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Abstract—Selecting a proper set of test problems is essential 
for fair performance comparison of evolutionary multi-objective 
optimization (EMO) algorithms. This is because the comparison 
results strongly depend on the choice of test problems. Test 
problems are also very important for examining the behavior of 
each algorithm. In general, it is advisable to prepare a set of 
various test problems including both easy and difficult ones for 
each algorithm. Our idea is to use a meta-optimization technique 
for generating such a set of test problems. More specifically, we 
use a two-level meta-optimization model. In the upper level, test 
problems are optimized. That is, test problems are handled as 
solutions. In the lower level, each test problem is evaluated using 
multiple EMO algorithms. The point of our idea is high flexibility 
in the definition of an objective function in the upper level. For 
example, when we want to design a difficult test problem only for 
a particular EMO algorithm, the minimization of its relative 
performance can be used as an objective function. By maximizing 
its relative performance, we can also design an easy test problem 
only for that algorithm. By generating both easy and difficult 
problems for each algorithm in this manner, we can prepare an 
appropriate test problem set for fair performance comparison. 
Through computational experiments, we demonstrate that we 
can generate a wide variety of test problems, each of which is 
difficult for a different type of EMO algorithms. 

Keywords—evolutionary multi-objective optimization (EMO); 
meta-optimization; problem generation; WFG toolkit.  

I. INTRODUCTION 

In the last three decades, a number of evolutionary multi-
objective optimization (EMO) algorithms have been proposed 
[1]-[6]. Their successful applications have also been reported 
[7]. Since those EMO algorithms have different search 
mechanisms, it is clear that they have their own advantages and 
disadvantages. However, it is not easy to correctly identify and 
analyze them from performance comparison results for only a 
small number of frequently-used test problems. 

In order to investigate the performance of algorithms in 
more detail, it is required to select appropriate test problems. In 
general, it is advisable to prepare a set of various test problems 
including both easy and difficult ones for each algorithm. In 
addition, it is desirable to use the test problems that can make a 
remarkable difference in the performance among algorithms. 
For example, even if no difference is observed in the 
comparison between algorithms A and B on a test problem X, 
it may happen that the performance of either one of the 

algorithms is severely deteriorated on the other test problem Y. 
In such a case, the comparison using the test problem Y seems 
to be more beneficial for examining the behavior of each 
algorithm. 

For the comprehensive comparison of algorithms, test 
problem suits including different characteristics are proposed 
such as DTLZ test problems [8], MOP test instances for CEC 
2009 MOEA competition [9] etc. However, these test problem 
suits include only a limited range of multi-objective 
optimization problems. One straightforward idea to cope with 
this problem is to generate the appropriate test problems in an 
automatic way. In this paper, we generate new test problems 
based on meta-optimization. Meta-optimization is a widely-
used automated approach especially for solving algorithm 
configuration [10]-[12]. In the meta-optimization for the 
algorithm configuration, a parameter setting of an algorithm is 
regarded as an optimization problem and a so-called tuner 
optimizes the performance of a target algorithm (i.e., finds 
appropriate parameter setting). Meta-optimization is also 
referenced as off-line optimization or hyper-heuristics [13]. 

In our test problem generation, a two-level meta-
optimization model is utilized. In the upper level, test problems 
are optimized. That is, test problems are handled as solutions 
by the tuner. In the lower level, each test problem is evaluated 
using multiple EMO algorithms. In more detail, obtained 
results from the execution of EMO algorithms are employed to 
fitness evaluation of the test problem. The definition of an 
objective function in the upper level (i.e., the tuner) can be 
changed according to the optimal feature of the test problem. 
For example, when we want to design a difficult test problem 
only for a particular EMO algorithm, the minimization of its 
relative performance can be used as an objective function. 

In the computational experiments, we demonstrate that we 
can generate a wide variety of test problems, each of which is 
difficult for a different type of EMO algorithms. The functions 
defined by the WFG toolkit [14] are combined for the test 
problem construction. Since the characteristics of the obtained 
test problems can be determined by these functions, we can 
observe the relationship between the characteristics of obtained 
test problems and their own target EMO algorithm. 

The rest of this paper is organized as follows. We describe 
a basic structure of meta-optimization in Section II. Next, the 
problem construction based on the WFG toolkit is explained in 
Section III. The details of our meta-optimization based test 
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problem generation are shown in Section IV and its efficiency 
is discussed through computational experiments in Section V. 
Finally, we conclude the paper in Section VI. 

II. OVERVIEW OF META-OPTIMIZATION 

In recent years, many high-performance EMO algorithms 
have been proposed with numerous parameters which control 
their behavior. Search performance of these algorithms may 
greatly depend on the parameter setting. In addition, it is often 
the case that there are different optimal parameters for each test 
problem to be applied. When the user uses these algorithms, it 
is required to select the appropriate parameters for a given 
problem. However, in order to properly adjust the parameters, 
the user needs adequate knowledge of both problems and 
algorithms. To free the user from such difficulty, a study of the 
automatic algorithm configuration has been actively carried out. 
The automatic methods for optimizing a performance of the 
target algorithm are referred to as meta-optimization. 

In the meta-optimization method, a parameter setting of the 
algorithm is regarded as one of the optimization problems. The 
goal of the meta-optimization method is to find the optimal 
parameter setting for a given range of problem instances. We 
illustrate an outline of parameter tuning using meta-
optimization in Fig. 1. 

Two different optimization are performed in meta-
optimization. One is the execution of the target algorithm 
corresponding to the configuration scenario in Fig. 1. This part 
can be considered as a fitness evaluation of the parameter tuner. 
The other search operation is the selection of an appropriate 
parameter setting by the parameter tuner. Based on the result of 
the execution of the target algorithm, the parameter tuner 
determines which parameters to be applied. When the target 
algorithm is assumed to be an EMO algorithm, the quality 
indicator such as hypervolume [15] and IGD [16] can be used 
for the fitness calculation of the parameter tuner. 

Test problems

Parameter tuner

Selection of the parameter setting

Target 
algorithm

Execution of target algorithm

Feedback of the results for test problems

Configuration scenario

 
Fig. 1. An outline of the meta-optimization for the algorithm configuration. 

The framework of meta-optimization is also used for other 
purposes as well as parameter settings. For example, a meta-
optimization method selects or combines multiple search 
techniques and designs the efficient search structures in the 
literature [17], [18]. In this paper, we generate new test 
problems based on meta-optimization. For this purpose, test 
problems are created instead of the selection of parameter 
settings in Fig. 1. That is, the tuner (not “parameter” tuner any 
more) decides a next candidate test problem based on the result 
of the execution of algorithms. Unlike the parameter tuning, 
existing quality indicators are not directly used for the 
objective function of the tuner. Let us denote two algorithms A 

and B for an example of fitness calculation. The tuner tries to 
generate a difficult test problem for algorithm A. In such a case, 
its relative performance such as E(A) / E(B) can be used for the 
evaluation method. Where E(A) is a value of any metric to 
evaluate the execution results of the algorithm A. When the 
larger value of E(·) means better, the minimization of E(A) / 
E(B) can be used as an objective function. 

One additional important issue of test problem generation is 
how to create candidate test problems. In this paper, we 
combine several functions proposed in the WFG toolkit. The 
detail of the WFG toolkit is explained in the next section. 

III. WFG TOOLKIT 

The WFG toolkit [14] is a toolkit for creating scalable 
multi-objective minimization test problems proposed by 
Huband et al. It includes several functions determining the 
characteristics of multi-objective problems. The nine problems 
(WFG1-WFG9) using this toolkit have been proposed and 
widely used. All M objective minimization problems 
constructed by the WFG toolkit conform to the following 
format: 

)()( 111 M-mmM:Mm , ..., xxh S  x f  x , (1) 

where hm is a shape function that determines the shape of the 
Pareto front, Sm is a parameter to change the scaling of each 
objective function, and x = (x1, x2, ..., xM)T is referred to the 
underlying variables. The underlying variables are calculated 
from decision variables z = (z1, z2, ..., zn)

T by applying various 
transformation functions. The transformation calculation is 
shown in (2) and (3). The features of the problem (e.g., multi-
modal, dependency among decision variables) are determined 
by the transformation functions. The number of decision 
variables is set to k + l = n. The first k variables are position-
related and the last l variables are distance-related variables. 
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The transformation functions are classified roughly three 
classes. All transformation functions prepared in WFG toolkit 
are summarized as follows. 

Bias functions: 
Polynomial function, Flat function,  
Parameter Dependent function. 

Shift functions: 
Linear function, Multi-modal function, Deceptive function. 

Reduction functions: 
Weighted sum function, Non-separable function. 

The bias functions give a bias against the fitness landscape 
of the decision variables. By using a polynomial function, the 
location of a randomly generated solution set is pressed into 
the specific area of the objective space. With the flat function, 
the fitness landscape of the decision variables does not change 
in the specific interval (i.e., decision variables have the flat 



region). With the parameter dependent function, the fitness 
landscape of the decision variables is changed depending on 
the other decision variables. The shift functions change the 
optimal value of the decision variables. Constructed test 
problems become uni-modal problems with the linear function 
and multi-modal problems with the multi-modal function. With 
the deceptive function, constructed test problems can be 
considered as deceptive problems whose objective values 
significantly deteriorate around the optimal values of decision 
variables. The reduction functions are used for reducing the 
arbitrary number n of decision variables to the number of 
underlying variables M. Decision variables have dependencies 
on each other using the non-separable function, whereas there 
is no dependency with the weighted sum function.  

The shape functions hm determine the shape of the Pareto 
front. The general shape of the Pareto front can be freely 
selected among Linear, Convex, and Concave functions. In 
addition, there are combinational shape functions which 
determine disconnected or mixed feature of the Pareto front. In 
other words, the total number of the shapes of the Pareto front 
is nine such as Linear, Convex, Concave, Linear-mixed, 
Convex-mixed, Concave-mixed, Linear-disc, Convex-disc, and 
Concave-disc. By selecting one among these shapes, it is 
possible to change the shape of the Pareto front of the problems 
constructed. 

IV. PROBLEM GENERATION BASED ON META-
OPTIMIZATION 

In this section, we describe the detail of the test problem 
generation using a meta-optimization technique. For generation 
of the test problem, functions determining the features of the 
WFG toolkit are combined. Corresponding to the selected 
functions, the characteristics of the obtained problem are 
clearly shown. The characteristics of the problem used in meta-
optimization are summarized in Table I. In some of the 
transformation functions, control parameters are employed to 
determine the detail feature of their characteristic. In this paper, 
the same settings are used as in WFG 1-9. The effect of these 
control parameters is discussed in Section V-C. 

To construct a test problem, one function is chosen from 
each category of the characteristics. For example, when the 
problem includes linear function, polynomial function, and 
weighted sum function, the constructed test problem has a 
polynomial bias and a uni-modal property. When all Sm are 
fixed to 1 and the concave function is used for hm, the problem 
has concave Pareto front and each objective function is the 
same scale. The size of the meta-optimization search space is 3 
× 5 × 3 × 2 × 9 = 810. 

Next, we describe the detail of fitness evaluation in the 
meta-optimization. In the meta-optimization of this paper, an 
EMO algorithm and its competitor algorithms are utilized for a 
fitness evaluation. The tuner tries to generate test problems so 
that the target algorithm is disadvantageous or advantageous 
among the algorithms. Let us assume the tuner tries to generate 
a disadvantageous test problem for the target algorithm A 
among its competitor algorithms B, C, D. That is, the obtained 
test problem is relatively a difficult problem for A. In order to 
calculate a fitness value from the results of the execution of 

algorithms, hypervolume is used as the quality indicator. The 
fitness value in the meta-optimization is determined as follows. 

Minimize     fitness = Rank(A) + HVn(A), (4) 

where Rank(A) is the ranking of A among its competitor 
algorithms B, C, D. For example, when HV(B) > HV(A) > 
HV(C) > HV(D) holds, where HV(A) means the hypervolume 
value obtained from algorithm A, Rank(A) is calculated as 3. 
The second measure HVn(A) means a normalized hypervolume 
as follows. 
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It should be noted that this fitness evaluation is noisy 
because a different hypervolume value is obtained from a 
different run of the same algorithm. The number of executions 
to evaluate its performance is an important issue for the 
efficient optimization. That is, when the fitness evaluation is 
based on the outcomes of single runs the search space of the 
meta-optimization could be very noisy. On the other hand, 
enormous calculation times are required to calculate the fitness 
evaluation on the basis of large number of executions. 

TABLE I.  PROBLEM FEATURES AND RELATED FUNCTIONS. 

Category of the
characteristics

Characteristics Function definition

Modality

Uni-modal
Linear function in 
WFG1

Multi-modal
Multi-modal function in 
WFG4

Deceptive
Deceptive function in 
WFG5

Bias

-- Bias function is Unused

Polynomial
Polynomial function in 
WFG1

Flat Flat function in WFG1

PositionToDsitance
Parameter Dependent 
function in WFG7

DsitanceToPosition
Parameter Dependent 
function in WFG8

Scaling
Same
Double
Exponential

Sm = 1
Sm = 2m
Sm = 10m

Separability

Separable
Weighted sum function 
in WFG1

Non-separable
Non-separable function 
in WFG6

Geometry of the
Pareto front (hm)

Linear
Convex
Concave
Linear-mixed
Convex-mixed
Concave-mixed
Linear-disc
Convex-disc
Concave-disc

linear1:M

convex1:M

concave1:M

linear1:M-1 and mixedM

convex1:M-1 and mixedM

concave1:M-1 and mixedM

linear1:M-1 and discM

convex1:M-1 and discM

concave1:M-1 and discM
 



In order to handle this problem, some tuners have 
mechanisms that adaptively estimate the number of runs used 
for the fitness evaluation for each test problem. In this paper, 
we use SMAC [10] as the tuner of the meta-optimization. 
SMAC is one of the most famous approaches for algorithm 
configuration. SMAC has a mechanism that automatically 
selects how many runs are needed for the fitness evaluation. As 
already mentioned in Section II, existing algorithm 
configuration tuners can be used for the tuner in our automatic 
problem generation method. We show an outline of our 
problem generation in Fig. 2. 

Execution of algorithms
SMAC

Creating test problem

New test problem

Environment for meta-optimization

Algorithm A
Linear, Flat, 

& Non-separable Algorithm B
Algorithm C

WFG toolkit
Functions

Feedback of the results for test problem

HV(A), HV(B), HV(C), HV(D)

Algorithm D

 
Fig. 2. An outline of the meta-optimization for the test problem generation. 

V. COMPUTATIONAL EXPERIMENTS 

In this section, we demonstrate the meta-optimization based 
problem generation through computational experiments on the 
following six well-known EMO algorithms.  

NSGA-II [1]: 
NSGA-II is one of the most frequently-used Pareto 
dominance-based EMO algorithms. Its fitness evaluation is 
based on a rank assignment mechanism and a secondary 
measure for diversity maintenance called “crowding 
distance”. 

MOGLS [2]: 
MOGLS is the hybrid version of NSGA-II with weighted 
sum-based local search. The local search is utilized to 
enhance the search performance of NSGA-II. 

NSGA-III [3]: 
NSGA-III is also a Pareto dominance-based EMO 
algorithm. The secondary measure of NSGA-II (i.e., 
crowding distance) is replaced with the solution assignment 
to reference points in the normalized objective space. This 
modification enhances the diversity handling performance 
of NSGA-II. 

MOEA/D [4]: 
MOEA/D is an efficient scalarizing function-based EMO 
algorithm. A multi-objective problem is decomposed into a 
number of single-objective problems. Each single-objective 
problem is defined by the scalarizing function with a 
different weight vector. A single solution is used for the 
optimization on each single-objective problem and 
solutions are handled in a collaborative manner. 

MOEA/D-DE [5]: 
MOEA/D-DE is a variant of MOEA/D that replaces the 
recombination schemes in MOEA/D with the differential 
evolution (DE) operator.  

SMPSO [6]: 
SMPSO is an EMO algorithm based on the particle swarm 
optimization. For the maintenance of an external archive, 
the rank assignment mechanism is utilized. 

A. Algorithm Comparison on WFG1-WFG8 

First of all, the performance of the six algorithms is 
compared on WFG1-WFG8 with 2 and 6 objectives. The 
number of position-related variables and distance-related 
variables is specified as k = 18 and l = 5. We use the following 
parameter specifications in all the six EMO algorithms: 

Termination condition: 500 generations,  
Crossover probability: 1.0, 
Mutation probability: 1/n  (n: # of decision variables), 
Population size: 100 for 2 objectives, 120 for 6 objectives. 

These specifications of the population size are based on the 
combinatorial nature of the possible number of weight vectors 
in MOEA/D. In our study, the simulated binary crossover [19] 
(SBX) and the polynomial mutation [20] (PM) are used  for 
NSGA-II, MOGLS, NSGA-III, and MOEA/D. In MOEA/D-
DE and SMPSO, their own reproduction methods are used. 
Their distribution indices are specified as 15 for SBX and 20 
for PM. In MOEA/D and MOEA/D-DE, we use the 
Tchebycheff function for scalarizing function. Other control 
parameters in each algorithm are used the same settings as in 
their original papers. 

We show the average hypervolume values over 20 runs in 
Tables II and III. We used the worst values of each objective 
function as the reference point for the hypervolume calculation. 
In Table IV, the characteristics of WFG1-WFG8 are 
summarized. In Table II and Table III, we can observe the 
performances of MOEA/D are deteriorated in most of all two-
objective WFG problems whereas MOEA/D, MOEA/D-DE, 
and SMPSO are deteriorated in six-objective problems. 
However, it is difficult to discuss their advantages and 
disadvantages related to the characteristics of WFG1-WFG8. 
As summarized in Table IV, there are many problems which 
have the same characteristics. For example, the modalities of 
WFG1-WFG3 and WFG6-WFG8 are uni-modal. The shapes of 
the Pareto front are concave in WFG4-WFG8. Especially, the 
same setting (i.e., double) is used for the scaling among 
objective functions in WFG1-WFG8. 

B. Test Problems Generated by Meta-optimization 

Next, we generate two-objective and six-objective 
problems that have the disadvantageous characteristics for a 
particular target algorithm by meta-optimization. That is, the 
obtained hypervolume value of a target algorithm is relatively 
deteriorated in the generated test problem. For its competitor 
algorithms, the other five algorithms are used.  

Termination condition of SMAC is set to 1000 solution 
evaluations. The number of solution evaluations is larger than 
the size of the meta-optimization solution space (i.e., 810). 
This is because the fitness evaluation based on the single 
algorithm runs is treated as a single solution evaluation in 
SMAC. In order to decrease negative effects of the noisy 
fitness evaluation, each test problem is re-evaluated by SMAC 
mechanism. 



TABLE II.  OBTAINED HYPERVOLUME ON WFG1-WFG8 WITH 2 OBJECTIVES. THE WORST RESULTS ON EACH PROBLEM ARE SHOWN IN BOLD. 

Problem NSGA-II MOGLS NSGA-III MOEA/D MOEA/D-DE SMPSO 

WFG1 7.21 6.16 7.34 4.61 9.64 10.45 

WFG2 9.25 9.26 9.26 9.09 9.25 11.45 

WFG3 10.42 10.82 10.29 10.14 10.46 10.94 

WFG4 7.82 8.53 7.83 8.29 8.26 8.54 

WFG5 7.69 8.07 7.68 7.77 7.82 8.04 

WFG6 7.73 7.95 7.71 7.38 8.18 8.52 

WFG7 6.41 8.1 6.31 6.44 7.08 8.67 

WFG8 6.35 7.51 6.18 5.72 6.88 8.36 

TABLE III.  OBTAINED HYPERVOLUME ON WFG1-WFG8 WITH 6 OBJECTIVES. THE WORST RESULTS ON EACH PROBLEM ARE SHOWN IN BOLD. 

Problem NSGA-II MOGLS NSGA-III MOEA/D MOEA/D-DE SMPSO 

WFG1 1.16E+05 6.41E+04 1.03E+05 1.11E+05 1.25E+05 5.00E+04 

WFG2 1.34E+05 1.09E+05 1.13E+05 1.08E+05 1.19E+05 1.33E+05 

WFG3 9.13E+04 9.14E+04 8.57E+04 7.29E+04 7.22E+04 9.05E+04 

WFG4 6.31E+04 8.30E+04 1.02E+05 6.13E+04 7.68E+04 8.81E+04 

WFG5 6.99E+04 8.39E+04 1.06E+05 7.18E+04 5.42E+04 5.91E+04 

WFG6 7.88E+04 8.21E+04 1.06E+05 6.98E+04 5.82E+04 8.08E+04 

WFG7 7.38E+04 8.80E+04 1.03E+05 5.97E+04 4.85E+04 9.37E+04 

WFG8 6.49E+04 6.80E+04 8.61E+04 4.08E+04 4.54E+04 7.82E+04 

TABLE IV.  THE CHARACTERISTICS OF WFG1-WFG8. 

Problem Modality Bias Separability Scaling Geometry 

WFG1 Uni-modal Polynomial, Flat Separable Double Convex-mixed 

WFG2 Uni-modal - Non-separable Double Convex-disc 

WFG3 Uni-modal - Non-separable Double Linear, Degenerate 

WFG4 Multi-modal - Separable Double Concave 

WFG5 Deceptive - Separable Double Concave 

WFG6 Uni-modal - Non-separable Double Concave 

WFG7 Uni-modal PositionToDsitance Separable Double Concave 

WFG8 Uni-modal DsitanceToPosition Separable Double Concave 

 

The characteristics of obtained test problems are showed 
in Tables V, VI. Obtained hypervolume values of the six 
EMO algorithms on each test problem are also summarized in 
Tables VII, VIII. The obtained test problem is referred to as 
TargetAlgorithmMin (e.g., NSGA-IIMin means an obtained test 
problem that has the disadvantageous characteristics for 
NSGA-II). Each test problem shown in Tables V-VIII is the 
best results (i.e., best fitness value) over 5 times of the meta-
optimization trials.  

As shown in Tables V, VI, a wide variety of test problems 
are generated. Although the parameter settings of each 
function for the test problem generation are picked from 
WFG1-WFG8, the obtained test problems have totally 
different characteristics from WFG1-WFG8. In Tables VII, 
VIII, the worst results on each test problem are highlighted in 
bold. In Tables VII, VIII, we can observe that the worst 

results on each test problem are obtained by its target 
algorithm (e.g., NSGA-II shows the worst results on NSGA-
IIMin). These results show that the test problems which are 
difficult for their target algorithms are successfully obtained 
through meta-optimization. 

In Tables V, VI, the characteristics obtained by four or 
five trials are highlighted by gray. When we focus on the 
category of characteristics, we can say that the same 
disadvantageous characteristics are obtained for the bias, 
separability, and scaling functions in almost all trials. This 
observation suggests that these three characteristics play the 
principal role for the comparison among the six EMO 
algorithms.  

In Figs. 3-6, we show the obtained results of the six 
algorithms on NSGA-IIIMin, MOEA/DMin, MOEA/D-DEMin 
and SMPSOMin. In Figs. 3-6, each objective values are 



normalized using the worst Pareto-optimal objective values. 
The randomly generated solutions are also shown in black 
circles. 

From the comparison of Figs. 3, 4 and Figs. 5, 6, we can 
observe that the diversity of the randomly generated initial 
populations has a large influence on the performance of the 
EMO algorithms. As we explained in Section III, a randomly 
generated solution set is pressed into the specific area of the 
objective space of the problems including the polynomial bias. 
Both NSGA-IIIMin and MOEA/DMin include polynomial bias 
functions. In Fig. 4, the performance of NSGA-II, MOGLS, 
NSGA-III and MOEA/D are deteriorated. The SBX crossover 
and the polynomial mutation are used for the reproduction in 
these EMO algorithms. This may suggest the efficiency of the 
reproduction operators of MOEA/D-DE and SMPSO (i.e., the 

differential evolution operator and the particle swarm 
opmitization-based recombination mechanism). 

In Fig. 5, the obtained results of the six algorithms on 
MOEA/D-DEMin are shown. From Fig. 5-(d) and Fig. 5-(e), 
the obtained solutions from scalarizing function-based EMO 
algorithm are biased in the first objectives. This is because 
each objective values are directory used in the scalarizing 
function. As shown in Table V, the exponential function is 
used for the scaling function of MOEA/D-DEMin. That is, 
there is the large difference of the scaling among objective 
functions. The differences of scaling of MOEA/DMin and 
MOEA/D-DEMin are double or exponential in both two- and 
six-objectives. In order to obtain uniformity distributed 
solutions, some normalization technique handling the 
difference of the scaling among objective functions is needed. 

TABLE V.  THE CHARACTERISTICS OF GENERATED TWO-OBJECTIVE PROBLEMS. 

Problem Modality Bias Separability Scaling Geometry 

NSGA-IIMin Multi-modal Flat Separable Double Concave 

MOGLSMin Multi-modal PositionToDistance Non-separable Double Concave 

NSGA-IIIMin Multi-modal Polynomial Non-separable Exponential Convex-mixed 

MOEA/DMin Deceptive Polynomial Non-separable Exponential Convex-disc 

MOEA/D-DEMin Multi-modal PositionToDistance Separable Exponential Concave 

SMPSOMin Multi-modal PositionToDistance Separable Same Convex 

TABLE VI.  THE CHARACTERISTICS OF GENERATED SIX-OBJECTIVE PROBLEMS. 

Problem Modality Bias Separability Scaling Geometry 

NSGA-IIMin Deceptive Polynomial Separable Double Convex-disc 

MOGLSMin Multi-modal -- Non-separable Same Concave-disc 

NSGA-IIIMin Uni-modal Polynomial Non-separable Double Concave 

MOEA/DMin Multi-modal DistanceToPosition Separable Exponential Concave-mixed 

MOEA/D-DEMin Uni-modal PositionToDistance Separable Double Concave-mixed 

SMPSOMin Multi-modal PositionToDistance Separable Same Concave 

TABLE VII.  OBTAINED HYPERVOLUME ON GENERATED TWO-OBJECTIVE PROBLEMS. THE WORST RESULTS ON EACH PROBLEM ARE SHOWN IN BOLD. 

Problem NSGA-II MOGLS NSGA-III MOEA/D MOEA/D-DE SMPSO 

NSGA-IIMin 7.77 8.50 7.80 8.29 8.25 8.26 

MOGLSMin 7.96 7.49 7.99 7.60 7.98 8.25 

NSGA-IIIMin 414.14 701.28 217.64 595.86 701.75 742.94 

MOEA/DMin 219.23 219.17 219.22 218.69 629.55 661.65 

MOEA/D-DEMin 314.40 307.90 315.17 302.03 301.71 315.49 

SMPSOMin 3.76 3.72 3.74 3.71 3.71 3.65 

TABLE VIII.  OBTAINED HYPERVOLUME ON GENERATED SIX-OBJECTIVE PROBLEMS. THE WORST RESULTS ON EACH PROBLEM ARE SHOWN IN BOLD. 

Problem NSGA-II MOGLS NSGA-III MOEA/D MOEA/D-DE SMPSO 

NSGA-IIMin 4.88E+04 1.19E+05 1.04E+05 1.15E+05 1.29E+05 1.35E+05 

MOGLSMin 54.05 49.19 52.45 49.45 54.31 52.55 

NSGA-IIIMin 1.89E+04 2.59E+04 1.07E+04 2.86E+04 8.07E+04 1.09E+05 

MOEA/DMin 6.01E+20 6.15E+20 8.02E+20 2.37E+20 5.16E+20 6.92E+20 

MOEA/D-DEMin 8.14E+04 9.66E+04 1.11E+05 6.34E+04 5.04E+04 7.78E+04 

SMPSOMin 57.57 59.68 59.47 59.91 58.41 51.91 
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Fig. 3. Obtained results on the two-objective NSGA-IIIMin. 
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Fig. 4. Obtained results on the two-objective MOEA/DMin. 
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Fig. 5. Obtained results on the two-objective MOEA/D-DEMin. 
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Fig. 6. Obtained results on the two-objective SMPSOMin. 

C. Discussion about the Functions Determining the Features 
of the WFG Problem 

In this paper, the functions determining the features of the 
WFG problem are utilized for the test problem generation. In 
order to avoid complex combinations, these functions are 
picked from WFG1-WFG8. For example, the parameter 
setting of the polynomial bias function is used the same 
setting as in WFG1 as shown in Table I. However some of 
these parameters settings have large relationship with the 
characteristics of test problems. For discussing about the 
effect of the parameter setting of the functions, we examine 
the three different parameter settings of the flat function. The 
flat function can be specified as follows: 
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where t is the input decision variables and A, B, C are control 
parameters. Values of t between B and C are mapped to A. 
That is, the values of B and C define the width of the flat 
region of decision variables. We compare following three 
settings for the flat function in two-objective NSGA-IIMin: 

(i) A = 0.8, B = 0.8, C = 0.8 (no flat region), 
(ii) A = 0.8, B = 0.75, C = 0.85 (the same setting in WFG1), 
(iii) A = 0.8, B = 0.25, C = 0.95. 

We show the fitness landscapes of the flat function with 
the settings (ii) and (iii) in Fig. 7. The obtained results for the 
three settings are summarized in Fig. 8. From Fig. 7, we can 
observe that problems have a larger flat region in the setting 
(iii) compare with the setting (ii). Because of a larger flat 
region, two-objective NSGA-IIMin with the setting (iii) can be 
considered as a more difficult problem than one with the 
setting (ii). In Fig. 8, we can observe the clear performance 
deterioration of both algorithms in the setting (iii). This 
observation suggests the importance of the appropriate 
parameter setting of the functions of WFG toolkit. 



0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

0.0

b_
fla

t(
t)

t
0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

0.0

b
_f

la
t(

t)

t  
(a)  Setting (ii)                                           (b) Setting (iii) 

Fig. 7. The fitness landscapes of the flat function with two settings. 
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Fig. 8. Obtained results on the three different settings of the two-objective 
NSGA-IIMin. 

VI. CONCLUSIONS 

In this paper, we examined the effectiveness of the 
automatic test problem generation based on meta-optimization. 
From the computational experiments, we observed that our 
meta-optimization method successfully obtained test problems 
which have the disadvantageous characteristics for their target 
algorithms. For the generation of test problems, we combined 
functions determining the features of the WFG problem. 
Although the parameter settings of each function are picked 
from WFG1-WFG8, the obtained test problems from meta-
optimization have totally different characteristics from WFG1-
WFG8. These test problems can be utilized for the touchstone 
against a development of a more robust algorithm in the future.  

In our meta-optimization approach for generating test 
problems, there is high flexibility in the definition of a fitness 
calculation and how to create candidate test problems. For the 
fitness calculation, hypervolume is used as the quality 
indicator in this study. Other quality indicators such as IGD are 
also utilized for the fitness evaluation. The influence of the 
fitness evaluation in meta-optimization is an interesting future 
research topic. It is also an interesting future research topic that 
each objective function is designed by the other techniques 
such as a genetic programming. As discussed in Section V-C, 
the characteristics of obtained test problems from meta-
optimization depend on the scope of problems which can be 
generated. One important issue we did not discuss in this paper 
is the relationship between the generated test problems and 
actual problems faced in practice. It is also an interesting 
future research topic that generating a simple test problem that 
has a same feature of the actual problem. 
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