
Meta-Optimization based Multi-Objective Test
Problem Generation using WFG Toolkit

Yuki Tanigaki, Yusuke Nojima, and Hisao Ishibuchi
Department of Computer Science and Intelligent Systems

Graduate School of Engineering, Osaka Prefecture University
Sakai, Osaka 599-8531, Japan

{yuki.tanigaki@ci., nojima@, hisaoi@}cs.osakafu-u.ac.jp

Abstract—Selecting a proper set of test problems is essential
for fair performance comparison of evolutionary multi-objective
optimization (EMO) algorithms. This is because the comparison
results strongly depend on the choice of test problems. Test
problems are also very important for examining the behavior of
each algorithm. In general, it is advisable to prepare a set of
various test problems including both easy and difficult ones for
each algorithm. Our idea is to use a meta-optimization technique
for generating such a set of test problems. More specifically, we
use a two-level meta-optimization model. In the upper level, test
problems are optimized. That is, test problems are handled as
solutions. In the lower level, each test problem is evaluated using
multiple EMO algorithms. The point of our idea is high flexibility
in the definition of an objective function in the upper level. For
example, when we want to design a difficult test problem only for
a particular EMO algorithm, the minimization of its relative
performance can be used as an objective function. By maximizing
its relative performance, we can also design an easy test problem
only for that algorithm. By generating both easy and difficult
problems for each algorithm in this manner, we can prepare an
appropriate test problem set for fair performance comparison.
Through computational experiments, we demonstrate that we
can generate a wide variety of test problems, each of which is
difficult for a different type of EMO algorithms.

Keywords—evolutionary multi-objective optimization (EMO);
meta-optimization; problem generation; WFG toolkit.

I. INTRODUCTION

In the last three decades, a number of evolutionary multi-
objective optimization (EMO) algorithms have been proposed
[1]-[6]. Their successful applications have also been reported
[7]. Since those EMO algorithms have different search
mechanisms, it is clear that they have their own advantages and
disadvantages. However, it is not easy to correctly identify and
analyze them from performance comparison results for only a
small number of frequently-used test problems.

In order to investigate the performance of algorithms in
more detail, it is required to select appropriate test problems. In
general, it is advisable to prepare a set of various test problems
including both easy and difficult ones for each algorithm. In
addition, it is desirable to use the test problems that can make a
remarkable difference in the performance among algorithms.
For example, even if no difference is observed in the
comparison between algorithms A and B on a test problem X,
it may happen that the performance of either one of the

algorithms is severely deteriorated on the other test problem Y.
In such a case, the comparison using the test problem Y seems
to be more beneficial for examining the behavior of each
algorithm.

For the comprehensive comparison of algorithms, test
problem suits including different characteristics are proposed
such as DTLZ test problems [8], MOP test instances for CEC
2009 MOEA competition [9] etc. However, these test problem
suits include only a limited range of multi-objective
optimization problems. One straightforward idea to cope with
this problem is to generate the appropriate test problems in an
automatic way. In this paper, we generate new test problems
based on meta-optimization. Meta-optimization is a widely-
used automated approach especially for solving algorithm
configuration [10]-[12]. In the meta-optimization for the
algorithm configuration, a parameter setting of an algorithm is
regarded as an optimization problem and a so-called tuner
optimizes the performance of a target algorithm (i.e., finds
appropriate parameter setting). Meta-optimization is also
referenced as off-line optimization or hyper-heuristics [13].

In our test problem generation, a two-level meta-
optimization model is utilized. In the upper level, test problems
are optimized. That is, test problems are handled as solutions
by the tuner. In the lower level, each test problem is evaluated
using multiple EMO algorithms. In more detail, obtained
results from the execution of EMO algorithms are employed to
fitness evaluation of the test problem. The definition of an
objective function in the upper level (i.e., the tuner) can be
changed according to the optimal feature of the test problem.
For example, when we want to design a difficult test problem
only for a particular EMO algorithm, the minimization of its
relative performance can be used as an objective function.

In the computational experiments, we demonstrate that we
can generate a wide variety of test problems, each of which is
difficult for a different type of EMO algorithms. The functions
defined by the WFG toolkit [14] are combined for the test
problem construction. Since the characteristics of the obtained
test problems can be determined by these functions, we can
observe the relationship between the characteristics of obtained
test problems and their own target EMO algorithm.

The rest of this paper is organized as follows. We describe
a basic structure of meta-optimization in Section II. Next, the
problem construction based on the WFG toolkit is explained in
Section III. The details of our meta-optimization based test

nojima
テキストボックス
Y. Tanigaki, Y. Nojima, and H. Ishibuchi, “Meta-optimization based multi-objective test problem generation using WFG toolkit,” Proc. of 2016 IEEE Congress on Evolutionary Computation (Accepted).

problem generation are shown in Section IV and its efficiency
is discussed through computational experiments in Section V.
Finally, we conclude the paper in Section VI.

II. OVERVIEW OF META-OPTIMIZATION

In recent years, many high-performance EMO algorithms
have been proposed with numerous parameters which control
their behavior. Search performance of these algorithms may
greatly depend on the parameter setting. In addition, it is often
the case that there are different optimal parameters for each test
problem to be applied. When the user uses these algorithms, it
is required to select the appropriate parameters for a given
problem. However, in order to properly adjust the parameters,
the user needs adequate knowledge of both problems and
algorithms. To free the user from such difficulty, a study of the
automatic algorithm configuration has been actively carried out.
The automatic methods for optimizing a performance of the
target algorithm are referred to as meta-optimization.

In the meta-optimization method, a parameter setting of the
algorithm is regarded as one of the optimization problems. The
goal of the meta-optimization method is to find the optimal
parameter setting for a given range of problem instances. We
illustrate an outline of parameter tuning using meta-
optimization in Fig. 1.

Two different optimization are performed in meta-
optimization. One is the execution of the target algorithm
corresponding to the configuration scenario in Fig. 1. This part
can be considered as a fitness evaluation of the parameter tuner.
The other search operation is the selection of an appropriate
parameter setting by the parameter tuner. Based on the result of
the execution of the target algorithm, the parameter tuner
determines which parameters to be applied. When the target
algorithm is assumed to be an EMO algorithm, the quality
indicator such as hypervolume [15] and IGD [16] can be used
for the fitness calculation of the parameter tuner.

Test problems

Parameter tuner

Selection of the parameter setting

Target
algorithm

Execution of target algorithm

Feedback of the results for test problems

Configuration scenario

Fig. 1. An outline of the meta-optimization for the algorithm configuration.

The framework of meta-optimization is also used for other
purposes as well as parameter settings. For example, a meta-
optimization method selects or combines multiple search
techniques and designs the efficient search structures in the
literature [17], [18]. In this paper, we generate new test
problems based on meta-optimization. For this purpose, test
problems are created instead of the selection of parameter
settings in Fig. 1. That is, the tuner (not “parameter” tuner any
more) decides a next candidate test problem based on the result
of the execution of algorithms. Unlike the parameter tuning,
existing quality indicators are not directly used for the
objective function of the tuner. Let us denote two algorithms A

and B for an example of fitness calculation. The tuner tries to
generate a difficult test problem for algorithm A. In such a case,
its relative performance such as E(A) / E(B) can be used for the
evaluation method. Where E(A) is a value of any metric to
evaluate the execution results of the algorithm A. When the
larger value of E(·) means better, the minimization of E(A) /
E(B) can be used as an objective function.

One additional important issue of test problem generation is
how to create candidate test problems. In this paper, we
combine several functions proposed in the WFG toolkit. The
detail of the WFG toolkit is explained in the next section.

III. WFG TOOLKIT

The WFG toolkit [14] is a toolkit for creating scalable
multi-objective minimization test problems proposed by
Huband et al. It includes several functions determining the
characteristics of multi-objective problems. The nine problems
(WFG1-WFG9) using this toolkit have been proposed and
widely used. All M objective minimization problems
constructed by the WFG toolkit conform to the following
format:

)()(111 M-mmM:Mm , ..., xxh S x f x , (1)

where hm is a shape function that determines the shape of the
Pareto front, Sm is a parameter to change the scaling of each
objective function, and x = (x1, x2, ..., xM)T is referred to the
underlying variables. The underlying variables are calculated
from decision variables z = (z1, z2, ..., zn)

T by applying various
transformation functions. The transformation calculation is
shown in (2) and (3). The features of the problem (e.g., multi-
modal, dependency among decision variables) are determined
by the transformation functions. The number of decision
variables is set to k + l = n. The first k variables are position-
related and the last l variables are distance-related variables.

),,5.0)5.0)(,max(

...,,5.0)5.0)(,(max(

11

11

p
M

p
MM

p
M

pp
M

ttAt

tAt

x
 (2)

zttt 11
1 ...)...,,(pTp

M
pp tt . (3)

The transformation functions are classified roughly three
classes. All transformation functions prepared in WFG toolkit
are summarized as follows.

Bias functions:
Polynomial function, Flat function,
Parameter Dependent function.

Shift functions:
Linear function, Multi-modal function, Deceptive function.

Reduction functions:
Weighted sum function, Non-separable function.

The bias functions give a bias against the fitness landscape
of the decision variables. By using a polynomial function, the
location of a randomly generated solution set is pressed into
the specific area of the objective space. With the flat function,
the fitness landscape of the decision variables does not change
in the specific interval (i.e., decision variables have the flat

region). With the parameter dependent function, the fitness
landscape of the decision variables is changed depending on
the other decision variables. The shift functions change the
optimal value of the decision variables. Constructed test
problems become uni-modal problems with the linear function
and multi-modal problems with the multi-modal function. With
the deceptive function, constructed test problems can be
considered as deceptive problems whose objective values
significantly deteriorate around the optimal values of decision
variables. The reduction functions are used for reducing the
arbitrary number n of decision variables to the number of
underlying variables M. Decision variables have dependencies
on each other using the non-separable function, whereas there
is no dependency with the weighted sum function.

The shape functions hm determine the shape of the Pareto
front. The general shape of the Pareto front can be freely
selected among Linear, Convex, and Concave functions. In
addition, there are combinational shape functions which
determine disconnected or mixed feature of the Pareto front. In
other words, the total number of the shapes of the Pareto front
is nine such as Linear, Convex, Concave, Linear-mixed,
Convex-mixed, Concave-mixed, Linear-disc, Convex-disc, and
Concave-disc. By selecting one among these shapes, it is
possible to change the shape of the Pareto front of the problems
constructed.

IV. PROBLEM GENERATION BASED ON META-
OPTIMIZATION

In this section, we describe the detail of the test problem
generation using a meta-optimization technique. For generation
of the test problem, functions determining the features of the
WFG toolkit are combined. Corresponding to the selected
functions, the characteristics of the obtained problem are
clearly shown. The characteristics of the problem used in meta-
optimization are summarized in Table I. In some of the
transformation functions, control parameters are employed to
determine the detail feature of their characteristic. In this paper,
the same settings are used as in WFG 1-9. The effect of these
control parameters is discussed in Section V-C.

To construct a test problem, one function is chosen from
each category of the characteristics. For example, when the
problem includes linear function, polynomial function, and
weighted sum function, the constructed test problem has a
polynomial bias and a uni-modal property. When all Sm are
fixed to 1 and the concave function is used for hm, the problem
has concave Pareto front and each objective function is the
same scale. The size of the meta-optimization search space is 3
× 5 × 3 × 2 × 9 = 810.

Next, we describe the detail of fitness evaluation in the
meta-optimization. In the meta-optimization of this paper, an
EMO algorithm and its competitor algorithms are utilized for a
fitness evaluation. The tuner tries to generate test problems so
that the target algorithm is disadvantageous or advantageous
among the algorithms. Let us assume the tuner tries to generate
a disadvantageous test problem for the target algorithm A
among its competitor algorithms B, C, D. That is, the obtained
test problem is relatively a difficult problem for A. In order to
calculate a fitness value from the results of the execution of

algorithms, hypervolume is used as the quality indicator. The
fitness value in the meta-optimization is determined as follows.

Minimize fitness = Rank(A) + HVn(A), (4)

where Rank(A) is the ranking of A among its competitor
algorithms B, C, D. For example, when HV(B) > HV(A) >
HV(C) > HV(D) holds, where HV(A) means the hypervolume
value obtained from algorithm A, Rank(A) is calculated as 3.
The second measure HVn(A) means a normalized hypervolume
as follows.

)D()C()B()A(

)A(
)A(

HVHVHVHV

HV
HVn

 . (5)

It should be noted that this fitness evaluation is noisy
because a different hypervolume value is obtained from a
different run of the same algorithm. The number of executions
to evaluate its performance is an important issue for the
efficient optimization. That is, when the fitness evaluation is
based on the outcomes of single runs the search space of the
meta-optimization could be very noisy. On the other hand,
enormous calculation times are required to calculate the fitness
evaluation on the basis of large number of executions.

TABLE I. PROBLEM FEATURES AND RELATED FUNCTIONS.

Category of the
characteristics

Characteristics Function definition

Modality

Uni-modal
Linear function in
WFG1

Multi-modal
Multi-modal function in
WFG4

Deceptive
Deceptive function in
WFG5

Bias

-- Bias function is Unused

Polynomial
Polynomial function in
WFG1

Flat Flat function in WFG1

PositionToDsitance
Parameter Dependent
function in WFG7

DsitanceToPosition
Parameter Dependent
function in WFG8

Scaling
Same
Double
Exponential

Sm = 1
Sm = 2m
Sm = 10m

Separability

Separable
Weighted sum function
in WFG1

Non-separable
Non-separable function
in WFG6

Geometry of the
Pareto front (hm)

Linear
Convex
Concave
Linear-mixed
Convex-mixed
Concave-mixed
Linear-disc
Convex-disc
Concave-disc

linear1:M

convex1:M

concave1:M

linear1:M-1 and mixedM

convex1:M-1 and mixedM

concave1:M-1 and mixedM

linear1:M-1 and discM

convex1:M-1 and discM

concave1:M-1 and discM

In order to handle this problem, some tuners have
mechanisms that adaptively estimate the number of runs used
for the fitness evaluation for each test problem. In this paper,
we use SMAC [10] as the tuner of the meta-optimization.
SMAC is one of the most famous approaches for algorithm
configuration. SMAC has a mechanism that automatically
selects how many runs are needed for the fitness evaluation. As
already mentioned in Section II, existing algorithm
configuration tuners can be used for the tuner in our automatic
problem generation method. We show an outline of our
problem generation in Fig. 2.

Execution of algorithms
SMAC

Creating test problem

New test problem

Environment for meta-optimization

Algorithm A
Linear, Flat,

& Non-separable Algorithm B
Algorithm C

WFG toolkit
Functions

Feedback of the results for test problem

HV(A), HV(B), HV(C), HV(D)

Algorithm D

Fig. 2. An outline of the meta-optimization for the test problem generation.

V. COMPUTATIONAL EXPERIMENTS

In this section, we demonstrate the meta-optimization based
problem generation through computational experiments on the
following six well-known EMO algorithms.

NSGA-II [1]:
NSGA-II is one of the most frequently-used Pareto
dominance-based EMO algorithms. Its fitness evaluation is
based on a rank assignment mechanism and a secondary
measure for diversity maintenance called “crowding
distance”.

MOGLS [2]:
MOGLS is the hybrid version of NSGA-II with weighted
sum-based local search. The local search is utilized to
enhance the search performance of NSGA-II.

NSGA-III [3]:
NSGA-III is also a Pareto dominance-based EMO
algorithm. The secondary measure of NSGA-II (i.e.,
crowding distance) is replaced with the solution assignment
to reference points in the normalized objective space. This
modification enhances the diversity handling performance
of NSGA-II.

MOEA/D [4]:
MOEA/D is an efficient scalarizing function-based EMO
algorithm. A multi-objective problem is decomposed into a
number of single-objective problems. Each single-objective
problem is defined by the scalarizing function with a
different weight vector. A single solution is used for the
optimization on each single-objective problem and
solutions are handled in a collaborative manner.

MOEA/D-DE [5]:
MOEA/D-DE is a variant of MOEA/D that replaces the
recombination schemes in MOEA/D with the differential
evolution (DE) operator.

SMPSO [6]:
SMPSO is an EMO algorithm based on the particle swarm
optimization. For the maintenance of an external archive,
the rank assignment mechanism is utilized.

A. Algorithm Comparison on WFG1-WFG8

First of all, the performance of the six algorithms is
compared on WFG1-WFG8 with 2 and 6 objectives. The
number of position-related variables and distance-related
variables is specified as k = 18 and l = 5. We use the following
parameter specifications in all the six EMO algorithms:

Termination condition: 500 generations,
Crossover probability: 1.0,
Mutation probability: 1/n (n: # of decision variables),
Population size: 100 for 2 objectives, 120 for 6 objectives.

These specifications of the population size are based on the
combinatorial nature of the possible number of weight vectors
in MOEA/D. In our study, the simulated binary crossover [19]
(SBX) and the polynomial mutation [20] (PM) are used for
NSGA-II, MOGLS, NSGA-III, and MOEA/D. In MOEA/D-
DE and SMPSO, their own reproduction methods are used.
Their distribution indices are specified as 15 for SBX and 20
for PM. In MOEA/D and MOEA/D-DE, we use the
Tchebycheff function for scalarizing function. Other control
parameters in each algorithm are used the same settings as in
their original papers.

We show the average hypervolume values over 20 runs in
Tables II and III. We used the worst values of each objective
function as the reference point for the hypervolume calculation.
In Table IV, the characteristics of WFG1-WFG8 are
summarized. In Table II and Table III, we can observe the
performances of MOEA/D are deteriorated in most of all two-
objective WFG problems whereas MOEA/D, MOEA/D-DE,
and SMPSO are deteriorated in six-objective problems.
However, it is difficult to discuss their advantages and
disadvantages related to the characteristics of WFG1-WFG8.
As summarized in Table IV, there are many problems which
have the same characteristics. For example, the modalities of
WFG1-WFG3 and WFG6-WFG8 are uni-modal. The shapes of
the Pareto front are concave in WFG4-WFG8. Especially, the
same setting (i.e., double) is used for the scaling among
objective functions in WFG1-WFG8.

B. Test Problems Generated by Meta-optimization

Next, we generate two-objective and six-objective
problems that have the disadvantageous characteristics for a
particular target algorithm by meta-optimization. That is, the
obtained hypervolume value of a target algorithm is relatively
deteriorated in the generated test problem. For its competitor
algorithms, the other five algorithms are used.

Termination condition of SMAC is set to 1000 solution
evaluations. The number of solution evaluations is larger than
the size of the meta-optimization solution space (i.e., 810).
This is because the fitness evaluation based on the single
algorithm runs is treated as a single solution evaluation in
SMAC. In order to decrease negative effects of the noisy
fitness evaluation, each test problem is re-evaluated by SMAC
mechanism.

TABLE II. OBTAINED HYPERVOLUME ON WFG1-WFG8 WITH 2 OBJECTIVES. THE WORST RESULTS ON EACH PROBLEM ARE SHOWN IN BOLD.

Problem NSGA-II MOGLS NSGA-III MOEA/D MOEA/D-DE SMPSO

WFG1 7.21 6.16 7.34 4.61 9.64 10.45

WFG2 9.25 9.26 9.26 9.09 9.25 11.45

WFG3 10.42 10.82 10.29 10.14 10.46 10.94

WFG4 7.82 8.53 7.83 8.29 8.26 8.54

WFG5 7.69 8.07 7.68 7.77 7.82 8.04

WFG6 7.73 7.95 7.71 7.38 8.18 8.52

WFG7 6.41 8.1 6.31 6.44 7.08 8.67

WFG8 6.35 7.51 6.18 5.72 6.88 8.36

TABLE III. OBTAINED HYPERVOLUME ON WFG1-WFG8 WITH 6 OBJECTIVES. THE WORST RESULTS ON EACH PROBLEM ARE SHOWN IN BOLD.

Problem NSGA-II MOGLS NSGA-III MOEA/D MOEA/D-DE SMPSO

WFG1 1.16E+05 6.41E+04 1.03E+05 1.11E+05 1.25E+05 5.00E+04

WFG2 1.34E+05 1.09E+05 1.13E+05 1.08E+05 1.19E+05 1.33E+05

WFG3 9.13E+04 9.14E+04 8.57E+04 7.29E+04 7.22E+04 9.05E+04

WFG4 6.31E+04 8.30E+04 1.02E+05 6.13E+04 7.68E+04 8.81E+04

WFG5 6.99E+04 8.39E+04 1.06E+05 7.18E+04 5.42E+04 5.91E+04

WFG6 7.88E+04 8.21E+04 1.06E+05 6.98E+04 5.82E+04 8.08E+04

WFG7 7.38E+04 8.80E+04 1.03E+05 5.97E+04 4.85E+04 9.37E+04

WFG8 6.49E+04 6.80E+04 8.61E+04 4.08E+04 4.54E+04 7.82E+04

TABLE IV. THE CHARACTERISTICS OF WFG1-WFG8.

Problem Modality Bias Separability Scaling Geometry

WFG1 Uni-modal Polynomial, Flat Separable Double Convex-mixed

WFG2 Uni-modal - Non-separable Double Convex-disc

WFG3 Uni-modal - Non-separable Double Linear, Degenerate

WFG4 Multi-modal - Separable Double Concave

WFG5 Deceptive - Separable Double Concave

WFG6 Uni-modal - Non-separable Double Concave

WFG7 Uni-modal PositionToDsitance Separable Double Concave

WFG8 Uni-modal DsitanceToPosition Separable Double Concave

The characteristics of obtained test problems are showed
in Tables V, VI. Obtained hypervolume values of the six
EMO algorithms on each test problem are also summarized in
Tables VII, VIII. The obtained test problem is referred to as
TargetAlgorithmMin (e.g., NSGA-IIMin means an obtained test
problem that has the disadvantageous characteristics for
NSGA-II). Each test problem shown in Tables V-VIII is the
best results (i.e., best fitness value) over 5 times of the meta-
optimization trials.

As shown in Tables V, VI, a wide variety of test problems
are generated. Although the parameter settings of each
function for the test problem generation are picked from
WFG1-WFG8, the obtained test problems have totally
different characteristics from WFG1-WFG8. In Tables VII,
VIII, the worst results on each test problem are highlighted in
bold. In Tables VII, VIII, we can observe that the worst

results on each test problem are obtained by its target
algorithm (e.g., NSGA-II shows the worst results on NSGA-
IIMin). These results show that the test problems which are
difficult for their target algorithms are successfully obtained
through meta-optimization.

In Tables V, VI, the characteristics obtained by four or
five trials are highlighted by gray. When we focus on the
category of characteristics, we can say that the same
disadvantageous characteristics are obtained for the bias,
separability, and scaling functions in almost all trials. This
observation suggests that these three characteristics play the
principal role for the comparison among the six EMO
algorithms.

In Figs. 3-6, we show the obtained results of the six
algorithms on NSGA-IIIMin, MOEA/DMin, MOEA/D-DEMin
and SMPSOMin. In Figs. 3-6, each objective values are

normalized using the worst Pareto-optimal objective values.
The randomly generated solutions are also shown in black
circles.

From the comparison of Figs. 3, 4 and Figs. 5, 6, we can
observe that the diversity of the randomly generated initial
populations has a large influence on the performance of the
EMO algorithms. As we explained in Section III, a randomly
generated solution set is pressed into the specific area of the
objective space of the problems including the polynomial bias.
Both NSGA-IIIMin and MOEA/DMin include polynomial bias
functions. In Fig. 4, the performance of NSGA-II, MOGLS,
NSGA-III and MOEA/D are deteriorated. The SBX crossover
and the polynomial mutation are used for the reproduction in
these EMO algorithms. This may suggest the efficiency of the
reproduction operators of MOEA/D-DE and SMPSO (i.e., the

differential evolution operator and the particle swarm
opmitization-based recombination mechanism).

In Fig. 5, the obtained results of the six algorithms on
MOEA/D-DEMin are shown. From Fig. 5-(d) and Fig. 5-(e),
the obtained solutions from scalarizing function-based EMO
algorithm are biased in the first objectives. This is because
each objective values are directory used in the scalarizing
function. As shown in Table V, the exponential function is
used for the scaling function of MOEA/D-DEMin. That is,
there is the large difference of the scaling among objective
functions. The differences of scaling of MOEA/DMin and
MOEA/D-DEMin are double or exponential in both two- and
six-objectives. In order to obtain uniformity distributed
solutions, some normalization technique handling the
difference of the scaling among objective functions is needed.

TABLE V. THE CHARACTERISTICS OF GENERATED TWO-OBJECTIVE PROBLEMS.

Problem Modality Bias Separability Scaling Geometry

NSGA-IIMin Multi-modal Flat Separable Double Concave

MOGLSMin Multi-modal PositionToDistance Non-separable Double Concave

NSGA-IIIMin Multi-modal Polynomial Non-separable Exponential Convex-mixed

MOEA/DMin Deceptive Polynomial Non-separable Exponential Convex-disc

MOEA/D-DEMin Multi-modal PositionToDistance Separable Exponential Concave

SMPSOMin Multi-modal PositionToDistance Separable Same Convex

TABLE VI. THE CHARACTERISTICS OF GENERATED SIX-OBJECTIVE PROBLEMS.

Problem Modality Bias Separability Scaling Geometry

NSGA-IIMin Deceptive Polynomial Separable Double Convex-disc

MOGLSMin Multi-modal -- Non-separable Same Concave-disc

NSGA-IIIMin Uni-modal Polynomial Non-separable Double Concave

MOEA/DMin Multi-modal DistanceToPosition Separable Exponential Concave-mixed

MOEA/D-DEMin Uni-modal PositionToDistance Separable Double Concave-mixed

SMPSOMin Multi-modal PositionToDistance Separable Same Concave

TABLE VII. OBTAINED HYPERVOLUME ON GENERATED TWO-OBJECTIVE PROBLEMS. THE WORST RESULTS ON EACH PROBLEM ARE SHOWN IN BOLD.

Problem NSGA-II MOGLS NSGA-III MOEA/D MOEA/D-DE SMPSO

NSGA-IIMin 7.77 8.50 7.80 8.29 8.25 8.26

MOGLSMin 7.96 7.49 7.99 7.60 7.98 8.25

NSGA-IIIMin 414.14 701.28 217.64 595.86 701.75 742.94

MOEA/DMin 219.23 219.17 219.22 218.69 629.55 661.65

MOEA/D-DEMin 314.40 307.90 315.17 302.03 301.71 315.49

SMPSOMin 3.76 3.72 3.74 3.71 3.71 3.65

TABLE VIII. OBTAINED HYPERVOLUME ON GENERATED SIX-OBJECTIVE PROBLEMS. THE WORST RESULTS ON EACH PROBLEM ARE SHOWN IN BOLD.

Problem NSGA-II MOGLS NSGA-III MOEA/D MOEA/D-DE SMPSO

NSGA-IIMin 4.88E+04 1.19E+05 1.04E+05 1.15E+05 1.29E+05 1.35E+05

MOGLSMin 54.05 49.19 52.45 49.45 54.31 52.55

NSGA-IIIMin 1.89E+04 2.59E+04 1.07E+04 2.86E+04 8.07E+04 1.09E+05

MOEA/DMin 6.01E+20 6.15E+20 8.02E+20 2.37E+20 5.16E+20 6.92E+20

MOEA/D-DEMin 8.14E+04 9.66E+04 1.11E+05 6.34E+04 5.04E+04 7.78E+04

SMPSOMin 57.57 59.68 59.47 59.91 58.41 51.91

0
0

1

2

0
0

0 1 2 0 1 21 2
f1

f2

f1 f1

Pareto front
Initial solution
Obtained solution

(a) NSGA-II (b) MOGLS (c) NSGA-III

0 1 2
0

1

2

0 1 2 0 1 2

f2

f1 f1 f1
(d) MOEA/D (e) MOEA/D-DE (f) SMPSO

Fig. 3. Obtained results on the two-objective NSGA-IIIMin.

0
0

1

2

0
0

0 1 2 0 1 21 2
f1

f2

f1 f1

Pareto front
Initial solution
Obtained solution

(a) NSGA-II (b) MOGLS (c) NSGA-III

0 1 2
0

1

2

0 1 2 0 1 2

f2

f1 f1 f1
(d) MOEA/D (e) MOEA/D-DE (f) SMPSO

Fig. 4. Obtained results on the two-objective MOEA/DMin.

0
0

1

2

0
0

0 1 2 0 1 21 2
f1

f2

f1 f1

Pareto front
Initial solution
Obtained solution

(a) NSGA-II (b) MOGLS (c) NSGA-III

0 1 2
0

1

2

0 1 2 0 1 2

f2

f1 f1 f1
(d) MOEA/D (e) MOEA/D-DE (f) SMPSO

Fig. 5. Obtained results on the two-objective MOEA/D-DEMin.

1.5

1.0 1.5
f1 f1 f1

Pareto front
Initial solution
Obtained solution

f2

1.0

0.5

0
0

0.5 1.0 1.50 0.5 1.0 1.50 0.5

(a) NSGA-II (b) MOGLS (c) NSGA-III

1.5

1.0 1.5
f1 f1 f1

f2

1.0

0.5

0
0

0.5 1.0 1.50 0.5 1.0 1.50 0.5

(d) MOEA/D (e) MOEA/D-DE (f) SMPSO

Fig. 6. Obtained results on the two-objective SMPSOMin.

C. Discussion about the Functions Determining the Features
of the WFG Problem

In this paper, the functions determining the features of the
WFG problem are utilized for the test problem generation. In
order to avoid complex combinations, these functions are
picked from WFG1-WFG8. For example, the parameter
setting of the polynomial bias function is used the same
setting as in WFG1 as shown in Table I. However some of
these parameters settings have large relationship with the
characteristics of test problems. For discussing about the
effect of the parameter setting of the functions, we examine
the three different parameter settings of the flat function. The
flat function can be specified as follows:

 ,
1

))(1(
),0min(

)(
),0min(

),,,(b_flat

C

CtA
tC

B

tBA
BtA

CBAt

 (5)

where t is the input decision variables and A, B, C are control
parameters. Values of t between B and C are mapped to A.
That is, the values of B and C define the width of the flat
region of decision variables. We compare following three
settings for the flat function in two-objective NSGA-IIMin:

(i) A = 0.8, B = 0.8, C = 0.8 (no flat region),
(ii) A = 0.8, B = 0.75, C = 0.85 (the same setting in WFG1),
(iii) A = 0.8, B = 0.25, C = 0.95.

We show the fitness landscapes of the flat function with
the settings (ii) and (iii) in Fig. 7. The obtained results for the
three settings are summarized in Fig. 8. From Fig. 7, we can
observe that problems have a larger flat region in the setting
(iii) compare with the setting (ii). Because of a larger flat
region, two-objective NSGA-IIMin with the setting (iii) can be
considered as a more difficult problem than one with the
setting (ii). In Fig. 8, we can observe the clear performance
deterioration of both algorithms in the setting (iii). This
observation suggests the importance of the appropriate
parameter setting of the functions of WFG toolkit.

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

0.0

b_
fla

t(
t)

t
0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

0.0

b
_f

la
t(

t)

t
(a) Setting (ii) (b) Setting (iii)

Fig. 7. The fitness landscapes of the flat function with two settings.

0 10 100 1000

6

10

2

H
yp

er
vo

lu
m

e

Generations
0 10 100 1000

H
yp

er
vo

lu
m

e

Generations

with setting (i)
with setting (ii)
with setting (iii)

with setting (i)
with setting (ii)
with setting (iii)

6

10

2

(a) NSGA-II (b) SMPSO

Fig. 8. Obtained results on the three different settings of the two-objective
NSGA-IIMin.

VI. CONCLUSIONS

In this paper, we examined the effectiveness of the
automatic test problem generation based on meta-optimization.
From the computational experiments, we observed that our
meta-optimization method successfully obtained test problems
which have the disadvantageous characteristics for their target
algorithms. For the generation of test problems, we combined
functions determining the features of the WFG problem.
Although the parameter settings of each function are picked
from WFG1-WFG8, the obtained test problems from meta-
optimization have totally different characteristics from WFG1-
WFG8. These test problems can be utilized for the touchstone
against a development of a more robust algorithm in the future.

In our meta-optimization approach for generating test
problems, there is high flexibility in the definition of a fitness
calculation and how to create candidate test problems. For the
fitness calculation, hypervolume is used as the quality
indicator in this study. Other quality indicators such as IGD are
also utilized for the fitness evaluation. The influence of the
fitness evaluation in meta-optimization is an interesting future
research topic. It is also an interesting future research topic that
each objective function is designed by the other techniques
such as a genetic programming. As discussed in Section V-C,
the characteristics of obtained test problems from meta-
optimization depend on the scope of problems which can be
generated. One important issue we did not discuss in this paper
is the relationship between the generated test problems and
actual problems faced in practice. It is also an interesting
future research topic that generating a simple test problem that
has a same feature of the actual problem.

REFERENCES
[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

[2] H. Ishibuchi and T. Murata, “A multi-objective genetic local search
algorithm and its application to flowshop scheduling,” IEEE Trans. on

Systems, Man, and Cybernetics – Part C: Applications and Reviews, vol.
28, no. 3, pp. 392-403, 1998.

[3] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point based non-dominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. on
Evolutionary Computation, vol. 18, no. 4, pp. 577-601, 2013.

[4] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary
algorithm based on decomposition,” IEEE Trans. on Evolutionary
Computation, vol. 11, no. 6, pp. 712-731, 2007.

[5] H. Li, and Q. Zhang. “Multiobjective optimization problems with
complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans. on
Evolutionary Computation, vol. 13, no. 2, pp. 284-302, 2009.

[6] A. J. Nebro, J. J. Durillo, J. García-Nieto, C. A. C. Coello, F. Luna, and
E. Alba, “SMPSO: A new pso-based metaheuristic for multi-objective
optimization,” Computational Intelligence in Miulti-Criteria Decision-
Making, pp. 66-73, 2009.

[7] C. A. C. Coello and G. B. Lamont, Applications of multi-objective
evolutionary algorithms, vol. 1, World Scientic, 2004.

[8] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” In Proc. of 2002 IEEE Congress
on Evolutionary Computation (World Congress on Computational
Intelligence), pp. 825-830, 2002.

[9] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S.
Tiwari,“Multiobjective optimization test instances for the CEC 2009
special session and competition,” Univ. Essex and Nanyang Technol.
Univ., Essex, U.K./Singapore, Tech. Rep. CES-487, 2008.

[10] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” Lecture Notes in
Computer Science: Learning and Intelligent Optimization, vol. 6683, pp.
507-523, Springer, Berlin, 2011.

[11] F. Hutter, T. Stuetzle, K. Leyton-Brown, and H. H. Hoos, “ParamILS:
An automatic algorithm configuration framework,” Journal of Artificial
Intelligence Research, vol. 36, pp. 267-306, 2009.

[12] P. Balaprakash, M. Birattari, and T. Stützle, “Improvement strategies for
the F-race algorithm: Sampling design and iterative renement,” Lecture
Notes in Computer Science, vol. 4771, pp. 108-122, 2007

[13] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695-1724,
2013.

[14] S. Huband, L. Barone, L. While, and P. Hington, “A scalable multi-
objective test problem toolkit,” Lecture Notes in Computer Science:
Evolutionary Multi-Criterion Optimization, vol. 3410, pp. 280-295,
Guanajuato, 2005.

[15] E. Zitzler and L. Thiele, “Multiobjective optimization using
evolutionary algorithms – A comparative case study,” Lecture Notes in
Computer Science: Parallel Problem Solving from Nature, vol. 1498, pp.
292-301, Springer, Berlin, 1998.

[16] O. Schuetze, X. Esquivel, A. Lara, and C. A. C. Coello, “Using the
averaged Hausdorff distance as a performance measure in evolutionary
multiobjective optimization,” IEEE Trans. on Evolutionary
Computation, vol. 16, no. 4, pp. 504-522, 2012.

[17] O. Schuetze, X. Esquivel, A. Lara, and C. A. C. Coello, “Automatic
component-wise design of multi-objective evolutionary algorithms,”
IEEE Trans. on Evolutionary Computation (Available from IEEE
Xplore as an Early Access Paper).

[18] Y. Tanigaki, H. Masuda, Y. Setoguchi, Y. Nojima, and H. Ishibuchi,
“Algorithm structure optimization by choosing operators in
multiobjective genetic local search,” In Proc. of 2015 IEEE Congress
on Evolutionary Computation, pp. 854-861, 2015.

[19] K. Deb, and A. Kumar, “Real-coded genetic algorithms with simulated
binary crossover: studies on multimodal and multiobjective problems”,
Complex Systems, vol. 9, no. 6, pp. 431-454, 1995.

[20] M. Hamdan, “On the disruption-level of polynomial mutation for
evolutionary multi-objective optimization algorithms”, Computing and
Informatics, vol. 29, pp. 783-800, 2010.

