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Abstract. This paper proposes an idea of using evolutionary multiobjective op-
timization (EMO) to optimize scalarizing functions. We assume that a scalariz-
ing function to be optimized has already been generated from an original mul-
tiobjective problem. Our task is to optimize the given scalarizing function. In 
order to efficiently search for its optimal solution without getting stuck in local 
optima, we generate a new multiobjective problem to which an EMO algorithm 
is applied. The point is to specify multiple objectives, which are similar to but 
different from the scalarizing function, so that the location of the optimal solu-
tion is near the center of the Pareto front of the generated multiobjective prob-
lem. The use of EMO algorithms helps escape from local optima. It also helps 
find a number of alternative solutions around the optimal solution. Difficulties 
of Pareto ranking-based EMO algorithms in the handling of many objectives 
are avoided by the use of similar objectives. In this paper, we first demonstrate 
that the performance of EMO algorithms as single-objective optimizers of sca-
larizing functions highly depends on the choice of multiple objectives. Based 
on this observation, we propose a specification method of multiple objectives 
for the optimization of a weighted sum fitness function. Experimental results 
show that our approach works very well in the search for not only a single op-
timal solution but also a number of good alternative solutions around the opti-
mal solution. Next we evaluate the performance of our approach in comparison 
with a hybrid EMO algorithm where a single-objective fitness evaluation 
scheme is probabilistically used in an EMO algorithm. Then we show that our 
approach can be also used to optimize other scalarizing functions (e.g., those 
based on constraint conditions and reference solutions). Finally we show that 
our approach is applicable not only to scalarizing functions but also other sin-
gle-objective optimization problems. 

1   Introduction 

Evolutionary multiobjective optimization (EMO) is one of the most active research 
areas in the field of evolutionary computation. EMO algorithms have been success-
fully applied to various application areas involving multiple objectives [2]. In some 
cases, EMO algorithms can outperform single-objective evolutionary algorithms even 
when they are used to solve single-objective problems. It was reported in some stud-



 

  

ies on multiobjectivization [15], [18] that better results were obtained by transforming 
single-objective problems into multiobjective ones (see [15] for multiobjectivization). 

Motivated by these studies on multiobjectivization, we examined the use of EMO 
algorithms to optimize the sum of multiple objectives in our former studies [8], [10]. 
We obtained promising results when we used NSGA-II [3] to optimize the simple 
sum fitness function for a two-objective 500-item (i.e., 2-500) knapsack problem of 
Zitzler & Thiele [19]. That is, NSGA-II outperformed its single-objective version in 
finding the optimal solution of the sum of the two objectives. This is because the use 
of NSGA-II helps escape from local optima.  

Usually EMO algorithms are very good at finding Pareto-optimal or near Pareto-
optimal solutions around the center of the Pareto front of a two-objective problem. 
EMO algorithms, however, are not always good at finding good solutions near the 
edge of the Pareto front. This is illustrated in Fig. 1 where NSGA-II was applied to 
the 2-500 knapsack problem [19] using two different settings. In Fig. 1 (a), standard 
parameter values were used (i.e., 0.8 crossover probability and 1/500 mutation prob-
ability). In this case, we observe a good convergence of solutions to the Pareto front. 
Actually NSGA-II outperformed its single-objective version in finding the optimal 
solution of the simple sum fitness function: fitness(x) = f1(x)+ f2(x). On the other 
hand, lower crossover and higher mutation probabilities were used in Fig. 1 (b) in 
order to increase the diversity of solutions. The increase in the diversity of solutions 
in Fig. 1 (b) was achieved at the cost of the deterioration in the convergence to the 
Pareto front. Experimental results in Fig. 1 suggest that the direct use of EMO algo-
rithms is not a good choice for finding the optimal solution of a weighted sum fitness 
function with very different weight values such as fitness(x) = 0.1 f1(x)+0.9 f2(x). 
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           (a) Crossover 0.8 and mutation 1/500.                  (b) Crossover 0.2 and mutation 5/500. 

Fig. 1. Experimental results of NSGA-II on the 2-500 knapsack problem using two different 
settings of the crossover and mutation probabilities. 

 
Another weakness of EMO algorithms is the difficulty in the handling of many ob-

jectives. Most EMO algorithms are based on Pareto ranking to evaluate the fitness of 
each solution. Pareto ranking-based EMO algorithms, however, do not work well on 



 

  

many-objective problems (e.g., see [6], [7], [14], [17]). This is because solutions 
rarely dominate other solutions in the presence of many objectives. Hughes [7] 
showed that multiple runs of single-objective optimizers outperformed a single run of 
EMO algorithms in their applications to many-objective problems. Similar results 
were also reported in Jaszkiewicz [14]. These results in the literature suggest that the 
use of EMO algorithms is not a good choice for finding the optimal solution of a 
scalarizing function generated from many objectives such as the simple sum fitness 
function of four objectives: fitness(x) = f1(x)+ f2(x)+ f3(x)+ f4(x). 

The above-mentioned experimental results can be summarized as follows: 

(1) EMO algorithms work well for optimizing a scalarizing function if the location of 
its optimal solution is near the center of the Pareto front of a two-objective opti-
mization problem. For example, EMO algorithms can easily find good solutions in 
the region A in Fig. 2 (a) as shown in Fig. 1 (a). 

(2) EMO algorithms do not always work well for optimizing a scalarizing function if 
the location of its optimal solution is near the edge of the Pareto front of a two-
objective optimization problem. For example, EMO algorithms do not always eas-
ily find good solutions in the region B or C in Fig. 2 (a) as shown in Fig. 1 (b).  

(3) EMO algorithms are not likely to work well for optimizing a scalarizing function 
if they are applied to a many-objective problem. 

In this paper, we propose an idea of using an EMO algorithm to efficiently opti-
mize a scalarizing function even in the last two cases: (2) and (3). We generate a new 
multiobjective problem to which an EMO algorithm is applied. The point is to specify 
multiple objectives, which are similar to but different from the given scalarizing func-
tion, so that the location of the optimal solution is near the center of the Pareto front 
of the generated multiobjective problem. Our idea is illustrated in Fig. 2 (b) where we 
generate two objectives g1 and g2 in order to efficiently find good solutions in the 
region B. Slow convergence of EMO algorithms in the case of many objectives is 
remedied by the use of similar objectives as we will show later in this paper. 
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       (a) Three regions in the objective space.              (b) Newly generated objectives: g1 and g2. 

Fig. 2. Illustration of the proposed idea. 



 

  

In this paper, we first demonstrate that the performance of EMO algorithms as sin-
gle-objective optimizers of scalarizing functions highly depends on the choice of 
multiple objectives in Section 2. Based on this observation, we propose a specifica-
tion method of multiple objectives for the optimization of a weighted sum fitness 
function in Section 3. Experimental results show that our approach works very well in 
the search for not only a single optimal solution but also a number of alternative solu-
tions around the optimal solution. We also show that EMO algorithms work well as 
single-objective optimizers even in the case of many objectives. In Section 4, the 
effectiveness of our approach is compared with a hybrid EMO algorithm where a 
single-objective fitness evaluation scheme is probabilistically used in an EMO algo-
rithm. Then we show that our approach is applicable not only to weighted sum fitness 
functions but also other scalarizing functions (e.g., those based on constraint condi-
tions and reference solutions) and more general single-objective optimization prob-
lems in Section 5. Finally we conclude this paper in Section 6. 

2   Optimization of Scalarizing Functions by EMO Algorithms 

In this section, we examine the effectiveness of EMO algorithms as single-objective 
optimizers of scalarizing functions through computational experiments on multiobjec-
tive 0/1 knapsack problems in Zitzler & Thiele [19]. As a representative EMO algo-
rithm, we use NSGA-II [3]. For comparison, we also use its single-objective version. 

2.1   Scalarizing Functions 

Let us consider the following k-objective maximization problem:  

Maximize ))(...,),(),(()( 21 xxxxf kfff= , (1) 

where f(x) is the k-dimensional objective vector, and x is the decision vector.  
One of the frequently used scalarizing functions is the weighted sum fitness func-

tion with the non-negative weight vector w = (w1 , w2 , ..., wk ): 

)(...)()()( 2211 xxxx kk fwfwfwfitness ⋅++⋅+⋅= . (2) 

We assume that the weight vector w is normalized (i.e., the sum of the weight values 
is 1). The weight vector w in (2) is usually supposed to be given by human users. 

The weighted sum fitness function with various weight vectors was successfully 
used to directly realize various search directions in multiobjective genetic local search 
(MOGLS) algorithms [9], [11], [12]. High performance of MOGLS of Jaszkiewicz 
[12] was reported [1], [13], [16]. The weighted sum fitness function was also used in 
hybrid or multi-stage EMO algorithms (e.g., see [8], [10], [16]). 

When a reference vector f * = ( f1*, f2*, ..., fk*) is given as a desired point in the ob-
jective space, the distance from f * can be used as a scalarizing function:  



 

  

))(,()( * xffx distancefitness = . (3) 

In this paper, we use the Euclidean distance. The incorporation of reference points 
into EMO algorithms was examined in Deb & Sundar [4]. 

Another scalarizing function is based on the transformation of some objectives into 
inequality conditions. Let us assume that the minimum requirement level for each of 
the first (k − 1) objectives is given as an inequality condition: 

iif ε≥)(x  for 1...,,2,1 −= ki . (4) 

The following scalarizing fitness function is usually formulated from the maximiza-
tion problem of fk (x) with the (k − 1) inequality conditions in (4): 
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iik fffitness xxx εα , (5) 

where α is the unit penalty with respect to the violation of the inequality conditions in 
(4). In computational experiments of this paper, we specified α  as α = 1. 

2.2   NSGA-II and Its Single-Objective Version 

NSGA-II is an elitist EMO algorithm with the (μ + λ) -ES generation update mecha-
nism. The outline of NSGA-II can be written as follows:  

[NSGA-II] 
Step 1: P = Initialize(P) 
Step 2: While the stopping condition is not satisfied, do 
Step 3:           P’ = Parent Selection(P) 
Step 4:           P’’ = Genetic Operations(P’) 
Step 5:           P = Generation Update(PU P’’) 
Step 6: End while 
Step 7: Return Non-dominated(P) 

In NSGA-II, each solution in the current population P is evaluated using Pareto 
ranking and a crowding measure in the following manner for parent selection in Step 
3. First the best rank is assigned to all the non-dominated solutions in the current 
population. Solutions with the best rank are tentatively removed from the current 
population. Next the second best rank is assigned to all the non-dominated solutions 
in the remaining population. In this manner, ranks are assigned to all solutions in the 
current population. The rank of each solution is used as the primary criterion in par-
ent selection. A crowding measure is used to compare solutions with the same rank as 
the secondary criterion in parent selection (for details, see [2], [3]). 

A prespecified number of pairs of parent solutions are selected from the current 
population by binary tournament selection to form a parent population P’ in Step 3. 



 

  

An offspring solution is generated from each pair of parent solutions by crossover 
and mutation to form an offspring population P’’ in Step 4. The current population P 
and the offspring population P’’ are merged to form an enlarged population. Each 
solution in the enlarged population is evaluated by Pareto ranking and the crowding 
measure as in the parent selection phase. A prespecified number of the best solutions 
are chosen from the enlarged population as the next population P in Step 5. Usually 
the number of offspring solutions is the same as the population size (i.e., μ = λ in the 
(μ + λ) -ES generation update mechanism). 

We can easily implement a single-objective version (single-objective genetic algo-
rithm: SOGA) of NSGA-II by using a scalarizing fitness function for parent selection 
and generation update. Such an SOGA has the (μ + λ) -ES generation update mecha-
nism with μ = λ. We compare NSGA-II with SOGA through computational experi-
ments on multiobjective 0/1 knapsack problems in Zitzler & Thiele [19]. 

2.3   Computational Experiments 

As in Fig. 1 (a), we applied NSGA-II to the 2-objective 500-item (i.e., 2-500) knap-
sack problem [19] using the following parameter specifications: 

Population size: 200 (i.e., μ = λ  = 200), 
Crossover probability: 0.8 (uniform crossover), 
Mutation probability: 1/500 (bit-flip mutation) where 500 is string length, 
Termination condition: 2000 generations. 

Average results over 50 runs of NSGA-II are summarized as the 50% attainment 
surface [5] in Fig. 3 (a) where average results of SOGA are also shown for compari-
son. The weight vector, the reference vector and the minimum requirement level were 
specified in SOGA as w = (0.5, 0.5), f * = (19250, 19250) and ε1 = 18750 in Fig. 3 (a), 
respectively. We can observe that NSGA-II outperformed SOGA in Fig. 3 (a). 
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 (a) Comparison between NSGA-II and SOGA.           (b) SOGA with the weighted sum fitness. 

Fig. 3. Experimental results of NSGA-II and SOGA on the 2-500 knapsack problem. 



 

  

In Fig. 3 (b), we show two intermediate and final populations during a single run 
of SOGA with the weighted sum fitness function with w = (0.5, 0.5). It should be 
noted that SOGA in Fig. 3 (b) was executed under the same parameter specifications 
as NSGA-II in Fig. 1 (a). From the comparison between these two figures, we can see 
that NSGA-II maintained a larger diversity of solutions. The decrease in the diversity 
of solutions during the execution of SOGA seems to be the main reason of the infe-
rior performance of SOGA in Fig. 3 (a) in comparison with NSGA-II.  

NSGA-II and SOGA are further compared with each other in Fig. 4 (a) for the 2-
500 knapsack problem using the weighted sum fitness function with w = (0.5, 0.5). 
Fig. 4 (a) shows the distribution of obtained solutions from 50 runs of each algorithm. 
Whereas good solutions were almost always obtained by NSGA-II, the quality of the 
final solution by each run of SOGA seems to highly depend on the initial population.  

In Fig. 3 (a) and Fig. 4 (a), NSGA-II outperformed SOGA when they were used to 
optimize the three scalarizing functions. The advantage of NSGA-II over SOGA, 
however, disappears as the increase in the number of objectives. In Fig. 4 (b), we 
show experimental results on the four-objective knapsack problem. The performance 
of NSGA-II as a single-objective optimizer was deteriorated in Fig. 4 by the increase 
in the number of objectives from two in Fig. 4 (a) to four in Fig. 4 (b). Pareto rank-
ing-based EMO algorithms usually do not work well on many-objective problems.  
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        (a) Results on the two-objective problem.          (b) Results on the four-objective problem. 

Fig. 4. Comparison between NSGA-II and SOGA. The 2-500 knapsack problem with w = (0.5, 
0.5) in (a) and the 4-500 knapsack problem with w = (0.25, 0.25, 0.25, 0.25) in (b). 

The advantage of NSGA-II over SOGA also disappears when the location of the 
optimal solution of a scalarizing function is near the edge of the Pareto front as we 
have already explained using Fig. 1. For example, NSGA-II did not work well on the 
2-500 knapsack problem as a single-objective optimizer of scalarizing functions in 
the following cases: w = (0.1, 0.9), f * = (16750, 20500) and ε1 = 17000. In each case, 
the location of the optimal solution is close to the top-left edge of the Pareto front 
(see Fig. 1 for the spatial relation between the obtained solutions by NSGA-II and the 
Pareto front). NSGA-II had difficulties in efficiently searching for good solutions 
near the edge of the Pareto front in comparison with SOGA in these cases. 

In the above-mentioned three difficult cases, the performance of NSGA-II as a sin-
gle-objective optimizer was improved when we used the following two objectives:  



 

  

)(5.0)(5.0)( 211 xxx ffg += , (6) 

)(3.1)(3.0)( 212 xxx ffg +−= , (7) 

where f1(x) and f2(x) are the original two objectives of the 2-500 knapsack problem. 
Average results over 50 runs of NSGA-II and SOGA are summarized in Fig. 5 (a) 
where NSGA-II was applied to the two-objective problem in (6) and (7). In Fig. 5 (a), 
NSGA-II outperformed SOGA in their applications to the optimization of the scalar-
izing functions in the above-mentioned three difficult cases. Fig. 5 (b) shows two 
intermediate and final populations during a single run of NSGA-II. The multiobjec-
tive search of NSGA-II was appropriately driven toward the desired region by the 
two objectives in (6) and (7) as we can see from the comparison of Fig. 5 (b) with Fig. 
1 (a). As a result, NSGA-II found better solutions of the scalarizing functions than 
SOGA in Fig. 5 (a). 

Experimental results in Fig. 5 suggest that the performance of NSGA-II as a sin-
gle-objective optimizer highly depends on the specification of multiple objectives. In 
the next section, we propose a specification method of multiple objectives for the 
optimization of a weighted sum fitness function. The proposed idea can be used for 
other scalarizing functions as shown in Section 4. 
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 (a) Comparison between NSGA-II and SOGA.           (b) NSGA-II with the new two objectives.  

Fig. 5. Experimental results of NSGA-II and SOGA on the 2-500 knapsack problem. 

3   Handling of Weighted Sum Fitness Functions 

When we use EMO algorithms to optimize a scalarizing function, it is essential to 
generate multiple objectives so that the location of the optimal solution is near the 
center of the Pareto front of the generated multiobjective problem. In this section, we 
show how we can generate such a multiobjective problem to optimize a weighted sum 
fitness function. 



 

  

3.1   Weighted Sum Fitness Function of Two Objectives 

Our task in this subsection is to optimize the weighted sum of two objectives: 

)()()( 2211 xxx fwfwfitness ⋅+⋅= . (8) 

Two objectives can be newly generated by changing the weight vector as follows: 

)()()()()( 22111 xxx fwfwg ββ −++= , (9) 

)()()()()( 22112 xxx fwfwg ββ ++−= . (10) 

For example, the weight vectors of the newly generated two objectives are specified 
as (0.2, 0.8) and (0.4, 0.6) from the weight vector w = (0.3, 0.7) when β = 0.1. 

Using various specifications of β, we applied NSGA-II to the two-objective prob-
lem in (9) and (10) generated from the weighted sum fitness function with w = (0.3, 
0.7) for the 2-500 knapsack problem. Average results over 50 runs of NSGA-II are 
summarized in Fig. 6 (a). It should be noted that NSGA-II with β = 0 is the same as 
SOGA because g1(x) and g2(x) become the same as the original weighted sum fitness 
function. We also show experimental results for the case of w = (0.1, 0.9) in Fig. 6 (b). 
We can observe in Fig. 6 that the multiobjectivization by (9) and (10) clearly im-
proved the quality of the obtained solutions. We can also observe that the perform-
ance of NSGA-II as a single-objective optimizer was not sensitive to the value of β. 
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            (a) Average results with w = (0.3, 0.7).                (b) Average results with w = (0.1, 0.9).  

Fig. 6. Weighted sum optimization by NSGA-II for the 2-500 knapsack problem. 

The multiobjectivization by (9) and (10) is effective in the search not only for a 
single optimal solution but also for multiple good solutions around the optimal solu-
tion. In each plot of Fig. 7, we show two intermediate and final populations during a 
single run of NSGA-II for each of the two cases: β = 0.3 and β = 0.5. In both cases, 
the weight vector of the original weighted sum fitness function was specified as w = 
(0.3, 0.7). In Fig. 7, multiple solutions were obtained along the Pareto front of the 
original 2-500 knapsack problem. Moreover, the spread of the finally obtained solu-
tion set in each plot depended on the value of β. These observations suggest that the 



 

  

multiobjectivization by (9) and (10) can drive the population toward an appropriate 
search region and adjust its diversity. This means that the proposed idea has a poten-
tial usefulness as an approach to the focused search by EMO algorithms.  
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                  (a) β = 0.3 with w = (0.3, 0.7).                                  (b) β = 0.5 with w = (0.3, 0.7).  

Fig. 7. Behavior of NSGA-II with the newly generated two objectives from the 2-500 problem. 

3.2   Weighted Sum Fitness Function of Many Objectives 

The proposed idea in the previous subsection can be easily generalized to the case of 
more than two objectives. Let us consider the weighted sum of three objectives with 
the weight vector w = (w1 , w2 , w3). Three objectives can be generated by changing 
the weight vector w = (w1 , w2 , w3) toward the three directions: (1, 0, 0), (0, 1, 0) and 
(0, 0, 1). More specifically, the weight vectors of the three objectives are generated in 
the following manner: 

||||A a
aww ⋅+= β ,  

||||B b
bww ⋅+= β ,  and  

||||C c
cww ⋅+= β , (11) 

where || a || denotes the length of the vector, and a, b, c are specified as follows: 

wa −= )0,0,1( ,  wb −= )0,1,0( ,  and  wc −= )1,0,0( . (12) 

This method can be directly generalized to the case with more objectives. We ap-
plied NSGA-II to the weighted sum fitness function with w = (0.8, 0.1, 0.1) for the 3-
500 knapsack problem. We also applied SOGA to the same problem. When we used 
NSGA-II, we generated a new three-objective problem using (11) and (12) with β = 
0.2. The distribution of the obtained solutions by 50 runs of each algorithm is shown 
in Fig. 8 (a). We can see from Fig. 8 (a) that NSGA-II outperformed SOGA in their 
applications to the optimization of the weighted sum of the three objectives. It should 



 

  

be noted that NSGA-II did not work well for the same task as a single-objective opti-
mizer when it was applied to the original 3-500 knapsack problem.  

We also performed the same computational experiments on the weighted sum fit-
ness function with w = (0.25, 0.25, 0.25, 0.25) for the 4-500 knapsack problem. Ex-
perimental results are shown in Fig. 8 (b). As in Fig. 8 (a), NSGA-II outperformed 
SOGA in Fig. 8 (b). The comparison between Fig. 4 (b) and Fig. 8 (b) clearly demon-
strates the effect of the proposed idea on the performance of NSGA-II as a single-
objective optimizer of the weighted sum fitness function. It should be noted that the 
difficulty of Pareto ranking-based EMO algorithms in the handling of many objec-
tives was remedied by the use of similar objectives in our approach as shown in Fig. 8.  
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Fig. 8. Weighted sum optimization by NSGA-II using the proposed approach with β = 0.2. 
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              (a) Projection onto the f1-f2 space.                         (b) Projection onto the f3-f4 space.  

Fig. 9. Obtained solutions by a single run of NSGA-II on the modified 4-500 problem. 

As shown in Fig. 8 (b), NSGA-II worked very well as a single-objective optimizer 
to search for the optimal solution of the weighted sum of the four objectives of the 4-
500 knapsack problem. It also has the ability to find multiple non-dominated solu-
tions as an EMO algorithm. In Fig. 9, we show the obtained non-dominated solution 
set by a single run of NSGA-II on the modified 4-500 knapsack problem, which was 



 

  

generated from the 4-500 knapsack problem with w = (0.25, 0.25, 0.25, 0.25) using 
(11) and (12) with β = 0.2. Each plot in Fig. 9 shows the projection of the obtained 
non-dominated solution set from the original four-dimensional objective space onto a 
two-dimensional space. From Fig. 9, we can see that a number of non-dominated 
solutions were obtained by a single run of NSGA-II. 

4   Application of a Hybrid EMO Algorithm 

In our former studies [8], [10], we proposed a hybrid EMO algorithm where a 
weighted sum fitness function was probabilistically used in NSGA-II. We introduced 
two probabilities PPS and PGU, which specified how often the weighted sum fitness 
function was used for parent selection and generation update in the hybrid EMO 
algorithm, respectively. In this section, we compare our approach (i.e., application of 
NSGA-II to modified multiobjective problems) with the hybrid EMO algorithm. 

One extreme case of the hybrid EMO algorithm with PPS = PGU = 0.0 is exactly 
the same as NSGA-II since the weighted sum fitness function is never used. Another 
extreme case with PPS = PGU = 1.0 is the same as SOGA since the weighted sum 
fitness function is always used. The balance between single-objective and multiobjec-
tive search can be adjusted between the two extreme cases using the two probabilities. 

In our computational experiments in this section, we examined the following 
11x11 combinations of the two probabilities: 

Probability PPS: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
Probability PGU: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. 

We applied the hybrid EMO algorithm to the 4-500 knapsack problem to optimize 
the weighted sum fitness function with the weight vector w = (0.25, 0.25, 0.25, 0.25). 
This weighted sum fitness function was used for parent selection with the probability 
PPS and generation update with the probability PGU in the hybrid EMO algorithm. 
When the weighted sum fitness function was not used, the multiobjective fitness 
evaluation scheme in NSGA-II was invoked to evaluate each solution based on the 
original four objectives in the 4-500 knapsack problem. Average results over 50 runs 
are summarized in Fig. 10 (a). The bottom-left bar with PPS = PGU = 0.0 shows the 
result of NSGA-II while the top-right bar with PPS = PGU = 1.0 shows the result of 
SOGA. Whereas the performance of NSGA-II was very poor in Fig. 10 (a), it was 
significantly improved by the probabilistic use of the weighted sum fitness function. 
Better results than SOGA were obtained by the hybrid EMO algorithm in the top-left 
corner with PPS = 0.0 and PGU = 1.0 in Fig. 10 (a). We also applied the hybrid EMO 
algorithm to the same problem after modifying the 4-500 knapsack problem using the 
proposed approach with β = 0.2. Experimental results were shown in Fig. 10 (b) 
where good results were obtained even when the weighted sum fitness function was 
not used (i.e., the bottom-left bar with PPS = PGU = 0.0). That is, the hybridization is 
not necessary in Fig. 10 (b) where we modified the 4-500 knapsack problem by the 
proposed approach. Moreover, we can observe that better results were obtained in Fig. 
10 (b) after the modification of the 4-500 problem than Fig. 10 (a). 
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                     (a) Original 4-500 problem.                                (b) Modified 4-500 problem.  

Fig. 10. Effect of our approach on the performance of the hybrid EMO algorithm. 

5   Handling of Other Scalarizing Fitness Functions 

The basic idea of our approach is to generate multiple objectives, which are similar to 
but different from the given scalarizing function, so that the location of its optimal 
solution is near the center of the Pareto front of the generated multiobjective problem. 
This idea can be also implemented for other scalarizing functions. 

For example, let us assume that we have a reference vector (19000, 20000) for the 
2-500 knapsack problem. In this case, we can generate two objectives by specifying 
two reference vectors around (19000, 20000). Experimental results with newly gener-
ated two reference vectors (18000, 21000) and (20000, 19000) are shown in Fig. 11 
(a). On the other hand, when we have a minimum requirement level (e.g., 18000) for 
the first objective of the 2-500 knapsack problem, we can generate two objectives by 
specifying two minimum requirement levels around 18000 (e.g., 17000 and 19000). 
Experimental results with the newly generated minimum requirement levels 17000 
and 19000 are shown in Fig. 11 (b). We can observe in Fig. 11 that the search of 
NSGA-II was appropriately directed by the newly generated multiple objectives. We 
can also observe that good alternative solutions were obtained around the optimal 
solution of the original scalarizing function in each plot in Fig. 11. 

Our approach is applicable not only to the optimization of scalarizing function but 
also to other optimization problems. For example, let us consider the maximization of 
f(x). If we have another objective g (x), we can generate two objectives as  f(x) + 

⋅w g (x) and f(x) − ⋅w g (x). In this case, the choice of g (x) is not so important be-
cause its effect can be adjusted by the weight w. The direct use of f(x) and g (x) as 
two objectives is not a good strategy for optimizing f(x) because the optimal solution 
of f(x) is located at the edge of the Pareto front of the two-objective problem with 
f(x) and g (x). In Fig. 12, we show experimental results on the optimization of f2(x) of 
the 2-500 knapsack problem. We used f1(x) and f2(x) as two objectives in Fig. 12 (a), 
which is not a good strategy. On the other hand, we used f2(x) + 0.3 f1(x) and f2(x) − 
0.3 f1(x) in Fig. 12 (b), which is a good strategy as multiobjectivization.  
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    (a) Results based on two reference vectors.          (b) Results based on two requirement levels. 

Fig. 11. Experimental results on the 2-500 knapsack problem using other scalarizing functions. 
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           (a) Use of the original 2-500 problem.               (b) Use of the modified 2-500 problem.  

Fig. 12. Optimization of f2(x) of the 2-500 knapsack problem by NSGA-II. 

6   Conclusions 

In this paper, we proposed an idea of using an EMO algorithm to optimize a scalariz-
ing function. Our approach generates multiple objectives, which are similar to but 
different from the given scalarizing function, so that the location of the optimal solu-
tion of the scalarizing function is near the center of the Pareto front of the generated 
multiobjective problem. The effectiveness of our approach was examined through 
various computational experiments using NSGA-II. Experimental results showed that 
the performance of NSGA-II as a single objective optimizer highly depends on the 
choice of multiple objectives. One interesting observation is that NSGA-II worked 
very well even when it was applied to a four-objective 0/1 knapsack problem gener-
ated by our approach (whereas NSGA-II usually does not work well for many-
objective problems). This is because our approach generates similar objectives. 

This work was partially supported by Grant-in-Aid for Scientific Research on Pri-
ority Areas (18049065) and for Scientific Research (B) (17300075). 



 

  

References 

1. Colombo, G., Mumford, C. L.: Comparing Algorithms, Representations and Operators for 
the Multi-Objective Knapsack Problem. Proc. of 2005 Congress on Evolutionary Computa-
tion (2005) 2241-2247 

2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, 
Chichester (2001) 

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic 
Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6 (2002) 182-197 

4. Deb, K., Sundar, J.: Reference Point Based Multi-Objective Optimization Using Evolution-
ary Algorithms. Proc. of Genetic and Evolutionary Computation Conference (2006) 635-
642 

5. Fonseca, C. M., Fleming, P. J.: On the Performance Assessment and Comparison of Sto-
chastic Multiobjective Optimizers. Lecture Notes in Computer Science, Vol. 114: PPSN IV. 
Springer, Berlin (1996) 584-593 

6. Hughes, E. J.: Multiple Single Objective Sampling. Proc. of 2003 Congress on Evolutionary 
Computation (2003) 2678-2684 

7. Hughes, E. J.: Evolutionary Many-Objective Optimization: Many Once or One Many?  Proc. 
of 2005 Congress on Evolutionary Computation (2005) 222-227 

8. Ishibuchi, H., Doi, T., Nojima, Y.: Incorporation of Scalarizing Fitness Functions into Evo-
lutionary Multiobjective Optimization Algorithms. Lecture Notes in Computer Science, Vol. 
4193: PPSN IX. Springer, Berlin (2006) 493-502 

9. Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Ap-
plication to Flowshop Scheduling. IEEE Trans. on Systems, Man, and Cybernetics - Part C: 
Applications and Reviews 28 (1998) 392-403 

10. Ishibuchi, H., Nojima, Y., Doi, T.: Application of Multiobjective Evolutionary Algorithms 
to Single-Objective Optimization Problems. Abstract Booklet of 7th International Confer-
ence on Multi-Objective Programming and Goal Programming (2006) 4 pages 

11. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between Genetic Search and Local Search 
in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Trans. 
on Evolutionary Computation 7 (2003) 204-223 

12. Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimization. 
European Journal of Operational Research 137 (2002) 50-71 

13. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 
0/1 Knapsack Problem - A Comparative Experiment. IEEE Trans. on Evolutionary Compu-
tation 6 (2002) 402-412 

14. Jaszkiewicz, A.: On the Computational Efficiency of Multiple Objective Metaheuristics: 
The Knapsack Problem Case Study. European Journal of Operational Research 158 (2004) 
418-433 

15. Knowles, J. D., Watson, R. A., Corne, D. W.: Reducing Local Optima in Single-Objective 
Problems by Multi-Objectivization. Lecture Notes in Computer Science, Vol. 1993: EMO 
2001. Springer, Berlin (2001) 269-283 

16. Mumford, C. L.: A Hierarchical Solve-and-Merge Framework for Multi-Objective Optimi-
zation. Proc. of 2005 Congress on Evolutionary Computation (2005) 2241-2247 

17. Purshouse, R. C., Fleming, P. J.: Evolutionary Many-Objective Optimization: An Explora-
tory Analysis. Proc. of 2003 Congress on Evolutionary Computation (2003) 2066-2073 

18. Watanabe, S., Sakakibara K.: Multi-Objective Approaches in a Single-Objective Optimiza-
tion Environment. Proc. of 2005 Congress on Evolutionary Computation (2005) 1714-1721 

19. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study 
and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3 (1999) 257-
271 


