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Abstract— Whereas evolutionary multiobjective optimization 
(EMO) algorithms have successfully been used in a wide range 
of real-world application tasks, difficulties in their scalability to 
many-objective problems have also been reported. In this paper, 
first we demonstrate those difficulties through computational 
experiments. Then we review some approaches proposed in the 
literature for the scalability improvement of EMO algorithms. 
Finally we suggest future research directions in evolutionary 
many-objective optimization. 

I. INTRODUCTION 
VOLUTIONARY multiobjective optimization (EMO) is one 
 of the most active research areas in the field of 

evolutionary computation. A number of EMO algorithms 
have been proposed and successfully used in a wide range of 
real-world application tasks [1]-[4]. EMO algorithms usually 
work very well on two-objective problems. Their search 
ability is, however, severely deteriorated by the increase in 
the number of objectives. Multiobjective problems with four 
or more objectives are often referred to as many-objective 
problems. When we apply a well-known and frequently-used 
Pareto dominance-based EMO algorithm to such a many- 
objective problem, we may encounter a number of serious 
difficulties such as: 

1. Deterioration of the search ability of Pareto dominance- 
based EMO algorithms such as SPEA [5] and NSGA-II [6]. 
When the number of objectives increases, almost all 
solutions in each population become non-dominated. This 
severely weakens the Pareto dominance-based selection 
pressure toward the Pareto front. That is, the convergence 
property of EMO algorithms is severely deteriorated.  

2. Exponential increase in the number of solutions required 
for approximating the entire Pareto front. The goal of EMO 
algorithms is to find a set of non-dominated solutions that 
well approximates the entire Pareto front. Since the Pareto 
front is a hyper-surface in the objective space, the number 
of solutions required for its approximation exponentially 
increases with the dimensionality of the objective space 
(i.e., with the number of objectives). That is, we may need 
thousands of non-dominated solutions to approximate the 
entire Pareto front of a many-objective problem. 

3. Difficulty of the visualization of solutions. It is usually 
assumed that the choice of a final solution from a set of 
obtained non-dominated solutions is done by a decision 
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maker based on his/her preference. The increase in the 
number of objectives makes the visualization of obtained 
non-dominated solutions very difficult. This means that the 
choice of a final solution becomes very difficult in many- 
objective optimization. 

The first difficulty (i.e., the deterioration of the search 
ability of EMO algorithms by the increase in the number of 
objectives) has been pointed out in a number of studies (for 
early studies, see [7], [8]). The deterioration of the search 
ability was clearly demonstrated through the comparison with 
multiple runs of single-objective optimizers in [9]-[11]. 

A straightforward idea for the scalability improvement of 
EMO algorithms to many-objective problems is to increase 
the selection pressure toward the Pareto front. One approach 
based on this idea is to modify Pareto dominance in order to 
decrease the number of non-dominated solutions in each 
population [12]. Another approach is to assign different ranks 
to non-dominated solutions [13]-[17]. 

Another idea for the scalability improvement is the use of 
different fitness evaluation mechanisms (instead of Pareto 
dominance). One approach based on this idea is the use of 
indicator-based evolutionary algorithms where indicator 
functions such as hypervolume are used to evaluate each 
solution [18], [19]. Another approach is to use a number of 
different scalarizing functions for fitness evaluation [9], [10], 
[20]-[22]. 

The second difficulty (i.e., the exponential increase in the 
number of non-dominated solutions that are necessary for the 
approximation of the Pareto front) has often been tackled by 
incorporating preference information in EMO algorithms 
[23]-[25]. Preference information is used to concentrate on a 
small region of the Pareto front while EMO algorithms are 
used to find multiple non-dominated solutions in such a small 
region of the Pareto front. 

A direct approach to the handling of the third difficulty (the 
difficulty of the visualization of solutions) is to decrease the 
number of objectives [26]-[29]. Of course, dimensionality 
reduction (i.e., objective selection) can remedy not only the 
third difficulty but also the other difficulties. Visualization 
techniques of non-dominated solutions with many objectives 
have been proposed in the literature [30]-[32] where objective 
vectors are mapped into a low-dimensional space for their 
visualization. A number of visualization techniques of high- 
dimensional objective vectors have also been proposed in the 
field of multiple criteria decision making (MCDM [33]). 

In this paper, we briefly explain the above-mentioned 
approaches to the handling of many-objective problems by 
evolutionary algorithms. We do not intend to give an 
exhaustive review of studies on evolutionary many-objective 
optimization. Our intention is to explain some representative 
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approaches in order to understand research issues in the area 
of evolutionary many-objective optimization. This paper is 
organized as follows. First, we discuss the scalability of EMO 
algorithms to many-objective problems by examining the 
behavior of NSGA-II on multiobjective knapsack problems 
with 2, 4, 6, 8 objectives in Section II. Then, we explain the 
above-mentioned approaches to the scalability improvement 
in Section III where many-objective test problems are also 
mentioned. Finally, we conclude this paper by suggesting 
some future research directions in Section IV. 

II. ILLUSTRATION OF DIFFICULTIES OF EMO ALGORITHMS 

A. Multiobjective Optimization Problems 
In general, a k-objective maximization problem is written 

as follows: 

  Maximize ))(...,),(),(()( 21 xxxxf kfff= ,   (1) 
  subject to Xx ∈ ,             (2) 

where f (x) is the k-dimensional objective vector, fi (x) is the 
i-th objective to be maximized, x is the decision vector, and X 
is the feasible region. 

As test problems, we used 500-item knapsack problems 
with 2, 4, 6, 8 objectives. These problems are denoted as 
2-500, 4-500, 6-500 and 8-500 problems in this paper. Our 
2-500 and 4-500 problems are the same as those in Zitzler and 
Thiele [5]. On the other hand, we generated 6-500 and 8-500 
problems in the same manner as the generation procedure of 
the 2-500 and 4-500 problems in [5]. 

B. Pareto Dominance Relation 
Let y and z be two feasible solutions of the k-objective 

maximization problem in (1)-(2). If the following conditions 
hold, z can be viewed as being better than y: 

  i∀ : )()( zy ii ff ≤   and  j∃ : )()( zy jj ff < .   (3) 

In this case, we say that z dominates y (equivalently y is 
dominated by z: z is better than y). 

When y is not dominated by any other feasible solutions, y 
is referred to as a Pareto-optimal solution of the k-objective 
maximization problem in (1)-(2). The set of all Pareto- 
optimal solutions forms the tradeoff surface in the objective 
space. This tradeoff surface is referred to as the Pareto front. 
EMO algorithms are designed to search for a set of well- 
distributed non-dominated solutions that approximates the 
entire Pareto front very well. 

In order to examine the relation between the percentage of 
non-dominated solutions in a population and the number of 
objectives, we randomly generated 200 objective vectors in 
the k-dimensional unit-hypercube [0, 1]k for k = 2, 4, ..., 20. 
Among the generated 200 objective vectors for each k, we 
calculated the percentage of non-dominated vectors. The 
average percentage over 10 runs for each k is shown in Fig. 1. 
We can see from Fig. 1 that almost all objective vectors are 
non-dominated when k is larger than 10. Similar figures have 
already been depicted in several studies to illustrate the 
difficulty of many-objective problems (e.g., [1], [17]).  
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Fig. 1. Average percentage of non-dominated vectors among 200 vectors that 
are randomly generated in the k-dimensional unit hypercube [0, 1]k. 
 

C. Settings of Computational Experiments 
We applied NSGA-II [6] to our four test problems using 

the following parameter settings: 

Population size: 100, 
Crossover probability: 0.8 (Uniform crossover), 
Mutation probability: 1/500 (Bit-flip mutation), 
Stopping conditions: 100,000 generations. 

We executed NSGA-II for a large number of generations 
(i.e., 100,000 generations) to examine its long-term behavior. 
NSGA-II was applied to each test problem ten times. The 
average behavior of NSGA-II was examined for each test 
problem using the following four measures: 
Number of non-dominated solutions 

We counted the number of non-dominated solutions in the 
merged population (i.e., the union of the current population 
and its offspring population) with 200 solutions in each 
generation. When the number of non-dominated solutions is 
equal to or larger than 100, all solutions in the next population 
are non-dominated with each other. In this case, Pareto 
sorting has no effect on parent selection in the next population. 
That is, there exists no selection pressure toward the Pareto 
front in the parent selection phase. 
Maximum sum of the objective values: MaxSum 

In each generation (i.e., for the current population with 100 
solutions), we calculated the maximum sum of the objective 
values as follows: 

  ∑=Ψ
=Ψ∈

k

i
if

1
)(max)(MaxSum x

x
,         (4) 

where Ψ denotes the current population, and k is the number 
of the given objectives in each test problem (k = 2, 4, 6, 8). 
This measure evaluates the convergence of solutions toward 
the Pareto front around its center region. 
Sum of the maximum objective values: SumMax 

The sum of the maximum objective value of each objective 
was calculated in each generation as follows: 

  ∑=Ψ
= Ψ∈

k

i
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This measure evaluates the convergence of solutions 
toward the Pareto front around its k edges. 
Sum of the ranges of the objective values: Range 

The sum of the range of objective values of each objective 
was calculated in each generation as follows: 

  ∑ −=Ψ
= Ψ∈Ψ∈

k

i
ii ff

1
])}({min)}({max[)(Range xx

xx
.  (6) 

This measure evaluates the diversity of solutions in the 
objective space in each generation. 

D. Experimental Results of NSGA-II 
In Fig. 2, we show the average number of non-dominated 

solutions at each generation for each test problem. More than 
100 non-dominated solutions were almost always included in 
the merged population except for very early generations in 
Fig. 2. The number of non-dominated solutions increased 
with the number of objectives. Similar observations have 
been reported in Sato et al. [12]. 
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Fig. 2. Average number of non-dominated solutions in the merged population 
with 200 solutions at each generation. NSGA-II chooses the best 100 
solutions from the merged population to form the next population. 

 
Whereas the percentage of non-dominated vectors was 

about 20% among 200 randomly generated four-dimensional 
vectors in Fig. 1, it was much larger than 50% in the merged 
population during the execution of NSGA-II on the 4-500 
problem except for very early generations (e.g., except for the 
first 50 generations) in Fig. 2. This means that the selection 
pressure toward the Pareto front was very weak even in the 
case of the four-objective problem (i.e., 4-500 problem). 

We show the convergence property of NSGA-II using the 
MaxSum measure in Fig. 3. Experimental results in Fig. 3 are 
normalized so that the average result of initial populations 
over ten runs becomes 100 for each test problem. We use the 
same normalization procedure for all performance measures 
throughout this paper (i.e., we always use the average result 
of initial populations as the baseline value 100). We can see 
from Fig. 3 that the convergence to the center region of the 
Pareto front was slowed down by the increase in the number 
of objectives. This is because the selection pressure toward 
the Pareto front by the Pareto sorting was severely weakened 
by the increase in the number of non-dominated solutions 
(see Fig. 2). One interesting observation is that the MaxSum 
measure first increased then decreased during the execution 

of NSGA-II for the 4-500 and 6-500 problems. We can not 
observe such a non-monotonic convergence behavior for the 
2-500 problem. We can also observe that the convergence 
toward the Pareto front was very slow in the case of the 8-500 
problem in Fig. 3. 

From the comparison between Fig. 2 and Fig. 3, we can see 
that NSGA-II has a strong convergence property only when 
the number of non-dominated solutions is less than 50% of 
the merged population (i.e., less than 100 in Fig. 2). 
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Fig. 3. Convergence around the center region of the Pareto front by the 
original NSGA-II algorithm. 

 
In Fig. 4, we show the convergence behavior to the Pareto 

front around its edges using the SumMax measure. The 
average value of the SumMax measure was gradually 
improved during the execution of NSGA-II over a large 
number of generations in Fig. 4. This observation suggests 
the difficulty in finding a set of non-dominated solutions that 
covers the entire Pareto front within a small number of 
generations. The same observation was reported in [34]. 
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Fig. 4. Convergence around the edges of the Pareto front by the original 
NSGA-II algorithm. 

 
In Fig. 5, we show the diversity of solutions in each 

generation using the Range measure. From Fig. 2 and Fig. 5, 
we can see that NSGA-II started to improve the diversity after 
the number of non-dominated solutions exceeded 100. When 
the number of non-dominated solutions was less than 100 (i.e., 
in early generations), the diversity of solutions decreased in 
Fig. 5. At the same time, the convergence to the Pareto front 
around its center region was rapidly improved in Fig. 3. 
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Fig. 5. Diversity of solutions in the case of the original NSGA-II algorithm. 

 

E. Minor Changes for Many-Objective Problems  
Before explaining scalability improvement approaches in 

the next section, we examine the effectiveness of two minor 
changes of NSGA-II for many-objective problems. One is the 
assignment of a zero distance (instead of an infinity distance) 
to extreme solutions with maximum or minimum objective 
values as the crowding distance, which was suggested in [18]. 

Experimental results are shown in Fig. 6 and Fig. 7. From 
the comparison of Fig. 6 with Fig. 3, we can see that the 
convergence was somewhat improved by the modification of 
the crowding distance for many-objective problems (e.g., for 
the 8-500 problem). This improvement was realized at the 
cost of diversity (compare Fig. 7 with Fig. 5). 
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Fig. 6. Convergence by NSGA-II with the modified crowding distance. 
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Fig. 7. Diversity by NSGA-II with the modified crowding distance. 

Another minor change is the modification of the objective 
functions in order to increase the selection pressure toward 
the Pareto front, which was suggested in [21]. We examined 
the following modification in this paper: 

  ∑×+=
=

k

j
jii xfxfxg

1
)()()( β , i =1, 2, ..., k,   (7) 

where β  is a prespecified constant (β = 1 in this paper). 
Experimental results are shown in Fig. 8 and Fig. 9. In Fig. 

8, we can observe a clear improvement in the convergence 
property of NSGA-II by the modification of the objective 
functions. Actually Fig. 8 is much better than Fig. 3 and better 
than Fig. 6 especially for many-objective problems. As in the 
case of the modification of the crowding distance in Fig. 7, 
such a convergence improvement was realized at the cost of 
diversity (compare Fig. 9 with Fig. 5).  
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Fig. 8. Convergence by NSGA-II with the modified objective functions. 
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Fig. 9. Diversity by NSGA-II with the modified objective functions. 

III. APPROACHES TO MANY-OBJECTIVE OPTIMIZATION 
In this section, we explain the scalability improvement 

approaches mentioned in Section I. We also describe many- 
objective test problems. 

A. Modification of Pareto Dominance 
Sato et al. [12] demonstrated that the use of a modified 

dominance (instead of the standard Pareto dominance) clearly 
improved the performance of NSGA-II for many-objective 
problems. In order to increase the selection pressure toward 
the Pareto front by the Pareto sorting in NSGA-II, they 



 
 

 

 

modified Pareto dominance as shown in Fig. 10 where the 
dominated region by each solution is shaded. When we use 
the standard Pareto dominance in Fig. 10 (a), all the three 
solutions are non-dominated with each other. On the other 
hand, solution F is dominated by solution E if we use the 
modified dominance in Fig. 10 (b). In this manner, the 
selection pressure toward the Pareto front can be strengthened 
because the number of non-dominated solutions in each 
population is decreased by the use of the modified dominance. 
The extent of the modification of Pareto dominance (i.e., the 
angle of the dominated region in Fig. 10 (b)) should be 
adjusted to the number of objectives. Roughly speaking, the 
increase in the number of objectives requires a wider angle of 
the dominated region in Fig. 10 (b) as suggested by [12]. 
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     (a) Original Pareto dominance.                  (b) Modified dominance. 

Fig. 10. Illustration of the modification of Pareto dominance in [12]. 

 
Modification of Pareto dominance in EMO algorithms has 

often been discussed in the EMO community. One basic idea 
is as follows: A large deterioration in one objective can not be 
accepted for only a small improvement in another objective. 
For example, let us consider the three solutions of a 
five-objective maximization problem in Fig. 11 where each 
pentagon represents a five-dimensional objective vector. 
Roughly speaking, larger pentagons mean better solutions 
because we assume maximization. Whereas all the three 
solutions in Fig. 11 are non-dominated, one may think that 
solution C seems to be inferior to the other solutions. This is 
because solution C has much worse objective values with 
respect to the first four objectives (i.e., f1 , f2 , f3  and f4) than 
the other solutions whereas it has a better objective value only 
for f5 . On the other hand, one may think that solution A is a 
good solution because it has good objective values for all the 
five objectives. Contrary to this intuition, NSGA-II handles 
solution C as being better than solution A based on their 
crowding distances (because C has an infinity distance).  
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Fig. 11. Three non-dominated objective vectors. 

Similar ideas to Sato et al. [12] have been discussed in the 
literature. For example, the concept of α-dominance was 
proposed for archive maintenance by Ikeda et al. [35] where 
the angle of the dominance region was widened as in Fig. 10 
(b). Branke et al. [36] also proposed a similar idea for guiding 
multiobjective evolution whereas they explained it as a 
preference incorporation method. Their idea was compared 
with a reference solution-based approach in [37]. 

As pointed out in Branke et al. [36], the modification of 
Pareto dominance has a similar effect on multiobjective 
evolution as the modification of objective functions such as 
(7). This means that the increase in the selection pressure 
toward the Pareto front by the modification of Pareto 
dominance leads to the decrease in the diversity of solutions 
as shown in Fig. 8 and Fig. 9 in the previous section. The 
same observations were reported in Sato et al. [12]. 

B. Introduction of Different Ranks 
Drechsler et al. [13] proposed the use of a relation called 

favour to differentiate between non-dominated solutions for 
the handling of many-objective problems. They defined the 
relation favour based on the number of objectives for which 
one solution is better than the other. More specifically, a 
solution z is viewed as being better than another solution y 
under the relation favour when the following relation holds: 

|||| }1),()(:{}1),()(:{ kiffikjffj iijj ≤≤<≤≤< < zyyz . 

                       (8) 
If we apply this relation to the three non-dominated vectors 

in Fig. 11, solution B is viewed as the most preferred solution 
since it has better objective values than the other two with 
respect to the first four objectives (i.e., f1 , f2 , f3  and f4). On 
the other hand, solution C is viewed as the least preferred 
solution under the relation favour. 

The relation favour was modified in Sülflow et al. [14] by 
taking into account not only the number of objectives for 
which one solution is better than the other but also the 
difference in objective values between the two solutions. 

Various ranking methods were compared with each other 
in [15]-[17]. For example, Corne and Knowles [16] reported 
that the best results were obtained from a simple average 
ranking method than more complicated ranking schemes. In 
the average ranking method, first a rank for each objective is 
assigned to each solution based on the ranking of its objective 
value for the corresponding objective among non-dominated 
solutions in the current population. Thus each solution has k 
ranks, each of which is based on one of the k objectives. Then 
the average rank is calculated for each solution as its rank. In 
Kukkonen and Lampinen [17], the average and minimum 
ranking methods were examined. Köppen and Yoshida [15] 
examined more complicated ranking methods based on 
ε-dominance and fuzzy Pareto dominance. 

As in the case of the modification of Pareto dominance, the 
introduction of different ranks to non-dominated solutions 
leads to the increase in the selection pressure toward the 
Pareto front and the decrease in the diversity of solutions. In 
some cases, the population converges to a few solutions (or a 
single solution) as reported in [16]. 



 
 

 

 

C. Use of Indicator Functions 
A number of performance indicators have been proposed to 

measure the quality of non-dominated solution sets [38]-[40]. 
Since the performance of EMO algorithms is often evaluated 
by those indicators, it is a promising idea to directly optimize 
an indicator (e.g., hypervolume [41]) in EMO algorithms. 
This idea was used for archive maintenance in Knowles et al. 
[42]. A general framework of indicator-based evolutionary 
algorithms (IBEAs) was proposed by Zitzler and Künzli [43]. 
Several variants of IBEAs have been proposed in the 
literature [44]-[46]. In those variants of IBEAs, hypervolume 
was almost always used as an indicator. 

Wagner et al. [18] reported good results by IBEAs for 
many-objective problems. Since IBEAs do not use Pareto 
dominance, their search ability is not severely deteriorated by 
the increase in the number of objectives. One difficulty in the 
application of IBEAs to many-objective problem is a large 
computation cost for hypervolume calculation. Ishibuchi et al. 
[19] proposed an iterative version of IBEAs to decrease the 
computation cost by searching for only a small number of 
representative solutions. Objective reduction in IBEAs was 
examined in Brockhoff and Zitzler [28] for the same purpose. 

D. Use of Scalarizing Functions 
The main advantage of the use of scalarizing functions for 

many-objective problems is their efficiency. For example, we 
can easily calculate weighted sums of multiple objectives 
even when the number of objectives is large. On the other 
hand, the computation time for hypervolume calculation 
exponentially increases with the number of objectives. 

There exist two different classes of EMO algorithms that 
use scalarizing functions for many-objective problems. In one 
class, a large number of scalarizing functions are used for 
evaluating each solution [22], [47]. A rank of each solution is 
calculated for each scalarizing function. Thus each solution 
has multiple ranks. The number of those ranks is the same as 
that of scalarizing functions. The overall rank of each solution 
is calculated based on its multiple ranks. 

In the other class, each solution is evaluated by a single 
scalarizing function [20], [21]. The point in this class of 
approaches is that a different scalarizing function (e.g., a 
weighted sum fitness function with a different weight vector) 
is used for evaluating each solution. The same idea is used in 
multiobjective genetic local search (MOGLS [48]-[50]). 

E. Use of Preference Information 
EMO algorithms are usually designed to search for a set of 

non-dominated solutions that approximates the entire Pareto 
front. Since the number of necessary solutions for a good 
approximation exponentially increases with the number of 
objectives, it is a good idea to focus on a specific region of the 
Pareto front using the decision maker’s preference.  

Fleming et al. [23] applied a preference articulation method 
[51] to many-objective problems where the focused region 
gradually becomes smaller during multiobjective evolution. 
Deb and Sundar [24] incorporated reference point-based 
preference information into NSGA-II. In their approach, the 
normalized distance to a reference point is taken into account 

to evaluate each solution after Pareto sorting. This means that 
the normalized distance is used as a secondary criterion 
instead of the crowding distance in NSGA-II. A number of 
non-dominated solutions are obtained around the reference 
point. Multiple reference points can be handled in [24].  

Thiele et al. [25] used reference point-based preference 
information in IBEA. First a rough approximation of the 
Pareto front is obtained. Such a rough approximation is used 
by the decision maker to specify a reference point. Then 
IBEA searches for a number of non-dominated solutions 
around the reference point. The focus of the multiobjective 
search by IBEA can be controlled using a parameter value 
and a reference point. Usually the focused region gradually 
becomes smaller through the interaction with the decision 
maker. The use of preference information in [25] is based on a 
similar idea to weighted integration in [46]. 

In the above-mentioned methods, preference information is 
used to focus on a specific region in the high-dimensional 
objective space with many objectives while EMO algorithms 
are used to search for a number of non-dominated solutions in 
such a focused region. The use of preference information has 
been discussed in many studies in the EMO community (e.g., 
see [1], [2], [52], [53]). Much more studies on this issue can 
be found in the MCDM community [33]. 

F. Reduction of the Number of Objectives 
If we can choose only a few important objectives, almost 

all difficulties in evolutionary many-objective optimization 
are eliminated. Deb and Saxena [26], [27] proposed an 
objective reduction method, which is based on principle 
component analysis. Their idea is to remove unnecessary 
objectives while maintaining the shape of the Pareto front in 
the reduced objective space. On the other hand, Brockhoff 
and Zitzler [28], [29] proposed a different idea where 
objective reduction is based on Pareto dominance. That is, an 
objective is removed when it does not change (or only slightly 
change) the Pareto dominance relation among solutions. 

G. Visualization of Obtained Solutions 
The main interest in the EMO community has been the 

search for a set of non-dominated solutions that approximates 
the Pareto front. Thus the choice of a final solution has not 
been discussed in many studies in the EMO community. 
Visualization of obtained non-dominated solutions, however, 
is a very important issue because a final solution should be 
chosen by the decision maker in any real-world applications. 

There exist two classes of visualization methods. In one 
class, all objectives are used with no modifications. The 
pentagonal representation in Fig. 11 can be viewed as a kind 
of such a visualization method. A number of visualization 
methods have been studied in the field of MCDM [33]. 

The other class involves dimensionality reduction. In 
Obayashi and Sakai [30], self-organizing maps (SOM) were 
used to visualize obtained solutions of a four-objective 
supersonic wing design problem. Yoshikawa and Furuhashi 
[31] examined the use of a number of multivariate data 
analysis methods such as SOM and ICA (independent 
component analysis) for the visualization of six thousand 



 
 

 

 

solutions of a seven-objective nurse scheduling problem. In 
these studies, visualization is handled as a data mining task. 

On the other hand, Köppen and K. Yoshida [32] used the 
preservation of the Pareto dominance relation as a criterion of 
dimensionality reduction for visualization. This is the same 
idea as [28], [29] in the previous subsection. One interesting 
idea in [32] is a multiobjective formulation of dimensionality 
reduction with two criteria: the number of objectives and the 
preservation of the Pareto dominance relation. 

H. Many-Objective Test Problems 
For many-objective optimization, seven test problems were 

proposed by Deb et al. [54], which are called DTLZ test 
problems (DTLZ1 to DTLZ7). The main feature of the DTLZ 
test problems is its scalability: the number of objectives can 
be arbitrarily specified. Two problems were added to the 
seven DTLZ test problems by Deb et al. [55]. Some test 
problems have different indexes between the two papers (i.e., 
DTLZ5 [54] => DTLZ6 [55], 6 => 7, and 7 => 8). 

Whereas the DTLZ test problems have often been used in 
the literature, some combinatorial problems such as knapsack 
problems and traveling salesman problems (TSP) have also 
been used as many-objective test problems. In Table I, we 
summarize test problems used in the above-mentioned studies 
on evolutionary many-objective optimization. 

 
TABLE I 

TEST PROBLEMS USED IN STUDIES ON MANY-OBJECTIVE OPTIMIZATION  

References Problems Objectives 
[12] Knapsack 2, 3, 4, 5 
[13] Heuristic learning 7, 8 
[14] Nurse scheduling 25 
[15] DTLZ 2, 8, 15 
[16] TSP, Job shop scheduling 5, 10, 15, 20 
[17] DTLZ 2-10, 15, 20, 25, ..., 50
[18] DTLZ 3, 4, 5, 6 

[19]-[21] Knapsack 2, 3, 4 
[22] Tanaka et al. (1995) 2, 5 
[23] Flight control system 8 
[24] DTLZ 2, 5, 10 
[25] Miettinen et al. (2003) 5 
[26] Modified DTLZ 5, 10, 20, 30 
[27] Modified DTLZ 3, 5, 10, 20, 30, 50 
[28] Knapsack, DTLZ  5, 15, 25 
[29] DTLZ, Modified DTLZ 5, 7, 9 
[30] Supersonic wing design 4 
[31] Nurse scheduling 7 
[32] DTLZ 15 

 

IV. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
In this paper, we first explained some difficulties of EMO 

algorithms for many-objective optimization by computational 
experiments using NSGA-II. Then we reviewed the area of 
evolutionary many-objective optimization. Some approaches 
in this area try to find a set of non-dominated solutions that 
approximates the entire Pareto front. For example, good 
results were obtained by IBEAs in [18]. One important future 
research issue is the decrease in the computation cost in 

hypervolume calculation. The use of alternative indicators for 
many-objective optimization (instead of hypervolume) seems 
to be a promising research issue as well as the computation 
cost reduction in hypervolume calculation. A set of uniform 
scalarizing functions can be used as an alternative indicator 
since their calculation is easy even for many objectives. Other 
approaches focus on a specific region in a high-dimensional 
objective space using not only Pareto dominance but also 
decision maker’s preference. It seems that more sophisticated 
methods can be devised by the collaboration between the 
EMO community and the MCDM community.  
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