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Abstract—Recently it has been pointed out in many studies that 
evolutionary multi-objective optimization (EMO) algorithms with 
Pareto dominance-based fitness evaluation do not work well on 
many-objective problems with four or more objectives. In this 
paper, we examine the behavior of well-known and frequently-
used EMO algorithms such as NSGA-II, SPEA2 and MOEA/D on 
many-objective problems with correlated or dependent objectives. 
First we show that good results on many-objective 0/1 knapsack 
problems with randomly generated objectives are not obtained 
by Pareto dominance-based EMO algorithms (i.e., NSGA-II and 
SPEA2). Next we show that the search ability of NSGA-II and 
SPEA2 is not degraded by the increase in the number of 
objectives when they are highly correlated or dependent. In this 
case, the performance of MOEA/D is deteriorated. As a result, 
NSGA-II and SPEA2 outperform MOEA/D with respect to the 
convergence of solutions toward the Pareto front for some many-
objective problems. Finally we show that the addition of highly 
correlated or dependent objectives can improve the performance 
of EMO algorithms on two-objective problems in some cases.  

Keywords: Evolutionary multi-objective optimization (EMO); 
many-objective optimization problems; multi-objective 0/1 knapsack 
problems; correlated objectives; independent objectives. 

I. INTRODUCTION 
Evolutionary many-objective optimization is a hot issue in 

the field of evolutionary multi-objective optimization (EMO 
[4], [6], [23]). Whereas well-known and frequently-used Pareto 
dominance-based EMO algorithms (e.g., NSGA-II [7], SPEA 
[29] and SPEA2 [28]) work well on multi-objective problems 
with two or three objectives, they often do not work well on 
many-objective problems with four or more objectives. That is, 
their search ability is severely deteriorated by the increase in 
the number of objectives as pointed out in the literature [11], 
[17], [19], [30]. This is because almost all solutions in the 
current population become non-dominated with each other. As 
a result, strong selection pressure toward the Pareto front 
cannot be generated by Pareto dominance-based fitness 
evaluation mechanisms. This means that good solutions close 
to the Pareto front of a many-objective problem are not likely 
to be obtained by Pareto dominance-based EMO algorithms. 

Various approaches have been proposed to the handling of 
many-objective problems by EMO algorithms in the literature 

[15]. Those approaches can be categorized as follows: 

(1) Dimensionality reduction [2], [3], [8], 
(2) Preference incorporation [9], [10], [24], 
(3) Selection pressure enhancement [5], [16], [18], [20], [22], 
(4) Different fitness evaluation schemes [1], [12], [25]-[27]. 

Approaches in the “dimensionality reduction” category try 
to decrease the number of objectives by removing unnecessary 
objectives. If we can decrease the number of objectives in a 
many-objective problem to two or three, EMO algorithms may 
work well on the reduced problem with two or three objectives. 
Approaches in the “preference incorporation” category use a 
decision maker’s preference to realize efficient multi-objective 
search by concentrating on preferred regions of the Pareto front. 
The “selection pressure enhancement” category includes 
various proposals for increasing the selection pressure toward 
the Pareto front. Approaches in the last category do not use 
Pareto dominance for fitness evaluation. Hypervolume and 
scalarizing functions have been used for fitness evaluation.  

A general process of dimensionality reduction approaches 
[2], [3], [8] can be written as the following three steps: 

Step 1: Search for a large number of non-dominated solutions 
of a many-objective problem using an EMO algorithm. 

Step 2: Decrease the number of objectives using the obtained 
non-dominated solutions in Step 1. 

Step 3: Apply an EMO algorithm to the reduced problem. 

One question about this dimensionality reduction process is 
the quality of non-dominated solutions obtained by an EMO 
algorithm in Step 1. In general, EMO algorithms do not work 
well on many-objective problems. Thus it is not likely that the 
non-dominated solutions in Step 1 are close to the Pareto front. 
However, good results of dimensionality reduction have often 
been reported in the literature. There may be the following 
three possibilities: 

Possibility 1: The quality of obtained non-dominated solutions 
in Step 1 is good when only a few objectives are important. 

Possibility 2: Dimensionality reduction approaches work well 
even if the quality of obtained non-dominated solutions is 
not high (i.e., even if they are not close to the Pareto front). 

Possibility 3: Both of the possibilities 1 and 2. 

This study is motivated by the first possibility “The quality 
of obtained non-dominated solutions in Step 1 is good when This work was supported in part by JSPS under Grant-in-Aid for Scientific 

Research (B) (20300084). 



 

 

only a few objectives are important.” This possibility has 
already been suggested in some studies on many-objective 
problems. For example, it is shown in [14] that distance 
minimization problems to multiple points in a two-dimensional 
decision space [13], [18], [22] can be handled by Pareto 
dominance-based EMO algorithms even when the number of 
objectives is four or more. In Fig. 1, we show experimental 
results of NSGA-II on distance minimization problems with 
four and eight objectives. Each plot in Fig. 1 shows all 
solutions in the final population of a single run of NSGA-II. 
NSGA-II was applied to each problem under the same 
conditions as in our former study [14] such as the population 
size 200 and the termination condition of 400,000 solution 
evaluations. Good results were obtained in both plots in Fig. 1 
independent of the number of objectives. 

 

x1

x2
100

50

100500

A

BC

D

 x1

x2
100

50

100500

A

CG

E

B

D

H

F

 
(a) Four-objective problem.      (b) Eight-objective problem.   

Figure 1. All solutions at the final generation of a single run of NSGA-II on 
four-objective and eight-objective distance minimization problems. All points 
inside the square in (a) and the octagon in (b) are Pareto optimal.  

 
Recently, Schutze et al. [21] suggested that the increase in 

the number of objectives does not necessarily make multi-
objective problems more difficult when the dimensionality of 
the Pareto front is not increased. This feature was demonstrated 
through computational experiments on multi-objective distance 
minimization problems in a high-dimensional decision space. 
In this paper, we demonstrate that the increase in the number of 
objectives does not necessarily increase the difficulty of multi-
objective 0/1 knapsack problems when highly correlated or 
dependent objectives are added. Moreover, we also show that 
the inclusion of those objectives can improve the performance 
of EMO algorithms on two-objective problems in some cases. 

This paper is organized as follows. In Section II, we explain 
how to generate many-objective test problems with random, 
correlated and dependent objectives from the two-objective 
500-item 0/1 knapsack problem of Zitzler and Thiele [29]. Our 
test problems are many-objective knapsack problems with up 
to ten objectives. In Section III, we report experimental results 
of NSGA-II [7], SPEA2 [28] and MOEA/D [26] on our test 
problems. Finally we conclude this paper in Section IV. 

II. TEST PROBLEMS 

A. Two-Objective 0/1 Knapsack Problem 
We generate our test problems from the two-objective 500-

item 0/1 knapsack problem in Zitzler and Thiele [29]. Their 
two-objective n-item 0/1 knapsack problem is written as  

  Maximize ))(),(()( 21 xxxf ff= ,     (1) 

  subject to ∑ ≤
=

n

j
ijij cxw

1
,  2,1=i ,    (2) 

      =jx 0 or 1, nj ...,,2,1= ,   (3) 

  where ∑=
=

n

j
jiji xpf

1
)(x ,  2,1=i .   (4) 

In this formulation, x is an n-dimensional binary vector, pij 
is the profit of item j according to knapsack i, wij is the weight 
of item j according to knapsack i, and ci is the capacity of 
knapsack i. Each solution x is handled as a binary string of 
length n in EMO algorithms. In our computational experiments, 
the number of items is always 500 (i.e., n = 500). The two-
objective 500-item 0/1 knapsack problem of Zitzler and Thiele 
[29] is referred to as the 2-500 problem in this paper.  

In the execution of EMO algorithms on the 2-500 problem, 
infeasible solutions are often generated by genetic operations. 
Infeasible solutions are also included in a randomly generated 
initial population. In order to transform an infeasible solution 
into a feasible one, we use the same greedy repair method 
based on the maximum profit/weight ratio as in Zitzler and 
Thiele [29]. That is, we remove items from an infeasible 
solution in an ascending order of the following value of each 
item j until the constraint conditions in (2) are satisfied:  

  }2,1|max{ == iwpq ijijj , 500...,,2,1=j .  (5) 

We always use an ascending order of qj in (5) in our 
computational experiments on all test problems in this paper. 

In the 2-500 problem, the profit pij of each item j for each 
objective i was randomly specified as an integer in the interval 
[10, 100] in Zitzler and Thiele [29]. As a result, the 2-500 
problem has a wide Pareto front with a large number of Pareto 
optimal solutions as shown in Fig. 2 where we also show 
randomly generated 200 solutions for comparison. 
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Figure 2. Pareto optimal solutions and randomly generated 200 solutions of the 
2-500 problem. 

B. Many-Objective Problems with Random Objectives 
By randomly specifying the profit pij of each item j for each 

objective i as an integer in the interval [10, 100], we generated 
other eight objectives: 
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=

n
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jiji xpf

1
)(x ,  10...,,4,3=i .    (6) 

In our computational experiments, we use the following 
many-objective problems with randomly generated objectives: 

 Random 4-500 problem: ))(...,),(),(( 421 xxx fff , 
 Random 6-500 problem: ))(...,),(),(( 621 xxx fff , 
 Random 8-500 problem: ))(...,),(),(( 821 xxx fff , 
 Random 10-500 problem: ))(...,),(),(( 1021 xxx fff , 

where all objectives are maximized. The constraint conditions 
in (2) of the 2-500 problem are used in all test problems. 

C. Many-Objective Problems with Correlated Objectives 
Using the randomly generated ten objectives in the previous 

subsection, we generated ten correlated objectives as follows: 

  )()( xx ii fg = ,  2,1=i ,      (7) 

  )()1()()( 1 xxx ffg ii ⋅−+⋅= αα ,  9,7,5,3=i , (8) 

  )()1()()( 2 xxx ffg ii ⋅−+⋅= αα ,  4,6,8,10i = , (9) 

where α is a small positive real number (0 < α < 1). 

These ten objectives can be divided into two groups: {g1(x), 
g3(x), g5(x), g7(x), g9(x)} and {g2(x), g4(x), g6(x), g8(x), 
g10(x)}. When α is close to 1, gi(x) in (8)-(9) is almost the 
same as the randomly generated objective fi(x). When α is 
close to 0, all objectives in the first group are almost the same 
as f1(x) while all objectives in the second group are almost the 
same as f2(x). In our computational experiments, we examine 
the following problems for α = 0.1: 

 Correlated 4-500 problem: ))(...,),(),(( 421 xxx ggg , 
 Correlated 6-500 problem: ))(...,),(),(( 621 xxx ggg , 
 Correlated 8-500 problem: ))(...,),(),(( 821 xxx ggg , 
 Correlated 10-500 problem: ))(...,),(),(( 1021 xxx ggg . 
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Figure 3. The randomly generated 200 solutions in Fig. 2, which are shown in a 
two-dimensional objective space with g1(x) and g3(x) for α = 0.1 in this figure. 

 
In Fig. 3, we show the projection onto the two-dimensional 

space with g1(x) and g3(x) for α = 0.1 of the randomly 

generated 200 solutions in Fig. 2. That is, Fig. 3 is the 
projection of all the random solutions in Fig. 2 from the f1(x)-
f2(x) space to the g1(x)-g3(x) space with α = 0.1. We can see 
from Fig. 2 and Fig. 3 that g1(x) and g3(x) are highly correlated. 

D. Many-Objective Problems with Dependent Objectives 
We also generated dependent objectives from the original 

two objectives f1(x) and f2(x) of the 2-500 problem as follows: 

  )()( xx ii fh = ,  2,1=i ,           (10) 
  )()()( 213 xxx ffh ⋅+= α ,          (11) 
  )()()( 124 xxx ffh ⋅+= α ,          (12) 
  )()()( 215 xxx ffh ⋅−= α ,          (13) 
  )()()( 126 xxx ffh ⋅−= α ,          (14) 
  )()()( 217 xxx ffh ⋅+= β ,          (15) 
  )()()( 128 xxx ffh ⋅+= β ,          (16) 
  )()()( 219 xxx ffh ⋅−= β ,          (17) 
  )()()( 1210 xxx ffh ⋅−= β ,          (18) 

where α and β are small positive real numbers (0 < α < β < 1).  

These ten objectives can be divided into two groups: {h1(x), 
h3(x), h5(x), h7(x), h9(x)} and {h2(x), h4(x), h6(x), h8(x), 
h10(x)}. When α and β are very small (i.e., close to 0), all 
objectives in the first group are very similar to f1(x) while all 
objectives in the second group are very similar to f2(x). In our 
computational experiments, α = 0.1 and β = 0.2 are used.  

In the same manner as the correlated k-500 problems in the 
previous subsection, we specify dependent k-500 problems for 
k = 4, 6, 8, 10 using h1(x), h2(x), ..., h10(x). 

In Fig. 4, we show the projections of Fig. 2 onto the two-
dimensional space with h1(x) and h3(x) for α = 0.1. All the 
randomly generated 200 solutions and the Pareto optimal 
solutions in Fig. 2 with f1(x) and f2(x) are mapped to Fig. 4 
with h1(x) and h3(x). We can see from Fig. 4 that h1(x) and 
h3(x) are highly correlated as g1(x) and g3(x) in Fig. 3. 
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Figure 4. The Pareto optimal solutions of the 2-500 problem and the randomly 
generated 200 solutions in Fig. 2, which are shown in a two-dimensional 
objective space with h1(x) and h3(x) for α = 0.1 in this figure. 



 

 

III. EXPERIMENTAL RESULTS 

A. EMO Algorithms and Parameter Specifications 
We examine the behavior of NSGA-II [7], SPEA2 [28] and 

MOEA/D [26] through computational experiments on our test 
problems with 2, 4, 6, 8 and 10 objectives. In MOEA/D, we do 
not use any external archive population for avoiding severe 
increase in computation load for many-objective problems.  

MOEA/D uses all weight vectors λ = (λ1, ..., λk) satisfying 
the following two conditions:  

  121 =+⋅⋅⋅++ kλλλ ,            (19) 

  ki
H
H

HHi ...,,2,1,...,,2,1,0 =
⎭
⎬
⎫

⎩
⎨
⎧∈λ ,        (20) 

where H is a user-definable positive integer. The number of 
weight vectors is calculated as N = H+ k−1Ck−1 [26] for a k-
objective problem. It should be noted that the number of weight 
vectors is the same as the population size in MOEA/D. 

NSGA-II, SPEA2 and MOEA/D are applied to each test 
problem using the following setting:  

Coding: Binary string of length 500, 
Termination condition: 400,000 solution evaluations, 
Crossover probability: 0.8 (Uniform crossover), 
Mutation probability: 1/500 (Bit-flip mutation), 
Population size in NSGA-II and SPEA2: 200, 
Integer H for the weight vector specification in MOEA/D: 
 199 (2-objective), 9 (4-objective), 5 (6-objective), 
 3 (8-objective), 3 (10-objective), 
Population size in MOEA/D: 
 200 (2-objective), 220 (4-objective), 252 (6-objective), 
 120 (8-objective), 220 (10-objective), 
Scalarizing function in MOEA/D: Weighted Tchebycheff, 
Neighborhood size in MOEA/D: 10 solutions. 

B. Performance Measures 
Hypervolume has been used for performance evaluation of 

EMO algorithms. However, its use for many-objective cases is 
not easy due to its heavy computation load. In this paper, we 
use some simple performance measures. Of course, we also use 
hypervolume for multi-objective problems with 2-6 objectives. 

At each generation, we calculate the maximum value of the 
sum of the objectives in the current population as follows: 

  ∑=Ψ
=Ψ∈

k

i
if

1
)(max)(MaxSum x

x
,          (21) 

where Ψ denotes the current population, and k is the number 
of the objectives in each test problem (k = 2, 4, 6, 8, 10). This 
measure evaluates the convergence of a population toward the 
Pareto front around its center region. 

We also calculate the sum of the maximum value of each 
objective at each generation as follows: 

  ∑
= Ψ∈

=Ψ
k

i
if

1
)(max)(SumMax x

x
.         (22) 

This measure evaluates the convergence of a population 
toward the optimal value of each objective in the Pareto front. 

The sum of the range of objective values of each objective 
is also calculated in each generation as follows: 

  ∑
= Ψ∈Ψ∈

−=Ψ
k

i
ii ff

1
])}({min)}({max[)(Range xx

xx
.    (23) 

This measure directly evaluates the diversity of a population 
in the objective space in each generation. 

We use these three simple measures because the meaning of 
each measure is easy to understand even for many-objective 
problems. Computational efficiency in their calculation is also 
their merit. Of course, each measure is too simple to rigorously 
discuss the performance of EMO algorithms. In this paper, we 
use these simple measures mainly for monitoring the behavior 
of each EMO algorithm rather than for rigorously comparing 
different EMO algorithms. 

C. Results on Randomly Generated Problems 
First we show average results over 100 runs of NSGA-II on 

the random 2-500, 4-500, 6-500, 8-500 and 10-500 problems. 
In this paper, we always report average results over 100 runs. 
In Fig. 5, we show the average percentage of non-dominated 
solutions at each generation. We can see from Fig. 5 that the 
increase in the number of objectives leads to the increase in the 
percentage of non-dominated solutions. Except for the 2-500 
problem with two objectives, almost all solutions in the current 
population became non-dominated within 100 generations. 
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Figure 5. Average percentage of non-dominated solutions at each generation of 
NSGA-II on the random k-500 knapsack problems (k = 2, 4, 6, 8, 10). 
 

Experimental results of NSGA-II on the random knapsack 
problems are summarized in Fig. 6. Fig. 6 (a) shows the 
average values of the normalized MaxSum. Normalization was 
performed so that the average value for the initial population of 
NSGA-II became 100. This normalization based on NSGA-II 
was also used for SPEA2 and MOEA/D. That is, all the 
performance measures on each test problem were normalized 
using the initial population of NSGA-II. In Fig. 6, we also 
show the normalized SumMax and the normalized Range. 

In the same manner as Fig. 6, we show experimental results 
of SPEA2 and MOEA/D in Fig. 7 and Fig. 8, respectively. The 
initial population of NSGA-II was used for normalization. 
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(a) Average normalized MaxSum measure at each generation.  

N
or

m
al

iz
ed

 S
um

M
ax

Number of Generations

2-500 4-500 6-500 8-500 10-500

1 10 100 1000

100

110

120

130

 
(b) Average normalized SumMax measure at each generation. 
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(c) Average normalized Range measure at each generation. 

Figure 6. Experimental results of NSGA-II on the randomly generated 2-500, 4-
500, 6-500, 8-500 and 10-500 knapsack problems. 

 
It should be noted in Fig. 8 that the number of generations 

of MOEA/D on each test problem with different population 
size is converted to the equivalent one in the case of population 
size 200 in terms of the number of examined solutions. 

In Fig. 6 (a), we can observe that the increase in the number 
of objectives slowed down the convergence toward the center 
region of the Pareto front. Convergence improvement in Fig. 6 
(a) was very slow after the 100th generation where almost all 
solutions in the current population were non-dominated except 
for the case of the 2-500 problem as shown in Fig. 5. From the 
comparison between Fig. 5 and Fig. 6 (c), we can see that the 
diversity of a population started to increase when almost all 
solutions in the current population became non-dominated. 
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(a) Average normalized MaxSum measure at each generation.  
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(b) Average normalized SumMax measure at each generation. 
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(c) Average normalized Range measure at each generation. 

Figure 7. Experimental results of SPEA2 on the randomly generated 2-500, 4-
500, 6-500, 8-500 and 10-500 knapsack problems. 

 
In Fig. 6 (b), the convergence toward the optimal value of 

each objective continued to improve over 2000 generations 
thanks to the diversity improvements shown in Fig. 6 (c). 

Similar results were obtained by NSGA-II and SPEA2 in 
Fig. 6 and Fig. 7. These two algorithms, however, showed 
different diversity improvement behavior (see Fig. 6 (c) and 
Fig. 7 (c)). The behavior of MOEA/D in Fig. 8 was different 
from NSGA-II and SPEA2. We can observe better results by 
MOEA/D in Fig. 8 (b) with respect to SumMax than NSGA-II 
in Fig. 6 (b) and SPEA2 in Fig. 7 (b). In Table I, these three 
algorithms are compared using the hypervolume measure. The 
origin of the objective space (e.g., (0, 0) for the 2-500 problem) 
was used as the reference point in hypervolume calculation.  
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(a) Average normalized MaxSum measure at each generation. 
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(b) Average normalized SumMax measure at each generation. 
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(c) Average normalized Range measure at each generation.  

Figure 8. Experimental results of MOEA/D on the randomly generated 2-500, 
4-500, 6-500, 8-500 and 10-500 knapsack problems. 

 
TABLE I. AVERAGE HYPERVOLUME AND STANDARD DEVIATION ON RANDOM 
TEST PROBLEMS. STANDARD DEVIATION IS IN PARENTHESES. 

Test Problem NSGA-II SPEA2 MOEA/D 

Original 2-500 3.800E+08 
(1.608E+06) 

3.788E+08 
(1.378E+06) 

4.009E+08 
(1.009E+06)

Random 4-500 1.231E+17 
(8.996E+14) 

1.218E+17 
(7.245E+14) 

1.436E+17 
(7.101E+14)

Random 6-500 3.746E+25 
(4.064E+23) 

3.557E+25 
(3.790E+23) 

4.530E+25 
(3.588E+23)

 
In Table I, the best results were obtained by MOEA/D. The 

increase in the number of objectives seems to increase the 
advantage of MOEA/D over NSGA-II and SPEA2 in Table I. 

D. Results on the Correlated Problems 
In the same manner as in the previous subsection, we report 

experimental results on the correlated 4-500, 6-500, 8-500 and 
10-500 problems. In Fig. 9, we show the average percentage of 
non-dominated solutions at each generation of NSGA-II. From 
the comparison between Fig. 5 on the random k-500 problems 
and Fig. 9 on the correlated k-500 problems, we can see that the 
addition of the correlated objectives had almost no effects on 
the percentage of non-dominated solutions. As a result, the 
convergence of solutions toward the center region of the Pareto 
front was not slowed down by the increase in the number of 
objective as shown in Fig. 10. We can observe from the 
comparison between Fig. 6 (a) and Fig. 10 that the correlated 
objectives in Fig. 10 had almost no negative effects on the 
convergence of solutions in NSGA-II. Similar observations 
were obtained for SPEA2. However, the addition of the 
correlated objectives somewhat degraded the convergence 
property of MOEA/D toward the Pareto front as shown in Fig. 
11 (compare Fig. 11 with Fig. 10). 

The performance of the three algorithms on the correlated 
k-500 problems is examined using the hypervolume measure in 
Table II. For the correlated 4-500 and 6-500 test problems, the 
best results were obtained by MOEA/D as in the case of the 
random 4-500 and 6-500 problems in Table I. However, the 
difference in the average hypervolume between MOEA/D and 
the other EMO algorithms was much smaller in Table II on the 
correlated problems than Table I on the random problems. 
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Figure 9. Average percentage of non-dominated solutions at each generation of 
NSGA-II on the correlated k-500 knapsack problems (k = 2, 4, 6, 8, 10). 

N
or

m
al

iz
ed

 M
ax

Su
m

Number of Generations

2-500 4-500 6-500 8-500 10-500

1 10 100 1000

100

110

120

130

 
Figure 10. Average normalized MaxSum measure at each generation of NSGA-
II on the correlated k-500 knapsack problems (k = 2, 4, 6, 8, 10). 
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Figure 11. Average normalized MaxSum measure at each generation of 
MOEA/D on the correlated k-500 knapsack problems (k = 2, 4, 6, 8, 10). 

TABLE II. AVERAGE HYPERVOLUME AND STANDARD DEVIATION ON 
CORRELATED TEST PROBLEMS. STANDARD DEVIATION IS IN PARENTHESES. 

Test Problem NSGA-II SPEA2 MOEA/D 

Correlated 4-500 1.400E+17 
(9.361E+14) 

1.377E+17 
(8.953E+14) 

1.501E+17 
(7.505E+14)

Correlated 6-500 5.158E+25 
(5.290E+23) 

5.029E+25 
(4.798E+23) 

5.537E+25 
(3.860E+23)

 

E. Results on the Dependent Problems 
In this subsection, we report experimental results on the 

dependent 4-500, 6-500, 8-500 and 10-500 problems. In Fig. 12, 
we show the average percentage of non-dominated solutions at 
each generation of NSGA-II. As in Fig. 9 with the correlated 
objectives, the addition of the dependent objectives has almost 
no effect on the percentage of non-dominated solutions. As a 
result, the convergence of solutions toward the center region of 
the Pareto front in NSGA-II was not slowed down by the 
increase in the number of objectives. However, as in Fig. 11 
with the correlated objectives, the addition of the dependent 
objectives degraded the convergence property of MOEA/D. 

In Table III, we compare the performance of the three 
algorithms on the dependent k-500 problems using the 
hypervolume measure. As in Table I and Table II, the best 
results were obtained by MOEA/D on the dependent 4-500 and 
6-500 problems. However, as in Table II, the difference in the 
average hypervolume between MOEA/D and the other EMO 
algorithms was much smaller in Table III on the dependent 
problems than Table I on the random problems. 

If dimensionality reduction is applied to our correlated and 
dependent test problems, the number of objectives may be 
decreased to two. So we compare the performance of the three 
EMO algorithms on our test problems using the hypervolume 
measure on the two-dimensional objective space of the 2-500 
problem. That is, the obtained solutions for each test problem 
by each algorithm were projected to the two-dimensional space 
with f1(x) and f2(x). Then their hypervolume was calculated in 
the two-dimensional objective space. Experimental results are 
summarized in Table IV. In each column, the best result is 
highlighted by boldface. It is very interesting to observe that 
the best results for NSGA-II and SPEA2 were obtained by 
applying them to the dependent 10-500 problem rather than the 
original 2-500 problem. This is because the added objectives 
increased the diversity of solutions as shown in Fig. 13. 
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Figure 12. Average percentage of non-dominated solutions at each generation 
of NSGA-II on the dependent k-500 knapsack problems (k = 2, 4, 6, 8, 10). 
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Figure 13. The obtained solutions at the 2000th generation by a single run of 
NSGA-II on the original 2-500 problem and the dependent 10-500 problem. 
 
 
TABLE III. AVERAGE HYPERVOLUME AND STANDARD DEVIATION ON 
DEPENDENT TEST PROBLEMS. STANDARD DEVIATION IS IN PARENTHESES.  

Test Problem NSGA-II SPEA2 MOEA/D 

Dependent 4-500 1.728E+17 
(1.092E+15) 

1.716E+17 
(1.078E+15) 

1.842E+17 
(8.562E+14)

Dependent 6-500 5.490E+25 
(5.588E+23) 

5.385E+25 
(3.459E+23) 

5.895E+25 
(4.002E+23)

 

TABLE IV. AVERAGE HYPERVOLUME IN THE TWO-DIMENSIONAL OBJECTIVE 
SPACE OF OBTAINED SOLUTION SETS BY EACH ALGORITHM ON EACH TEST 
PROBLEM.  

Test Problem NSGA-II SPEA2 MOEA/D 
Original 2-500 3.800E+08 3.788E+08 4.009E+08 
Random 4-500 3.744E+08 3.687E+08 3.927E+08
Random 6-500 3.676E+08 3.534E+08 3.819E+08 
Random 8-500 3.629E+08 3.454E+08 3.640E+08 
Random 10-500 3.590E+08 3.387E+08 3.565E+08 
Correlated 4-500 3.814E+08 3.780E+08 3.977E+08 
Correlated 6-500 3.819E+08 3.782E+08 3.958E+08 
Correlated 8-500 3.828E+08 3.783E+08 3.917E+08 
Correlated 10-500 3.831E+08 3.787E+08 3.916E+08 
Dependent 4-500 3.803E+08 3.788E+08 3.971E+08 
Dependent 6-500 3.837E+08 3.809E+08 3.970E+08 
Dependent 8-500 3.835E+08 3.812E+08 3.920E+08 
Dependent 10-500 3.884E+08 3.838E+08 3.918E+08 



 

 

IV. CONCLUSIONS 
In this paper, we demonstrated that the convergence ability 

of NSGA-II and SPEA2 was not severely degraded by the 
increase in the number of objectives when they were highly 
correlated or dependent. As a result, good solution sets were 
obtained by those Pareto dominance-based EMO algorithms for 
many-objective problems when their objectives were highly 
correlated or dependent. Moreover, in some cases, better results 
for the 2-500 problem were obtained through the application of 
EMO algorithms to many-objective problems with dependent 
objectives rather than their direct application to the 2-500 
problem. This observation suggests the potential usefulness of 
multiobjectivization from two-objective problems to many-
objective problems with dependent objectives. 

The best results among NSGA-II, SPEA2 and MOEA/D 
were obtained by MOEA/D for the two-objective and many-
objective knapsack problems when objectives were generated 
randomly. However, its search ability was degraded by the 
increase in the number of objectives even when they were 
highly correlated or dependent. As a result, MOEA/D did not 
always show the best performance for the correlated and 
dependent problems. These observations suggest that the 
difficulty of many-objective problems depends on features of 
EMO algorithms as well as those of many-objective problems. 
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