. 1. We monitored the normalized compatibility grade ,u;i(pt) of each
fuzzy if-then rule for this player and calculated its sum over 1000 rounds in a single trial. Table 2

shows some influential fuzzy if-then rules. Five fuzzy if-then rules with the same antecedent
conditions for the five markets are shown in a single row in this table. The consequent real number of
each fuzzy if-thenrulein thistableisits final value after the 1000th round. From this table, we can see
that all fuzzy if-then rules in this table have almost the same consequent real numbers for each market.
This means that the value of each market did not depend on the previous market prices in our
computer simulations in this subsection. We monitored the marker price of each market during the
1000 rounds. Except for the first 14 rounds, the market price of each market was the same during the
1000 rounds because no player changed its action after the 14th round. Thus the target output for each
market was the same after the 14th round. As a result, the consequent real numbers for each market
were almost the same in the seven fuzzy if-then rules in Table 2. While Table 2 was obtained from a
single trial, almost the same results were obtained from other trials with different random market
selection in the first two rounds. Contrary to the case of fuzzy rule-based classification systems,
simulation results by fuzzy rule-based approximation systems did not strongly depend on the market
selection in the first two rounds. In the next section, we will show different situations where the value

of each market is strongly affected by the previous market prices.

Table 2. Influential fuzzy if-then rules for estimating the value of each market.

Sum of Antecedent part Consequent part
compatibility | ¢y | 9, [ O3] 0y |G| V4 Vs V3V, Vg
41.4 L{L|L|H|L]|706 873 943 581 1218
41.3 L{L|L|H|H|706 873 943 581 1218
37.7 L{L|H|H|L|]7L5 881 950 59.1 1224
37.7 L{L|/H|H|H]|]71L5 881 951 59.1 1224
37.6 L{H|L|H|L|716 881 951 59.1 1224
37.6 H|L|L|H|H]|]71L6 881 951 59.1 1224
37.6 L{H|/L|H|H|716 881 951 59.1 1224

6. lllustration of linguistic knowledge extraction

In this section, simulation results on various situations are reported for examining the performance
of each strategy. First, competition between two strategies is examined. Then, competition among
several strategies is examined. Finally, a non-stationary situation with a sudden change of environment

is examined. Through computer simulations, we demonstrate that comprehensible fuzzy if-then rules

-21-



are extracted from our two learning schemes.

6.1 Competition between two strategies

We have already examined the performance of each strategy by computer simulations where a
single strategy was adopted by all the 100 players. Table 3 summarizes the average payoff obtained
from each strategy in such computer simulations. In this table, good results were obtained from the
maximum expected payoff strategy and the fuzzy rule-based approximation strategy. The common
feature shared by these strategies is the accumulation of available information in the form of the value
(i.e., expected payoff) of each market using on-line incremental learning schemes. For comparison, we
used the optimal strategy for the previous actions for finding an equilibrium state of our market
selection game. This strategy was applied to a randomly selected single player after each round by
changing its market sdection. That is, only a randomly sdlected single player could change its market
selection after each round. In this manner, we iterated our market selection game until an equilibrium
state was found. We performed this computer simulation 100 times from random initial market
selection. Each of all the 100 trials found an equilibrium state where no player changed its action any
more. In such an equilibrium state, the market selection of every player was optimal for the actions of
al the other players. Among these computer simulations, 27 different equilibrium states were found.
The average payoff over the 100 players in those equilibrium states was between 119.0 and 119.1. We
also examined our market selection game in the framework of cooperative games. The best average
payoff was 119.2 when the average payoff was maximized by genetic algorithms (see [11]). From the
comparison of Table 3 with these results, we can see that the results by the maximum expected payoff

strategy and the fuzzy rule-based approximation strategy are very good.

Table 3. Average payoff from each strategy when all the players used the same strategy.

Strategy Average payoff
Random sdlection 84.8
Minimum transportation cost 108.0
Optimal for previous actions 47.2
Maximum expected payoff 118.9
Fuzzy classification 61.6
Fuzzy approximation 118.8

As we have aready mentioned, the performance of each strategy strongly depends on strategies
adopted by other players. We examined the performance of each strategy against other strategies by
computer simulations where a single player used one strategy and the other 99 players used another
strategy. That is, a player with one strategy played against the other 99 players with another strategy.
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This performance examination was executed for all combinations of the six strategies. For each
combination, our computer simulation was performed 100 times so that all players were selected as a
minority player. That is, when the performance of Strategy A was examined against Strategy B, first
Player 1 with Strategy A played against the other 99 players with Strategy B for 1000 rounds. Next
Player 2 with Strategy A played against the other 99 players with strategy B. In this manner, the
performance of Strategy A against Strategy B was evaluated by calculating the average payoff
obtained by Strategy A over 100 trials with 1000 rounds. Such evaluation was performed for all
combinations of the six strategies. Simulation results are summarized in Table 4. From this table, we
can see that the performance of the optimal strategy for the previous actions strongly depends on the
strategy of the other 99 players. When the other 99 players also used this strategy (see Table 3), the
average payoff was very small (i.e., 47.2). This strategy, however, can play very well against the other
strategies. Actualy, high average payoff was obtained from this strategy in Table 4 when the other 99
players adopted another strategy. We can observe similar characteristic features in the simulation

results by the fuzzy rule-based classification strategy in Table 4

Table 4. Average payoff of a single player with a minority strategy when it played against the other 99
players with a majority strategy.

Strategy of Strategy of the other 99 players
asingle player Random Cost Optimal Payoff Fuzzy C. Fuzzy A.
Random sdection (84.8) 84.4 84.9 84.7 85.1 84.7
Minimum cost 1181 (108.0) 1219 1182 1175 1183
Optimal for previous | 115.3 131.8 (47.2) 1189 104.8 119.1
Maximum payoff 117.9 131.8 1149 (11890 1218 119.0
Fuzzy classification | 117.9 131.7 164.2 1187 (61.6) 1187
Fuzzy approximation| 118.0 131.7 164.2 119.3 120.4 (118.8)

In Table 4, we can also see that exceptionally high average payoff was obtained from the two fuzzy
rule-based strategies when they played against the other 99 players with the optimal strategy for the
previous actions. As we have already shown in Fig. 4 of Subsection 3.3, the synchronized oscillation
of selected markets was self-organized by the optimal strategy for the previous actions. If such
oscillation is recognized during the iterative execution of our market selection game, a player can
enjoy high payoff by choosing a market that will not be sdected by the other 99 players with the
optimal strategy for previous actions. Very high payoff was abtained from the two fuzzy rule-based
strategies because they learned such market selection knowledge from the game-playing against the
other 99 players with the optimal strategy for the previous actions.

We monitored the winner rule in the fuzzy rule-based classification system for Player 1 in the same
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manner as in Section 4. Table 5 shows frequently used fuzzy if-then rules when Player 1 with the
fuzzy rule-based classification strategy played against the other 99 players with the optimal strategy
for the previous actions. From the fuzzy if-then rules in Table 5, we can see that the fuzzy rule-based
classification system learned the market selection knowledge that can make use of the synchronized
oscillation of selected markets. The trained fuzzy rule-based classification system chooses Market 3
when the previous market prices at Market 3 and Market 5 were low and high respectively. On the
other hand, when they were high and low respectively, Market 5 is chosen. That is, the fuzzy rule-
based classification system learned to choose a market with a lower previous market price between
Market 3 and Market 5. We can also find two patterns of the market price vectors (low, high, low, high,
high) and (high, low, high, low, low) from the antecedent parts of the most frequently used two fuzzy
if-then rulesin Table 5.

Table 5. Frequently used fuzzy if-then rules by Player 1 during the game-playing against the other 99
players with the optimal strategy for the previous actions.

Number Antecedent part Consequent | Certainty
ofrounds| ¢; g, d3 0; Og Cy CF,

499 L H L H H| Make3 1
494 H L H L L | Make5b 1
4 H H H L L | Make5b 1

We also monitored the fuzzy reasoning process in each fuzzy rule-based approximation system for
Player 1 when Player 1 with the fuzzy rule-based approximation strategy played against the other 99
players with the optimal strategy for the previous actions. In the same manner as in Section 5, we
show influential fuzzy if-then rules in Table 6. As in Table 5, the two patterns of the market price
vector can be observed from the most influential fuzzy if-then rules in Table 6. We can also see that
the fuzzy rule-based approximation systems learned the market selection knowledge that can make use
of the synchronized oscillation of selected markets. That is, each fuzzy if-thenrule in Table 6 says that
high payoff will be obtained in the current round from markets where the previous market prices were
low. Player 1 with the trained fuzzy rule-based approximation systems in Table 6 chooses a market
with a lower previous market price between Market 3 and Market 5. As shownin Table 5 and Table 6,
the two fuzzy rule-based strategies learned the same market selection knowledge through different

learning schemes.
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Table 6. Influential fuzzy if-then rules of Player 1 during the game-playing against the other 99
players with the optimal strategy for the previous actions.

Sum of Antecedent part Consequent part
compatibility | gy |G, |G3 |Gy |G| V4 Vo Vg Vg Vg
485.340 L{H|L|H|H]|13L5 645 1526 -1.2 75.6
338720 |H|L |H|L|L]|-455 1485 38.6 106.8 174.6
147334 |H|H|H|L|L|-455 1485 38.6 106.8 174.6
12.434 L{H|L|H|L 1511 1035 166.1 56.2 111.2
8.716 H|L|L|L|L/ 571 169.9 106.1 145.7 185.2

6.2 Competition among several strategies

We also examined the competition among all the six strategies. The performance of each strategy
was examined by 200 independent trials with 1000 rounds. In each trial, one of the six strategies was
randomly assigned to each player. Thus each strategy was used by 16 or 17 players on the average.
During each trial, each player continued to use the randomly assigned strategy through 1000 rounds.
Average payoff obtained by each strategy over 200 trials is summarized in Table 7.

Table 7. Average payoff from each strategy when the six strategies were randomly assigned to the 100

players.

Strategy Average payoff
Random sdlection 84.5
Minimum transportation cost 118.1
Optimal for previous actions 115.9
Maximum expected payoff 118.7
Fuzzy classification 118.8
Fuzzy approximation 118.6

Good results were obtained from the five strategies except for the random selection strategy. This
means that the undesired concentration of playersto afew markets was avoided. We examined the two
fuzzy rule-based strategies by focusing our attention on Player 1. That is, we assignhed one of the two
fuzzy rule-based strategies to Player 1. The six strategies were randomly assigned to the other 99
players. In the same manner as in the previous subsection, we monitored the winner rule in the fuzzy
rule-based classification strategy and the fuzzy reasoning process in the fuzzy rule-based
approximation strategy. Final fuzzy if-then rules after the 1000th round are summarized in Table 8 and
Table 9. In these tables, all the trained fuzzy if-then rules insisted that Market 5 should be chosen by
Player 1 independent of the previous market prices. These learning results suggest that the price at
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each market would not change so much during the 1000 rounds of our market sdection game. We
monitored the price at each market during the 1000 rounds. The market price did not change so much.
Thus the best market for each player was almost the same during the execution of our market selection

game.

Table 8. Frequently used fuzzy if-then rules by Player 1 in the competition among the six strategies.

Number Antecedent part Conseguent | Certainty
ofrounds| ¢; g, d3 0; Og Cy CF,
216 L L L H H| Makebh 1
164 L H L H H| Makeb 1
94 L H L H L | Makeb 1
64 L L H H H| Makeb 1
62 H L L H H| Maket5 1
61 L L L H L | Makeb 1
42 L L H H L | Makeb 1

Table9. Influential fuzzy if-then rules of Player 1 in the competition among the six strategies.

Sum of Antecedent part Consequent part
compatibility | ¢, | g, |G3 |0y | G5 | V4 Vo V3 oV, Vg
48.1 Li{L|L|H|H|684 870 90.7 588 122.7
45.1 L|L|L|H|L|687 874 910 59.3 1229
44.3 LIH|L| H|H|689 874 910 59.4 123.0
41.9 LI{H|L| H|L]|692 879 913 599 1233
40.1 H|L|L|H|H|684 81 920 613 1235
39.5 L|{L|H|H|H]|]703 883 917 603 1235
38.0 H|L|L|H|L) 688 886 925 619 1239

6.3 Adaptation to sudden changes of environment

In the previous computer simulations, the market selection game involved no drastic changes of
environment. In this subsection, we examine the adaptability of each strategy through computer
simulations on a non-stationary situation with a sudden change of the strategy of the other players. In
our computer simulations of this subsection, one of the six strategies was assigned to a single player
and another strategy was assigned to the other 99 players. We suddenly changed the strategy of the
other 99 players after the 500th round from the minimum transportation cost strategy to the optimal
strategy for the previous actions. That is, a single minority player played against the other 99 players
with the minimum transportation cost strategy in the first 500 rounds, and it played against those with
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the optimal strategy for the previous actions in the last 500 rounds. As in Subsection 6.1, the
performance of each minority strategy adopted by a single player was examined by computer
simulations of 100 trials. In each trial, the examined strategy was assigned to a different player. Over
those 100 trials for examining a particular strategy, we calculated the average payoff obtained by the

examined minority strategy in each round. Simulation results are summarized in Fig. 9.

Random selection Minimum transportation cost
1801 1801
160} 160}
140} 140}
120} 120}
100} 100F
80 AVJ\N\»/WVJ“’\[”’\W"\/W\/‘[W 8of-
60} 60}
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500 520 540 560 580 500 520 540 560 580
Optimal for previous actions Maximum expected payoff
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Fuzzy classification Fuzzy approximation
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Fig. 9. Average payoff from each strategy adopted by a single player in the non-stationary situation
where the strategy of the other 99 players was suddenly changed.

From this figure, we can see that the two fuzzy rule-based strategies could rapidly adapt to the new
situation. As in Subsection 6.1, we examined the fuzzy rule-based classification system used for the
market sdection of Player 1 when the fuzzy rule-based classification strategy was assigned to this
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player. Thefinal fuzzy rule-based classification system after the 1000th round was almost the same as
Table 5 in Subsection 6.1. We also examined the five fuzzy rule-based approximation systems for
Player 1 when the fuzzy rule-based approximation strategy was assigned to this player. The final five
fuzzy rule-based approximation systems were almost the same as Table 6 in Subsection 6.1. These
results suggest that the two fuzzy rule-based strategies could find correct market selection knowledge
for the new situation.

We also examined the effect of parameter specifications on the adaptability of the two fuzzy rule-
based strategies by computer simulations on the same non-stationary situation. In the fuzzy rule-based

classification strategy, we used the discount rate y for discounting the effect of previous rounds. The
value of y was 0.9 in Fig. 9. When y =1, al the previous rounds have the same effect on the
determination of fuzzy if-then rules. On the contrary, y =0 means that the effect of the previous

rounds is not accumulated. In this case, fuzzy if-then rules are determined only by the result of the
previous single round that has just been completed. That is, the fuzzy rule-based classification strategy

with y =0 is amost the same as the optimal strategy for the previous actions. We examined four
specifications of y: y=0.4, 0.8, 0.99, 1.0. Simulation results are summarized in Fig. 10. This figure

shows the average payoff at each round over 100 trials. In each trial, a different player adopted the
fuzzy rule-based classification strategy. In Fig. 10, this strategy could not rapidly adapt to the new

situation when the discount rate was too large (i.e., 0.99 and 1.0).

r=0.4

180 C 180 C
140 C 140 C
120 120
100 —_1 100f

80 C 80 C

60 C 60 C
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20 20
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Fig. 10. Effect of the discount rate y on the adaptability of the fuzzy rule-based classification strategy.
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In the fuzzy rule-based approximation strategy, we used the learning rate a for updating the
consequent real number of each fuzzy if-then rule. In Fig. 9, the value of a was 0.1. When the
learning rate is large, the consequent real number is mainly determined by the result of the previous
single round. On the other hand, when the learning rate is very small, all the previous results have a
significant effect on the determination of the consequent real number. We examined four
specifications of the learning rate a : a =0.001, 0.01, 0.1, 1.0. Simulation results are summarized in
Fig. 11 in the same manner as in Fig. 10. When the learning rate was too small (i.e., 0.001 and 0.01),

the fuzzy rule-based approximation strategy could not rapidly adapt to the new situation.

a=0.001 a=001

180 180
160} 160}
140 C 140 C
120f 120F
100} 100f
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20 20
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0 [ 1 . 1 . ] . 1 . 1 . 0 [ 1 . 1 . ] . ] . 1 .
500 520 540 560 580 500 520 540 560 580

Fig. 11. Effect of thelearning rate a on the adaptability of the fuzzy rule-based approximation
strategy.

7. Conclusion

In this paper, we illustrated how linguistic knowledge can be extracted from the iterative execution
of our market selection game. Linguistic knowledge for game-playing was extracted in the form of
fuzzy if-then rules. Our linguistic knowledge extraction was based on the learning of fuzzy rule-based
systems. We proposed two on-line incremental learning schemes of fuzzy rule-based systems for the

linguistic knowledge extraction. In one scheme, fuzzy rule-based classification systems were used as
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decision-making systems. In the other scheme, fuzzy rule-based systems were used for approximating
the value of each action (i.e., expected payoff from each market). Through computer simulations, we
demonstrated that high payoff can be obtained from these two learning schemes. We also showed that
our two learning schemes can predict the synchronized oscillation of selected markets by other players.
We showed that linguistic knowledge with respect to such prediction can be obtained by extracting
frequently used rules and influential rules. We also demonstrated that our two learning schemes can
rapidly adapt to sudden changes of environment.

As we mentioned in Section 2, our market selection game has a special payoff mechanism: High
payoff can be obtained from actions that are not selected by many players. This payoff mechanism is a
general characteristic feature of many everyday decision-making problems. Thus our learning schemes
may be employed for analyzing or simulating various decision-making problems. High
comprehensibility of extracted knowledge is one advantage of our learning schemes. In this paper, we
used very primitive tricks for extracting a small humber of important rules. That is, we picked up
frequently used rules in fuzzy rule-based classification systems or influential rules in fuzzy rule-based
approximation systems. Combination of more sophisticated rule extraction methods involving rule
selection and input selection with our learning schemes is left for future research. Utilization of more
efficient learning methods including the automated generation of membership functions is also left for
future research. Competition against more complicated strategies will be examined using our market

sdection game with other environmental changes in future research.
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