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Abstract 

 We have already proposed a similarity-based mating scheme to recombine extreme and similar 

parents for evolutionary multiobjective optimization. In this paper, we examine the effect of the 

similarity-based mating scheme on the performance of evolutionary multiobjective optimization 

(EMO) algorithms. First we examine which is better between recombining similar or dissimilar 

parents. Next we examine the effect of biasing selection probabilities toward extreme solutions that 

are dissimilar from other solutions in each population. Then we examine the effect of dynamically 

changing the strength of this bias during the execution of EMO algorithms. Computational 

experiments are performed on a wide variety of test problems for multiobjective combinatorial 

optimization. Experimental results show that the performance of EMO algorithms can be improved by 

the similarity-based mating scheme for many test problems. 

 

Keywords: Multiple objective programming, combinatorial optimization, evolutionary computation, 

genetic algorithms. 

 

1. Introduction 

 

 Since Schaffer’s pioneering study (Schaffer (1985)), evolutionary algorithms have been applied 

to various multiobjective optimization problems for finding their Pareto-optimal solutions (e.g., see 

Deb (2001), Coello et al. (2002), and Coello and Lamont (2004)). Those algorithms are often referred 

to as evolutionary multiobjective optimization (EMO) algorithms. Recent EMO algorithms usually 
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share some common ideas such as Pareto ranking, diversity preserving and elitism. While mating 

restriction has often been discussed in the literature, it has not been used in many EMO algorithms as 

pointed out in some reviews on EMO algorithms (e.g., see Fonseca and Fleming (1995), Zitzler and 

Thiele (1999), and Van Veldhuizen and Lamont (2000)). 

 Mating restriction was suggested by Goldberg (1989) for single-objective genetic algorithms. 

Hajela and Lin (1992) and Fonseca and Fleming (1993) used it in their EMO algorithms. The basic 

idea of mating restriction is to ban the recombination of dissimilar parents from which good offspring 

are not likely to be generated. In the implementation of mating restriction, a user-definable parameter 

matingσ  called the mating radius is usually used for banning the recombination of two parents whose 

distance is larger than matingσ . The distance between two parents is measured in the decision space or 

the objective space. The necessity of mating restriction in EMO algorithms was also stressed by 

Jaszkiewicz (2002a), Watanabe et al. (2002), Kim et al. (2004), and Sato et al. (2004). On the other 

hand, Zitzler and Thiele (1998) reported that no improvement was achieved by mating restriction in 

their computational experiments. Van Veldhuizen and Lamont (2000) mentioned that the empirical 

evidence presented in the literature could be interpreted as an argument either for or against the use of 

mating restriction. Moreover, there was also an argument for the recombination of dissimilar parents. 

Horn et al. (1994) argued that information from very different types of tradeoffs could be combined to 

yield other kinds of good tradeoffs. Schaffer (1985) examined the recombination of dissimilar parents 

but observed no improvement. 

 One difficulty in the use of mating restriction is the specification of the mating radius. It is very 

difficult to pre-specify an appropriate value of the mating radius when we do not know the distribution 

of Pareto-optimal solutions. As a simple mating restriction method with no mating radius, we 

proposed a similarity-based mating scheme to recombine similar parents (Ishibuchi and Shibata 

(2003a)). This mating scheme was extended to recombine extreme and similar parents in Ishibuchi and 

Shibata (2003b). An idea of dynamically controlling the strength of the bias toward extreme parents 

was suggested in Ishibuchi and Shibata (2004). Ishibuchi and Narukawa (2005) examined the effect of 

crossover and mutation on the diversity of solutions and their convergence to the Pareto front using the 

similarity-based mating scheme. 

 In this paper, we examine the effect of mating restriction on the search ability of EMO algorithms 

using the similarity-based mating scheme through computational experiments on a variety of test 

problems for multiobjective combinatorial optimization. As a representative EMO algorithm, we use 

NSGA-II of Deb et al. (2002) because of its simplicity, popularity and high search ability. First we 

examine the effect of recombining similar or dissimilar parents on the performance of NSGA-II. Then 

we examine the effect of biasing selection probabilities toward extreme solutions. The similarity-based 

mating scheme is used to recombine extreme and similar parents. Finally we examine the effect of 

dynamically controlling the strength of the bias toward extreme solutions. The effect of the similarity-
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based mating scheme is also examined using SPEA of Zitzler and Thiele (1999). 

 

2. Similarity-based mating scheme 

 

 In general, a k-objective maximization problem can be written as  

   Maximize ))(...,),(),(()( 21 xxxxf kfff= ,         (1) 

   subject to Xx ∈ ,              (2) 

where )(xf  is the k-dimensional objective vector, )(xif  is the i-th objective function to be maximized, 

x is the decision vector, and X is the feasible region in the decision space. 

 Let us denote the distance between two solutions x and y as ||)()(|| yfxf −  in the objective space. 

In this paper, we measure the distance ||)()(|| yfxf −  by the Euclidean distance as  

   22
11 )}()({)}()({||)()(|| yxyxyfxf kk ffff −+⋅⋅⋅+−=− .     (3) 

On the other hand, the definition of the distance |||| yx −  in the decision space totally depends on the 

representation of solutions in a particular problem. Whereas the similarity-based mating scheme can 

be implemented using the distance in the decision space as well as in the objective space, we mainly 

use the distance in the objective space due to the simplicity of its definition as the Euclidean distance.  

 The similarity-based mating scheme of Ishibuchi and Shibata (2003b) is illustrated in Fig. 1. First, 

a pre-specified number of candidates (say α  candidates) are selected from the current population by 

iterating the standard binary tournament selection procedure α  times. Open circles at the bottom of Fig. 

1 denote randomly drawn solutions that join the binary tournament selection procedure. Next the 

average objective vector over the α  candidates is calculated in the objective space. The most 

dissimilar one among the α  candidates from the average objective vector is chosen as Parent A in Fig. 

1. That is, the most distant candidate from the average objective vector in the objective space is chosen 

as Parent A. In order to choose a mate for Parent A (i.e., to choose Parent B in Fig. 1), β  candidates 

are selected from the current population by iterating the standard binary tournament selection 

procedure β  times. The most similar one among the β  candidates to Parent A is chosen as Parent B in 

Fig. 1. That is, the closest candidate to Parent A in the objective space is chosen as its mate. 
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Fig. 1.  Similarity-based mating scheme of Ishibuchi and Shibata (2003b). 

 The original version of the similarity-based mating scheme in Ishibuchi and Shibata (2003a) 

corresponds to the case of 1=α  in Fig. 1. The left-hand side of Fig. 1 was added to the original 

version in order to choose extreme parents by Ishibuchi and Shibata (2003b). The similarity-based 

mating scheme can be easily incorporated into almost all EMO algorithms because it needs only the 

distance between solutions. As we have already mentioned, the distance between solutions can be 

measured in the decision space as well as in the objective space.  

 The similarity-based mating scheme in Fig. 1 has the following features: 

(a) The strength of the bias toward extreme parents can be easily adjusted by the value of α . Larger 

values of α mean stronger bias toward extreme parents. When 1=α , no bias toward extreme 

parents is added to EMO algorithms. 

(b) The strength of the bias toward similar parents can be easily adjusted by the value of β  in the same 

manner as the adjustment of the bias toward extreme parents using the value of α . 

(c) The specification of β  is more intuitive than that of the mating radius in mating restriction. 

(d) The similarity-based mating scheme can be also used to recombine dissimilar parents by choosing 

the most dissimilar one as Parent B in Fig. 1. 

3. Evolutionary multiobjective optimization 

 

3.1. Performance indices 

 A number of performance indices have been proposed to evaluate non-dominated solution sets 

(e.g., see Deb (2001) and Coello et al. (2002)). Those performance indices have been used to compare 

different non-dominated solution sets (i.e., to compare different EMO algorithms). There is, however, 

no performance index that can simultaneously measure various aspects of non-dominated solution sets 
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(e.g., the diversity of solutions and the convergence of solutions to the Pareto front) as pointed out in 

some studies (e.g., Knowles and Corne (2002), Okabe et al. (2003), and Zitzler et al. (2003)). 

Moreover the use of only a single performance index is sometimes misleading. Thus we use several 

performance indices in order to evaluate various aspects of non-dominated solution sets. 

 Let S and S* be a non-dominated solution set and the Pareto-optimal solution set, respectively. 

The convergence of the non-dominated solution set S to the Pareto-optimal solution set S* is measured 

by the following performance index called the generational distance (Van Veldhuizen (1999)): 

   *}:||)()(||min{
||

1)(GD S
S

S
S

∈−∑=
∈

yyfxf
x

,        (4) 

where ||)()(|| yfxf −  is the Euclidean distance between the two solutions x and y in the objective space, 

and || S  is the number of solutions in S (i.e., || S  is the cardinality of S ). The generational distance is 

the average distance from each solution in S to its nearest Pareto-optimal solution in S*. 

 Whereas the generational distance measures the proximity of the non-dominated solution set S to 

the Pareto-optimal solution set S*, it can not measure the diversity of solutions. In order to measure 

not only the convergence but also the diversity, we use the following performance index called the 

D1R measure (Knowles and Corne (2002)): 

   }:||)()(||min{
|*|

1)(D1
*

R S
S

S
S

∈−∑=
∈

xyfxf
y

.        (5) 

The D1R measure is the average distance from each Pareto-optimal solution y in S* to its nearest 

solution in S. Conceptually the same measure was used in a slightly different form by Czyzak and 

Jaszkiewicz (1998). 

 Whereas both GD and D1R are calculated using the true Pareto-optimal solution set S*, we 

usually do not know S* of each test problem. In our computational experiments, we use as S* a set of 

non-dominated solutions among all solutions examined in our computational experiments in this paper. 

Of course, we use the true Pareto-optimal solution set S* when it is available. 

 The diversity of the non-dominated solution set S can be more directly measured by the sum of 

the range of objective values for each objective function: 

   ∑
= ∈∈

−=
k

i
iSi

S
ffS

1
])}({min)}({max[)(Range xx

xx
.         (6) 

This measure is similar to the maximum spread of Zitzler (1999). 

 In order to measure both the diversity and the convergence, we can also use the hypervolume 

measure (Zitzler and Thiele (1998)) that calculates the volume of the dominated region by the non-

dominated solution set S in the objective space. The boundary of the dominated region in the objective 

space is called the attainment surface (Fonseca and Fleming (1996)). From multiple attainment 
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surfaces obtained by multiple runs of an EMO algorithm for a multiobjective optimization problem, 

we can calculate the 50% attainment surface as a kind of their average result. For details of the 

calculation of the 50% attainment surface, see Fonseca and Fleming (1996) and Deb (2001). 

 

3.2. Evolutionary multiobjective optimization algorithms 

 We use NSGA-II due to its simplicity, popularity and high search ability. The basic framework of 

NSGA-II can be written as follows: 

[NSGA-II] 

Step 1: P := Initialize (P) 

Step 2: While the stopping condition is not satisfied, do 

Step 3:           P’ = Parent Selection (P) 

Step 4:           P’’ = Genetic Operations (P’) 

Step 5:           P = Replace (PUP’’) 

Step 6: End while 

Step 7: Return (P) 

 

 In Step 1, the population P is initialized. The initialization is usually performed randomly. In Step 

3, a set of pairs of parent solutions (i.e., P’) is selected from the current population P. The standard 

binary tournament selection procedure is usually used to choose a pair of parent solutions. In Step 4, 

an offspring population P’’ is generated from the parent population P’ by genetic operations (i.e., 

crossover and mutation). The size of the offspring population P’’ is usually the same as that of the 

current population P. In Step 5, the best solutions are chosen from the merged population (PUP’’) to 

construct the next population P. Elitism is realized in this step.  

 Multiobjective evolution in NSGA-II is mainly driven by choosing better solutions in terms of 

Pareto dominance relation in the parent selection phase and the generation update phase. A Pareto 

sorting procedure is used as the primary fitness evaluation criterion. The diversity of solutions is 

maintained by choosing solutions in less crowded regions in the objective space among solutions with 

the same rank in terms of Pareto dominance relation. A crowding measure is used as the secondary 

criterion for diversity maintenance. For details of NSGA-II, see Deb (2001) and Deb et al. (2002). 

 

3.3. Test problems 

 Zitzler and Thiele (1999) used nine multiobjective 0/1 knapsack problems, each of which has two, 

three or four objectives and 250, 500 or 750 items. Each test problem with k knapsacks (i.e., k 

objectives and k constraints) and n items is written as follows: 

   Maximize ))(...,),(),(()( 21 xxxxf kfff= ,                 (7) 
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   subject to ∑ ≤
=

n

j
ijij cxw

1
,  ki ...,,2,1= ,                  (8) 

   where ∑=
=

n

j
jiji xpf

1
)(x ,  ki ...,,2,1= .                  (9) 

In this formulation, x is an n-dimensional binary vector (i.e., 0=jx  or 1=jx  for nj ...,,2,1= ), pij  

is the profit of item j according to knapsack i, wij  is the weight of item j according to knapsack i, and 

ci  is the capacity of knapsack i. Each solution x is handled as a binary string of length n.  

 We denote the k-objective n-item test problem as the k-n problem. Multiobjective 0/1 knapsack 

problems have been frequently used to examine the performance of EMO algorithms in the literature 

(e.g., Jaszkiewicz (2001, 2002b), Knowles and Corne (2000), Mumford (2003), and Zydallis and 

Lamont (2003)). In this paper, we mainly use the 2-500 problem since its Pareto-optimal solution set 

S* is known. In some computational experiments, we also use the 3-500 and 4-500 problems to 

examine the performance of EMO algorithms for many-objective optimization problems. 

 When an EMO algorithm is applied to the multiobjective 0/1 knapsack problem in (7)-(9), 

genetic operations often generate infeasible solutions that do not satisfy the constraint conditions in (8). 

We use a greedy repair method based on a maximum profit/weight ratio as suggested by Zitzler and 

Thiele (1999). When an infeasible solution is generated, a feasible solution is created by removing 

items (i.e., by changing the corresponding values in the binary string x from 1 to 0) in the ascending 

order of the maximum profit/weight ratio. We implemented the greedy repair in the Lamarckian 

framework. See Ishibuchi et al. (2005) for Lamarckian repair and Baldwinian repair. 

 Kumar and Banerjee (2005) used a different two-objective 0/1 knapsack problem, which has only 

a single knapsack and no constraint condition as follows: 

   Maximize ∑=
=

n

j
jj xpf

1
1 )(x ,                 (10) 

   Minimize ∑
=

=
n

j
jj xwf

1
2 )(x ,                 (11) 

where x is an n-dimensional binary vector, pj  is the profit of item j, wj  is the weight of item j. The first 

objective in (10) is the maximization of the total profit whereas the second objective in (11) is the 

minimization of the total weight. 

 The two-objective 0/1 knapsack problem in (10)-(11) has two extreme Pareto-optimal solutions. 

One extreme is the binary vector of all 1’s. In this case, the first objective assumes its maximum value. 

The other extreme is the binary vector of all 0’s. In this case, the second objective assumes its 

minimum value. Thus the two-objective 0/1 knapsack problem of Kumar and Banerjee (2005) has a 

large Pareto front. We denote the two-objective n-item problem as the 2-n problem. In this paper, we 

use the 2-500 problem with the same profit and weight of each item as those for the first knapsack of 
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the 2-500 problem of Zitzler and Thiele (1999). The Pareto-optimal solution set of the 2-500 problem 

of Kumar and Banerjee (2005) is not known. So we use a set of non-dominated solutions among all 

solutions examined in our computational experiments in this paper as S*. 

 Pelikan et al. (2005) used the following two-objective optimization problem called the onemax-

zeromax problem to demonstrate the high search ability of their EMO algorithm: 

   Maximize ∑=
=

n

j
jxf

1
1 )(x ,                  (12) 

   Maximize ∑
=

−=
n

j
jxf

1
2 )1()(x .                (13) 

The first objective in (12) is the maximization of the number of 1’s in the binary string x while the 

second objective in (13) is the maximization of the number of 0’s. The onemax-zeromax problem can 

be viewed as a special case of the two-objective 0/1 knapsack problem of Kumar and Banerjee (2005) 

with the following specifications of the profit and the weight of each item: 

   1=jp  and 1=jw  for nj ...,,2,1= .               (14) 

 It is interesting to note that all feasible solutions of the onemax-zeromax problem are Pareto-

optimal solutions. Thus the total number of the Pareto-optimal solutions of the onemax-zeromax 

problem with n items is n2  whereas the total number of different Pareto-optimal objective vectors is 

( 1+n ). In this paper, we use the 500-item onemax-zeromax problem. This onemax-zeromax problem 

has 501 different Pareto-optimal objective vectors: (0, 500), (1, 499), (2, 498), ..., (500, 0). The set of 

these Pareto-optimal objective vectors is used as S*. 

 In Ishibuchi and Murata (1998) and Ishibuchi et al. (2003), multiobjective flowshop scheduling 

problems were used to examine the performance of their memetic EMO algorithms. Each solution of a 

flowshop scheduling problem with n jobs is represented by a permutation of the given n jobs {J1, 

J2, ..., Jn}. A two-objective test problem is written as 

   Minimize }...,,2,1:max{)(1 njCf j ==x ,              (15) 

   Minimize }...,,2,1:}0,max{max{)(2 njdCf jj =−=x ,           (16) 

where Cj  and dj  are the completion time and the due-date of each job, respectively. The first objective 

is to minimize the makespan while the second objective is to minimize the maximum tardiness. 

 Each test problem of multiobjective flowshop scheduling has 20 machines and 20, 40, 60 or 80 

jobs. We denote the k-objective problem with n jobs as the k-n flowshop scheduling problem. In this 

paper, we use the 2-80 flowshop scheduling problem. The total number of feasible solutions of the 2-

80 flowshop scheduling problem is 118107!80 ×≅ . The Pareto-optimal solution set of this test 

problem is not known. So we use a set of non-dominated solutions among all solutions examined in 

our computational experiments in this paper as S*. 
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4. Recombination of similar or dissimilar parents 

 

4.1. Settings of computational experiments 

 The similarity-based mating scheme is incorporated into NSGA-II. In order to concentrate on the 

examination of the effect of recombining similar or dissimilar parents, the value of α  is always 

specified as 1=α  in this section. The effect of choosing extreme parents (i.e., the effect of α) is 

examined in the next section. Various values of β  are examined in computational experiments in this 

section (i.e., 10...,,2,1=β ) in combination with the fixed value of α  (i.e., 1=α ). We examine not 

only the recombination of similar parents but also dissimilar parents. The most similar one among β  

candidates is chosen as Parent B in our similarity-based mating scheme in the former case whereas the 

most dissimilar one is chosen in the latter case. 

 The modified NSGA-II algorithm with the similarity-based mating scheme is applied to the two 

knapsack problems and the onemax-zeromax problem using the following specifications: 

Population size: 200, 

Crossover probability: 0.8 (One-point crossover), 

Mutation probability: 1/500 per bit (Bit-flip mutation), 

Stopping condition: 2000 generations. 

 On the other hand, the following specifications are used in the flowshop scheduling problem: 

Population size: 200, 

Crossover probability: 0.8 (Two-point order crossover), 

Mutation probability: 0.5 per string (Shift mutation), 

Stopping condition: 2000 generations. 

For details of genetic operations for flowshop scheduling, see Murata et al. (1996) where a number of 

different crossover and mutation operations were compared with each other. The best results were 

obtained from the combination of the two-point order crossover and the shift mutation in Murata et al. 

(1996). We use this combination of the genetic operations in this paper.  

 

4.2. Results on the 2-500 knapsack problem of Zitzler and Thiele 

 In order to visually demonstrate the effect of recombining similar or dissimilar parents, we show 

in Fig. 2 the 50% attainment surface after the 2000th generation over 50 runs of each algorithm: 

NSGA-II, NSGA-II with the recombination of similar parents using 5=β , and NSGA-II with the 

recombination of dissimilar parents using 5=β . For comparison, the Pareto front of the 2-500 

knapsack problem is also shown in Fig. 2. 
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Fig. 2.  Average results over 50 runs for the 2-500 knapsack problem of Zitzler and Thiele (1999). 

 

 In Fig. 2, the recombination of similar parents has improved the diversity of solutions without 

degrading the convergence of solutions to the Pareto front. On the other hand, we cannot observe any 

positive effects of recombining dissimilar parents. While the diversity of solutions has been improved 

by recombining similar parents in Fig. 2, it is still small if compared with the range of the Pareto front. 

This is the motivation behind the bias toward extreme solutions, which is examined in the next section. 

 The effect of recombining similar or dissimilar parents is further examined in Figs. 3-6. Average 

results over 50 runs for each specification of β  are shown in Figs. 3-6 where two cases are examined 

with respect to the similarity between solutions: the Euclidean distance in the objective space and the 

Hamming distance in the decision space. In each figure, 1=β  means the original NSGA-II algorithm. 

From Figs. 3-6, we can see that the recombination of similar parents has a positive effect on both the 

diversity of solutions (e.g., Fig. 5) and the convergence of solutions to the Pareto front (e.g., Fig. 3).  
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Fig. 3.  Generational distance for the 2-500 knapsack problem of Zitzler and Thiele (1999). 
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Fig. 4.  D1R measure for the 2-500 knapsack problem of Zitzler and Thiele (1999). 

 

 

2500

2700

2900

3100

3300

3500

10 5 1 5 10 (β )
NSGA-IIDissimilar Similar

Decision spaceDecision space Objective spaceObjective space

R
an

ge
 m

ea
su

re
W

or
se

B
et

te
r

W
or

se
B

et
te

r

 
 

Fig. 5.  Range measure for the 2-500 knapsack problem of Zitzler and Thiele (1999). 
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Fig. 6.  Hypervolume measure for the 2-500 knapsack problem of Zitzler and Thiele (1999). 
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 Let us examine the statistical significance of the improvement by the similarity-based mating 

scheme in Figs. 3-6. We compare the two cases: NSGA-II with =β 1 and NSGA-II with the 

recombination of similar parents using 5=β . The average value and the standard deviation (in the 

parentheses) of each performance index over 50 runs are shown in Table 1. Using Student’s t-test, we 

examine the statistical significance of the difference in each performance index between the two cases 

in Table 1. Only for the hypervolume measure, we use Welch’s t-test because the standard deviations 

of this measure are clearly different between the two cases. Based on the statistical tests, we can say 

with the confidence level 99.9% that the search ability of NSGA-II has been significantly improved by 

recombining similar parents using the similarity-based mating scheme with =β 5 in terms of all the 

four performance indices.  

 

 

Table 1.  The average value and the standard deviation of each measure over 50 runs for the 2-500 

knapsack problem of Zitzler and Thiele (1999). The standard deviation is shown in parentheses.   

 

Measure NSGA-II Similar Parents 

Generational distance 104.67 (12.86)   94.67 (11.57) 

D1R 518.06 (39.67) 444.36 (46.04) 

Range 2754.28 (217.50) 3133.46 (277.05) 

Hypervolume ( 810× )       3.81 (0.0128)       3.84 (0.0176) 
 

 

 

 In our experimental results in Figs. 3-6, very similar results were obtained from the two versions 

of the similarity-based mating scheme: objective space mating and decision space mating. These 

results suggest that the distance between solutions in the objective space is closely related to the 

distance in the decision space. In Fig. 7, we show the relation between the Hamming distance in the 

decision space and the Euclidean distance in the objective space for 200 pairs of solutions. Those pairs 

were randomly drawn from a population after the 1000th generation when the original NSGA-II 

algorithm was applied to the 2-500 knapsack problem. From Fig. 7, we can see that the distances in 

the two spaces are closely related to each other. 
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Fig. 7.  Relation between the Hamming distance in the decision space and the Euclidean distance in 

the objective space for 200 pairs of solutions of the 2-500 knapsack problem of Zitzler and Thiele 

(1999). 

 

 

4.3. Results on the 2-500 knapsack problem of Kumar and Banerjee 

 As in Fig. 2, we visually demonstrate the effect of recombining similar or dissimilar parents on 

the performance of NSGA-II for the 2-500 knapsack problem of Kumar and Banerjee (2005) in Fig. 8. 

We can see that the performance of NSGA-II has been improved by recombining similar parents in 

Fig. 8. We can not observe any positive effect of recombining dissimilar parents in Fig. 8. 
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Fig. 8.  Average results over 50 runs for the 2-500 knapsack problem of Kumar and Banerjee (2005). 
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4.4. Results on the onemax-zeromax problem 

 All feasible solutions of the onemax-zeromax problem are Pareto-optimal solutions. That is, any 

solution sets are always on the Pareto front. Due to this special feature of solution sets, we only report 

experimental results with respect to the range measure. Fig. 9 shows average results over 50 runs for 

each specification of β. We can see from Fig. 9 that the performance of NSGA-II on the onemax-

zeromax problem has been improved by recombining similar parents. This improvement is statistically 

significant. For example, we can say with the confidence level 99.9% based on Student’s t-test that the 

difference in the range measure between =β 1 and =β 5 (objective space mating) is statistically 

significant. The average values of the range measure are 829.56 ( =β 1) and 873.46 ( =β 5) while the 

standard deviations are 13.69 ( =β 1) and 12.03 ( =β 5). 
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Fig. 9.  Range measure for the onemax-zeromax problem. 

 

 

 In Fig. 9, different results were obtained by the two versions of the similarity-based mating 

scheme (i.e., objective space mating and decision space mating). In Fig. 10, we show the relation 

between the Hamming distance in the decision space and the Euclidean distance in the objective space 

for 200 pairs of solutions. Those pairs are randomly drawn from a population after the 1000th 

generation when the original NSGA-II algorithm is applied to the onemax-zeromax problem. Whereas 

the two distances were closely related to each other in the 2-500 knapsack problem of Zitzler and 

Thiele (1999) in Fig. 7, they are not related in Fig. 10. This may lead to experimental results in Fig. 9 

where different results were obtained by the two versions of the similarity-based mating scheme. 
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Fig. 10.  Relation between the Hamming distance in the decision space and the Euclidean distance in 

the objective space for 200 pairs of solutions of the onemax-zeromax problem. 

 

 

4.5. Results on the flowshop scheduling problem 

 We visually demonstrate the effect of recombining similar or dissimilar parents on the 

performance of NSGA-II for the 2-80 flowshop scheduling problem in Fig. 11 and Fig. 12. Fig. 11 

shows an obtained non-dominated solution set after the 2000th generation by a single run of each 

algorithm. On the other hand, Fig. 12 shows the 50% attainment surface after the 2000th generation 

over 50 runs of each algorithm. The value of β is specified as 5=β  (objective space mating) in Fig. 

11 and Fig. 12. We can see that the performance of NSGA-II has been improved by recombining 

similar parents in Fig. 11 and Fig. 12. An interesting observation in Fig. 11 is that a non-convex 

solution set is obtained in Fig. 11 from each of the three algorithms. 
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Fig. 11.  Results of a single run for the 2-80 flowshop scheduling problem. 
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Fig. 12.  Average results over 50 runs for the 2-80 flowshop scheduling problem. 

 

 

4.6. Results on test problems with more than two objectives 

 In the above-mentioned computational experiments, we visually demonstrated the performance 

improvement of NSGA-II by the similarity-based mating scheme for the two-objective test problems. 

In this section, we apply NSGA-II and its modified version to three-objective and four-objective 

knapsack problems (i.e., 3-500 and 4-500 problems) of Zitzler and Thiele (1999). 

 Experimental results on each test problem are shown in Fig. 13 and Fig. 14 using the 

hypervolume measure. We can see from these figures that the similarity-based mating scheme has 

improved the search ability of NSGA-II for the three-objective and four-objective knapsack problems. 

The difference in the hypervolume measure between =β 1 and =β 5 (objective space mating) is 

statistically significant with the confidence level 99.9% based on Student’s t-test in Fig. 13 and Fig. 14. 

 As pointed out by Hughes (2005), usually EMO algorithms do not work well on many-objective 

optimization problems with four or more objectives, especially in terms of the convergence of 

solutions to the Pareto front. Thus we may need other methods for improving the search ability of 

EMO algorithms on the four-objective knapsack problem. See Hughes (2005), Ishibuchi et al. (2006), 

Jaszkiewicz (2004), and Purshouse and Fleming (2003) for further discussions on the handling of 

many-objective optimization problems. 
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Fig. 13.  Hypervolume measure for the 3-500 knapsack problem of Zitzler and Thiele (1999). 
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Fig. 14.  Hypervolume measure for the 4-500 knapsack problem of Zitzler and Thiele (1999). 

5. Recombining extreme and similar parents 

 

5.1. Settings of computational experiments 

 We use the same parameter specifications as in Section 4 except for the value of α  in the 

similarity-based mating scheme. The value of α  can be viewed as the strength of the bias toward 

extreme parents. Various combinations of α  and β  are used in this section. The similarity between 

solutions is measured by the Euclidean distance in the objective space. We do not examine the case of 

recombining dissimilar parents because it is not useful for our test problems. 

 

5.2. Results on the 2-500 knapsack problem of Zitzler and Thiele 

 In Fig. 15, we compare the three specifications of α  and β  (i.e., =),( βα (1, 1), (1, 5), (5, 5)) in 
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the similarity-based mating scheme for the 2-500 knapsack problem of Zitzler and Thiele (1999). Fig. 

15 shows the 50% attainment surface over 50 runs at the 2000th generation of NSGA-II with each 

specification of ),( βα . In Fig. 15, =),( βα (1, 5) means the recombination of similar parents 

whereas =),( βα (5, 5) means the recombination of extreme and similar parents. It should be noted 

that the case of =),( βα (1, 1) is exactly the same as the original NSGA-II algorithm. From Fig. 15, 

we can see that the recombination of extreme and similar parents (i.e., =),( βα (5, 5)) further 

improves the performance of NSGA-II with the recombination of similar parents (i.e., =),( βα (1, 5)). 
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Fig. 15.  Average results over 50 runs for the 2-500 knapsack problem of Zitzler and Thiele (1999). 

 

 

 In general, parameter specifications in EMO algorithms (e.g., crossover and mutation 

probabilities) have large effects on the diversity-convergence balance of multiobjective evolution. 

Thus we examine the effect of the crossover probability (say CP ) and the mutation probability (say 

MP ) on the performance of NSGA-II. Our computational experiments are performed using 25 

combinations of five crossover probabilities and five mutation probabilities: =CP 0.1, 0.2, 0.4, 0.8, 1.0 

and =MP 0.001, 0.002, 0.004, 0.008, 0.01. The original NSGA-II algorithm is used for each 

combination. For comparison, average results are also calculated for two specifications of the 

parameters α and β (i.e., =),( βα (5, 5) and =),( βα (10, 10)) where the crossover and mutation 

probabilities are specified as =CP 0.8 and =MP 1/500 as in Fig. 15. 

 Experimental results are summarized in Figs. 16-19. From these figures, we can see that the 

effect of recombining extreme and similar parents is much larger than that of the parameter 

specifications in NSGA-II. For example, the average values of the range measure in Fig. 18 and the 

hypervolume measure in Fig. 19 are much larger in the case of =),( βα (10, 10) than any other cases 
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of the original NSGA-II algorithm with various specifications of the crossover and mutation 

probabilities. That is, the effect of recombining extreme and similar parents on the diversity of 

solutions is much larger than that of the parameter specifications for the crossover and mutation 

probabilities. Much better results are also obtained in the case of =),( βα (10, 10) in Fig. 17 for the 

D1R measure than any other cases of the original NSGA-II algorithm with various specifications of the 

crossover and mutation probabilities. We can also see that the convergence of solutions to the Pareto 

front is slightly degraded by the recombination of extreme and similar parents in Fig. 16. 
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Fig. 16.  Generational distance for the 2-500 knapsack problem of Zitzler and Thiele (1999). 
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Fig. 17.  D1R measure for the 2-500 knapsack problem of Zitzler and Thiele (1999). 
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Fig. 18.  Range measure for the 2-500 knapsack problem of Zitzler and Thiele (1999). 
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Fig. 19.  Hypervolume measure for the 2-500 knapsack problem of Zitzler and Thiele (1999). 

5.3. Results on the 2-500 knapsack problem of Kumar and Banerjee 

 In the same manner as Fig. 15, we show experimental results on the 2-500 knapsack problem of 

Kumar and Banerjee (2005) in Fig. 20. We can see from Fig. 20 that the diversity of solutions has 

been improved by recombining extreme and similar parents. We can not observe any negative effect of 

the recombination of extreme and similar parents on the convergence of solutions to the Pareto front in 

Fig. 20. 
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Fig. 20.  Average results over 50 runs for the 2-500 knapsack problem of Kumar and Banerjee (2005). 

 

 

5.4. Results on the onemax-zeromax problem 

 As we have already explained, any solution sets are always on the Pareto front. Thus we only 

report experimental results with respect to the range measure. Fig. 21 shows average results over 50 

runs for each specification of α and β : =),( βα (1, 1), (5, 1), (5, 5), (10, 10). From Fig. 21, we can 

see that the diversity of solutions has been improved by recombining extreme and similar solutions. 

We can also see that the stronger bias toward extreme and similar solutions (i.e., =),( βα (10, 10)) 

has a larger effect on the diversity of solutions. 
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Fig. 21.  Range measure for the onemax-zeromax problem. 

 

 

5.5. Results on the flowshop scheduling problem 

 In the same manner as Fig. 15 and Fig. 20, we show experimental results on the 2-80 flowshop 
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scheduling problem in Fig. 22. We can see from Fig. 22 that the recombination of extreme and similar 

parents (i.e., =),( βα (5, 5)) has improved the diversity of solutions. We can also see that good non-

dominated solutions were not obtained around the center region of the Pareto front (e.g., (5500, 1250) 

in Fig. 22) when ),( βα  was specified as (5, 5). This is due to the bias toward extreme solutions in the 

similarity-based mating scheme. This issue is further discussed in the next section. 
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Fig. 22.  Average results over 50 runs for the 2-80 flowshop scheduling problem. 

 

 

6. Dynamic control of mating 

 

 As shown in the previous section, the diversity of solutions can be improved by recombining 

extreme and similar parents. Since there exists a tradeoff between the diversity of solutions and the 

convergence to the Pareto front in multiobjective evolution, the improvement in the diversity of 

solutions usually leads to the deterioration in the convergence to the Pareto front. Moreover a strong 

bias toward extreme solutions using a large value of β  is likely to make it difficult for EMO 

algorithms to find good solutions around the center of the Pareto front as shown in Fig. 22. 

 Examples of multiobjective evolution are shown in Fig. 23 and Fig. 24 for the 2-500 knapsack 

problem of Zitzler and Thiele (1999). The two parameters α  and β  in the similarity-based mating 

scheme are specified as =),( βα (1, 1) in Fig. 23 and =),( βα (10, 10) in Fig. 24. Each figure shows 

non-dominated solution sets at the 200th, 400th, 1000th and 2000th generations of a single run of 

NSGA-II. From the comparison between Fig. 23 and Fig. 24, we can see that the use of large values 

for α  and β  significantly improves the diversity of solutions at the cost of the deterioration in the 

convergence to the Pareto front (especially around the center of the Pareto front). 
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Fig. 23.  Results of a single run of NSGA-II with =),( βα (1, 1) for the 2-500 knapsack problem. 
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Fig. 24.  Results of a single run of NSGA-II with =),( βα (10, 10) for the 2-500 knapsack problem. 

Ishibuchi and Shibata (2004) proposed an idea of changing the values of the two parameters α  

and β  during the execution of EMO algorithms. For example, good results with respect to both the 

diversity and the convergence are obtained by changing the values of α  and β  at the 1000th generation 

from =),( βα (10, 10) to =),( βα (1, 1) as shown in Fig. 25. It should be noted that the non-

dominated solution sets in Fig. 25 are exactly the same as those in Fig. 24 during the first 1000 

generations. Better results are obtained by changing the values of α  and β  from (10, 10) to (1, 1) than 

the fixed use of either specification throughout the execution of NSGA-II. 
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Fig. 25.  Results of a single run of NSGA-II with =),( βα (10, 10) in the first 1000 generations and 

=),( βα (1, 1) in the last 1000 generations. 

7. Extensions and future research directions 

 

 Let us examine the effect of the similarity-based mating scheme using SPEA of Zitzler and 

Thiele (1999). SPEA is also a very popular and frequently-used EMO algorithm. High performance of 

SPEA has been reported in many studies (e.g., Zitzler and Thiele (1999) and Zitzler et al. (2000)). 

 In the same manner as Fig. 23 and Fig. 25, we show experimental results of a single run of SPEA 

and its variant with the similarity-based mating scheme in Fig. 26 and Fig. 27, respectively. The same 

parameter specifications as in the case of NSGA-II are used in these figures for SPEA except for the 

population size. The size of both the internal and external populations is 100 in SPEA whereas the 

population size is 200 in NSGA-II (NSGA-II has no external population). From the comparison 

between Fig. 26 and Fig. 27, we can see that the diversity of solutions has been drastically improved 

by the similarity-based mating scheme. Such a drastic improvement, however, is not always observed. 

The distribution of the values of the range measure over 100 runs of SPEA and SPEA with the 

similarity-based mating scheme is shown in Fig. 28. The value of the range measure in Fig. 28 has 

been improved from about 2000 to about 5500 by the similarity-based mating scheme in many cases 

(e.g., more than 4000 in 61 runs among the 100 runs of SPEA with the similarity-based mating 

scheme). Such a drastic improvement, however, is not observed in the other runs in Fig. 28. We 

perform the same computational experiments using NSGA-II. The diversity of solutions has been 

drastically improved by the similarity-based mating scheme in all the 100 runs of NSGA-II as shown 

in Fig. 29.  
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Fig. 26.  Results of a single run of the original SPEA algorithm with =),( βα (1, 1). 
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Fig. 27.  Results of a single run of the modified SPEA algorithm with =),( βα (10, 10) in the first 

1000 generations and =),( βα (1, 1) in the last 1000 generations. 
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Fig. 28.  Distribution of the values of the range measure over 100 runs of SPEA and its variants with 

the similarity-based mating scheme. 



 - 26 -

0

10

20

30

40

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

52
00

54
00

56
00

58
00

60
00

62
00

64
00

66
00

NSGA-II

N
um

be
r o

f r
un

s

Value of the range measure

NSGA-II with the mating scheme

 
 
Fig. 29.  Distribution of the values of the range measure over 100 runs of NSGA-II and its variants 

with the similarity-based mating scheme. 

 Let us discuss why the similarity-based mating scheme does not always work well for SPEA. The 

choice of extreme parents by the similarity-based mating scheme is to widen a population along the 

Pareto front as typically observed from the comparison between Fig. 26 and Fig. 27. When we have a 

population whose solutions are distributed along the Pareto front, the choice of extreme parents 

actually widens the population as intended. On the other hand, when we have a long population as in 

Fig. 30 rather than a wide population, poor solutions far from the Pareto front are more likely to be 

selected as parents by the similarity-based mating scheme. As a result, the choice of extreme parents 

does not work as intended (i.e., it does not widen the population but just slows down the convergence 

of solutions to the Pareto front). In this case, the incorporation of the similarity-based mating scheme 

into SPEA does not improve its performance. Such an undesired effect of the similarity-based mating 

scheme was dominant in about 40 runs out of the 100 runs of SPEA with the similarity-based mating 

scheme in Fig. 28 whereas a drastic diversity improvement was observed in the other runs. 
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Fig. 30.  Solutions in the 10th generation of a single run of SPEA with the similarity-based mating 

scheme with =),( βα (10, 10). 
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 In order to remove the above-mentioned undesired effect of the similarity-based mating scheme, 

we modify the procedure for the choice of the first parent (i.e., Parent A in Fig. 1) as follows: 

Candidates dominated by the average vector over α  candidates are not chosen as Parent A. That is, we 

choose the most dissimilar candidate from the center vector as Parent A after we remove the 

dominated candidates by the average vector. This modification has improved the performance of 

SPEA with the similarity-based mating scheme as shown in Fig. 31 where we observe a drastic 

increase in the range measure in almost all runs of SPEA with the modified mating scheme. The 

modified mating scheme still works very well for NSGA-II. Almost the same results as Fig. 29 are 

obtained by NSGA-II with the modified mating scheme. 
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Fig. 31.  Distribution of the values of the range measure over 100 runs of SPEA with the similarity-

based mating scheme before and after its modification. 

 Even after the modification, the similarity-based mating scheme does not always work well on 

any multiobjective optimization problems. In some cases, the bias toward extreme solutions together 

with the recombination of similar parents may degrade the performance of EMO algorithms especially 

the convergence of solutions to the center region of the Pareto front as shown in Fig. 22 and Fig. 24. 

Fig. 32 is a typical example of such a multiobjective optimization problem where the bias toward 

extreme solutions prevents EMO algorithms from finding good non-dominated solutions along the 

entire Pareto front. When we have a strong bias toward extreme solutions together with a strong bias 

toward the recombination of similar parents in Fig. 32, it is very difficult for EMO algorithms to find 

good non-dominated solutions in the center region marked B. In this case, the population will be 

divided into two sub-populations in the two extreme regions marked A and C. More sophisticated 

extensions to the similarity-based mating scheme are needed for handling multiobjective optimization 

problems such as Fig. 32. Even in this case, the recombination of similar parents with no bias toward 

extreme solutions may work well as shown for the two-objective flowshop scheduling problems in Fig. 

12. 
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Fig. 32.  Illustration of multiobjective optimization problems where the bias toward extreme solutions 

together with the recombination of similar parents has a bad effect on the performance of EMO 

algorithms. 

 

 

8. Conclusion 

 

 In this paper, we first demonstrated that the performance of NSGA-II was improved by 

recombining similar parents. More specifically, the recombination of similar parents improved the 

diversity of solutions without degrading their convergence to the Pareto front. The strength of the bias 

toward similar (or dissimilar) solutions can be specified by the parameter β  in the similarity-based 

mating scheme. Next we demonstrated that the performance of NSGA-II was further improved by 

recombining extreme and similar parents. It was shown that the bias toward extreme solutions has a 

positive effect on the diversity of solutions and a negative effect on the convergence to the Pareto front 

(especially around the center of the Pareto front). The strength of the bias toward extreme solutions 

can be specified by the parameter α  in the similarity-based mating scheme. Experimental results also 

showed the existence of the tradeoff between the diversity of solutions and the convergence to the 

Pareto front. Finally we demonstrated that good solution sets with respect to both the diversity and the 

convergence were obtained by changing the values of α  and β  during the execution of NSGA-II. 

 Experimental results in this paper demonstrated the usefulness of mating restriction especially 

with respect to the diversity of solutions. It was shown that the similarity-based mating scheme is a 

simple but powerful method for mating restriction. Of course, the similarity-based mating scheme 

does not always improve the performance of any EMO algorithms. Whereas the performance of 

NSGA-II was always improved by the similarity-based mating scheme as shown in Fig. 29, we did not 

observe the performance improvement of SPEA in some cases as shown in Fig. 28. After examining 

why the similarity-based mating scheme did not always work well for SPEA, we proposed a modified 

mating scheme using Pareto dominance relation between candidate solutions and its center vector. The 
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modified mating scheme almost always improved the performance of SPEA in terms of the diversity 

of solutions as shown in Fig. 31. 
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