

Optimization of Scalarizing Functions through
Evolutionary Multiobjective Optimization

Hisao Ishibuchi and Yusuke Nojima

Department of Computer Science and Intelligent Systems, Graduate School of Engineering,
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

hisaoi@cs.osakafu-u.ac.jp, nojima@cs.osakafu-u.ac.jp
http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e

Abstract. This paper proposes an idea of using evolutionary multiobjective op-
timization (EMO) to optimize scalarizing functions. We assume that a scalariz-
ing function to be optimized has already been generated from an original mul-
tiobjective problem. Our task is to optimize the given scalarizing function. In
order to efficiently search for its optimal solution without getting stuck in local
optima, we generate a new multiobjective problem to which an EMO algorithm
is applied. The point is to specify multiple objectives, which are similar to but
different from the scalarizing function, so that the location of the optimal solu-
tion is near the center of the Pareto front of the generated multiobjective prob-
lem. The use of EMO algorithms helps escape from local optima. It also helps
find a number of alternative solutions around the optimal solution. Difficulties
of Pareto ranking-based EMO algorithms in the handling of many objectives
are avoided by the use of similar objectives. In this paper, we first demonstrate
that the performance of EMO algorithms as single-objective optimizers of sca-
larizing functions highly depends on the choice of multiple objectives. Based
on this observation, we propose a specification method of multiple objectives
for the optimization of a weighted sum fitness function. Experimental results
show that our approach works very well in the search for not only a single op-
timal solution but also a number of good alternative solutions around the opti-
mal solution. Next we evaluate the performance of our approach in comparison
with a hybrid EMO algorithm where a single-objective fitness evaluation
scheme is probabilistically used in an EMO algorithm. Then we show that our
approach can be also used to optimize other scalarizing functions (e.g., those
based on constraint conditions and reference solutions). Finally we show that
our approach is applicable not only to scalarizing functions but also other sin-
gle-objective optimization problems.

1 Introduction

Evolutionary multiobjective optimization (EMO) is one of the most active research
areas in the field of evolutionary computation. EMO algorithms have been success-
fully applied to various application areas involving multiple objectives [2]. In some
cases, EMO algorithms can outperform single-objective evolutionary algorithms even
when they are used to solve single-objective problems. It was reported in some stud-

nojima
テキストボックス
H. Ishibuchi and Y. Nojima: Optimization of scalarizing functions through evolutionary multiobjective optimization, Proc. Fourth International Conference on Evolutionary Multi-Criterion Optimization (Matsushima/Sendai, Japan) (March 5-8, 2007) (in press)

ies on multiobjectivization [15], [18] that better results were obtained by transforming
single-objective problems into multiobjective ones (see [15] for multiobjectivization).

Motivated by these studies on multiobjectivization, we examined the use of EMO
algorithms to optimize the sum of multiple objectives in our former studies [8], [10].
We obtained promising results when we used NSGA-II [3] to optimize the simple
sum fitness function for a two-objective 500-item (i.e., 2-500) knapsack problem of
Zitzler & Thiele [19]. That is, NSGA-II outperformed its single-objective version in
finding the optimal solution of the sum of the two objectives. This is because the use
of NSGA-II helps escape from local optima.

Usually EMO algorithms are very good at finding Pareto-optimal or near Pareto-
optimal solutions around the center of the Pareto front of a two-objective problem.
EMO algorithms, however, are not always good at finding good solutions near the
edge of the Pareto front. This is illustrated in Fig. 1 where NSGA-II was applied to
the 2-500 knapsack problem [19] using two different settings. In Fig. 1 (a), standard
parameter values were used (i.e., 0.8 crossover probability and 1/500 mutation prob-
ability). In this case, we observe a good convergence of solutions to the Pareto front.
Actually NSGA-II outperformed its single-objective version in finding the optimal
solution of the simple sum fitness function: fitness(x) = f1(x)+ f2(x). On the other
hand, lower crossover and higher mutation probabilities were used in Fig. 1 (b) in
order to increase the diversity of solutions. The increase in the diversity of solutions
in Fig. 1 (b) was achieved at the cost of the deterioration in the convergence to the
Pareto front. Experimental results in Fig. 1 suggest that the direct use of EMO algo-
rithms is not a good choice for finding the optimal solution of a weighted sum fitness
function with very different weight values such as fitness(x) = 0.1 f1(x)+0.9 f2(x).

f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2 2000th generation
50th generation
20th generation

Pareto
 front

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2 2000th generation
50th generation
20th generation

Pareto
 front

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 (a) Crossover 0.8 and mutation 1/500. (b) Crossover 0.2 and mutation 5/500.

Fig. 1. Experimental results of NSGA-II on the 2-500 knapsack problem using two different
settings of the crossover and mutation probabilities.

Another weakness of EMO algorithms is the difficulty in the handling of many ob-

jectives. Most EMO algorithms are based on Pareto ranking to evaluate the fitness of
each solution. Pareto ranking-based EMO algorithms, however, do not work well on

many-objective problems (e.g., see [6], [7], [14], [17]). This is because solutions
rarely dominate other solutions in the presence of many objectives. Hughes [7]
showed that multiple runs of single-objective optimizers outperformed a single run of
EMO algorithms in their applications to many-objective problems. Similar results
were also reported in Jaszkiewicz [14]. These results in the literature suggest that the
use of EMO algorithms is not a good choice for finding the optimal solution of a
scalarizing function generated from many objectives such as the simple sum fitness
function of four objectives: fitness(x) = f1(x)+ f2(x)+ f3(x)+ f4(x).

The above-mentioned experimental results can be summarized as follows:

(1) EMO algorithms work well for optimizing a scalarizing function if the location of
its optimal solution is near the center of the Pareto front of a two-objective opti-
mization problem. For example, EMO algorithms can easily find good solutions in
the region A in Fig. 2 (a) as shown in Fig. 1 (a).

(2) EMO algorithms do not always work well for optimizing a scalarizing function if
the location of its optimal solution is near the edge of the Pareto front of a two-
objective optimization problem. For example, EMO algorithms do not always eas-
ily find good solutions in the region B or C in Fig. 2 (a) as shown in Fig. 1 (b).

(3) EMO algorithms are not likely to work well for optimizing a scalarizing function
if they are applied to a many-objective problem.

In this paper, we propose an idea of using an EMO algorithm to efficiently opti-
mize a scalarizing function even in the last two cases: (2) and (3). We generate a new
multiobjective problem to which an EMO algorithm is applied. The point is to specify
multiple objectives, which are similar to but different from the given scalarizing func-
tion, so that the location of the optimal solution is near the center of the Pareto front
of the generated multiobjective problem. Our idea is illustrated in Fig. 2 (b) where we
generate two objectives g1 and g2 in order to efficiently find good solutions in the
region B. Slow convergence of EMO algorithms in the case of many objectives is
remedied by the use of similar objectives as we will show later in this paper.

A

B

C

f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2

Pareto
 front

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2

Pareto
 front

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

B

g1

g2

 (a) Three regions in the objective space. (b) Newly generated objectives: g1 and g2.

Fig. 2. Illustration of the proposed idea.

In this paper, we first demonstrate that the performance of EMO algorithms as sin-
gle-objective optimizers of scalarizing functions highly depends on the choice of
multiple objectives in Section 2. Based on this observation, we propose a specifica-
tion method of multiple objectives for the optimization of a weighted sum fitness
function in Section 3. Experimental results show that our approach works very well in
the search for not only a single optimal solution but also a number of alternative solu-
tions around the optimal solution. We also show that EMO algorithms work well as
single-objective optimizers even in the case of many objectives. In Section 4, the
effectiveness of our approach is compared with a hybrid EMO algorithm where a
single-objective fitness evaluation scheme is probabilistically used in an EMO algo-
rithm. Then we show that our approach is applicable not only to weighted sum fitness
functions but also other scalarizing functions (e.g., those based on constraint condi-
tions and reference solutions) and more general single-objective optimization prob-
lems in Section 5. Finally we conclude this paper in Section 6.

2 Optimization of Scalarizing Functions by EMO Algorithms

In this section, we examine the effectiveness of EMO algorithms as single-objective
optimizers of scalarizing functions through computational experiments on multiobjec-
tive 0/1 knapsack problems in Zitzler & Thiele [19]. As a representative EMO algo-
rithm, we use NSGA-II [3]. For comparison, we also use its single-objective version.

2.1 Scalarizing Functions

Let us consider the following k-objective maximization problem:

Maximize))(...,),(),(()(21 xxxxf kfff= , (1)

where f(x) is the k-dimensional objective vector, and x is the decision vector.
One of the frequently used scalarizing functions is the weighted sum fitness func-

tion with the non-negative weight vector w = (w1 , w2 , ..., wk):

)(...)()()(2211 xxxx kk fwfwfwfitness ⋅++⋅+⋅= . (2)

We assume that the weight vector w is normalized (i.e., the sum of the weight values
is 1). The weight vector w in (2) is usually supposed to be given by human users.

The weighted sum fitness function with various weight vectors was successfully
used to directly realize various search directions in multiobjective genetic local search
(MOGLS) algorithms [9], [11], [12]. High performance of MOGLS of Jaszkiewicz
[12] was reported [1], [13], [16]. The weighted sum fitness function was also used in
hybrid or multi-stage EMO algorithms (e.g., see [8], [10], [16]).

When a reference vector f * = (f1*, f2*, ..., fk*) is given as a desired point in the ob-
jective space, the distance from f * can be used as a scalarizing function:

))(,()(* xffx distancefitness = . (3)

In this paper, we use the Euclidean distance. The incorporation of reference points
into EMO algorithms was examined in Deb & Sundar [4].

Another scalarizing function is based on the transformation of some objectives into
inequality conditions. Let us assume that the minimum requirement level for each of
the first (k − 1) objectives is given as an inequality condition:

iif ε≥)(x for 1...,,2,1 −= ki . (4)

The following scalarizing fitness function is usually formulated from the maximiza-
tion problem of fk (x) with the (k − 1) inequality conditions in (4):

∑
−

=
−−=

1

1
)}(,0max{)()(

k

i
iik fffitness xxx εα , (5)

where α is the unit penalty with respect to the violation of the inequality conditions in
(4). In computational experiments of this paper, we specified α as α = 1.

2.2 NSGA-II and Its Single-Objective Version

NSGA-II is an elitist EMO algorithm with the (µ + λ) -ES generation update mecha-
nism. The outline of NSGA-II can be written as follows:

[NSGA-II]
Step 1: P = Initialize(P)
Step 2: While the stopping condition is not satisfied, do
Step 3: P’ = Parent Selection(P)
Step 4: P’’ = Genetic Operations(P’)
Step 5: P = Generation Update(P∪ P’’)
Step 6: End while
Step 7: Return Non-dominated(P)

In NSGA-II, each solution in the current population P is evaluated using Pareto
ranking and a crowding measure in the following manner for parent selection in Step
3. First the best rank is assigned to all the non-dominated solutions in the current
population. Solutions with the best rank are tentatively removed from the current
population. Next the second best rank is assigned to all the non-dominated solutions
in the remaining population. In this manner, ranks are assigned to all solutions in the
current population. The rank of each solution is used as the primary criterion in par-
ent selection. A crowding measure is used to compare solutions with the same rank as
the secondary criterion in parent selection (for details, see [2], [3]).

A prespecified number of pairs of parent solutions are selected from the current
population by binary tournament selection to form a parent population P’ in Step 3.

An offspring solution is generated from each pair of parent solutions by crossover
and mutation to form an offspring population P’’ in Step 4. The current population P
and the offspring population P’’ are merged to form an enlarged population. Each
solution in the enlarged population is evaluated by Pareto ranking and the crowding
measure as in the parent selection phase. A prespecified number of the best solutions
are chosen from the enlarged population as the next population P in Step 5. Usually
the number of offspring solutions is the same as the population size (i.e., µ = λ in the
(µ + λ) -ES generation update mechanism).

We can easily implement a single-objective version (single-objective genetic algo-
rithm: SOGA) of NSGA-II by using a scalarizing fitness function for parent selection
and generation update. Such an SOGA has the (µ + λ) -ES generation update mecha-
nism with µ = λ. We compare NSGA-II with SOGA through computational experi-
ments on multiobjective 0/1 knapsack problems in Zitzler & Thiele [19].

2.3 Computational Experiments

As in Fig. 1 (a), we applied NSGA-II to the 2-objective 500-item (i.e., 2-500) knap-
sack problem [19] using the following parameter specifications:

Population size: 200 (i.e., µ = λ = 200),
Crossover probability: 0.8 (uniform crossover),
Mutation probability: 1/500 (bit-flip mutation) where 500 is string length,
Termination condition: 2000 generations.

Average results over 50 runs of NSGA-II are summarized as the 50% attainment
surface [5] in Fig. 3 (a) where average results of SOGA are also shown for compari-
son. The weight vector, the reference vector and the minimum requirement level were
specified in SOGA as w = (0.5, 0.5), f * = (19250, 19250) and ε1 = 18750 in Fig. 3 (a),
respectively. We can observe that NSGA-II outperformed SOGA in Fig. 3 (a).

f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2

Pareto
 front

Weighted sum method
Penalty function method
Reference vector method
50% attainment surface

 by NSGA-II

17500 18000 18500 19000 19500
18000

18500

19000

19500

20000

 f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2 2000th generation
50th generation
20th generation

Pareto
 front

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 (a) Comparison between NSGA-II and SOGA. (b) SOGA with the weighted sum fitness.

Fig. 3. Experimental results of NSGA-II and SOGA on the 2-500 knapsack problem.

In Fig. 3 (b), we show two intermediate and final populations during a single run
of SOGA with the weighted sum fitness function with w = (0.5, 0.5). It should be
noted that SOGA in Fig. 3 (b) was executed under the same parameter specifications
as NSGA-II in Fig. 1 (a). From the comparison between these two figures, we can see
that NSGA-II maintained a larger diversity of solutions. The decrease in the diversity
of solutions during the execution of SOGA seems to be the main reason of the infe-
rior performance of SOGA in Fig. 3 (a) in comparison with NSGA-II.

NSGA-II and SOGA are further compared with each other in Fig. 4 (a) for the 2-
500 knapsack problem using the weighted sum fitness function with w = (0.5, 0.5).
Fig. 4 (a) shows the distribution of obtained solutions from 50 runs of each algorithm.
Whereas good solutions were almost always obtained by NSGA-II, the quality of the
final solution by each run of SOGA seems to highly depend on the initial population.

In Fig. 3 (a) and Fig. 4 (a), NSGA-II outperformed SOGA when they were used to
optimize the three scalarizing functions. The advantage of NSGA-II over SOGA,
however, disappears as the increase in the number of objectives. In Fig. 4 (b), we
show experimental results on the four-objective knapsack problem. The performance
of NSGA-II as a single-objective optimizer was deteriorated in Fig. 4 by the increase
in the number of objectives from two in Fig. 4 (a) to four in Fig. 4 (b). Pareto rank-
ing-based EMO algorithms usually do not work well on many-objective problems.

0

5

10

15

20

25

18
98

0
18

98
5

18
99

0
18

99
5

19
00

0
19

00
5

19
01

0
19

01
5

19
02

0
19

02
5

19
03

0
19

03
5

19
04

0
19

04
5

19
05

0
19

05
5

19
06

0
19

06
5

19
07

0

N
um

be
r o

f r
un

s NSGA-II
SOGA

Weighted sum of the two objectives

0

5

10

15

20

25

16
62

0
16

65
0

16
68

0
16

71
0

16
74

0
16

77
0

16
80

0
16

83
0

16
86

0
16

89
0

16
92

0
16

95
0

16
98

0
17

01
0

17
04

0
17

07
0

17
10

0
17

13
0

17
16

0
17

19
0

17
22

0

N
um

be
r o

f r
un

s NSGA-II
SOGA

Weighted sum of the four objectives
 (a) Results on the two-objective problem. (b) Results on the four-objective problem.

Fig. 4. Comparison between NSGA-II and SOGA. The 2-500 knapsack problem with w = (0.5,
0.5) in (a) and the 4-500 knapsack problem with w = (0.25, 0.25, 0.25, 0.25) in (b).

The advantage of NSGA-II over SOGA also disappears when the location of the
optimal solution of a scalarizing function is near the edge of the Pareto front as we
have already explained using Fig. 1. For example, NSGA-II did not work well on the
2-500 knapsack problem as a single-objective optimizer of scalarizing functions in
the following cases: w = (0.1, 0.9), f * = (16750, 20500) and ε1 = 17000. In each case,
the location of the optimal solution is close to the top-left edge of the Pareto front
(see Fig. 1 for the spatial relation between the obtained solutions by NSGA-II and the
Pareto front). NSGA-II had difficulties in efficiently searching for good solutions
near the edge of the Pareto front in comparison with SOGA in these cases.

In the above-mentioned three difficult cases, the performance of NSGA-II as a sin-
gle-objective optimizer was improved when we used the following two objectives:

)(5.0)(5.0)(211 xxx ffg += , (6)

)(3.1)(3.0)(212 xxx ffg +−= , (7)

where f1(x) and f2(x) are the original two objectives of the 2-500 knapsack problem.
Average results over 50 runs of NSGA-II and SOGA are summarized in Fig. 5 (a)
where NSGA-II was applied to the two-objective problem in (6) and (7). In Fig. 5 (a),
NSGA-II outperformed SOGA in their applications to the optimization of the scalar-
izing functions in the above-mentioned three difficult cases. Fig. 5 (b) shows two
intermediate and final populations during a single run of NSGA-II. The multiobjec-
tive search of NSGA-II was appropriately driven toward the desired region by the
two objectives in (6) and (7) as we can see from the comparison of Fig. 5 (b) with Fig.
1 (a). As a result, NSGA-II found better solutions of the scalarizing functions than
SOGA in Fig. 5 (a).

Experimental results in Fig. 5 suggest that the performance of NSGA-II as a sin-
gle-objective optimizer highly depends on the specification of multiple objectives. In
the next section, we propose a specification method of multiple objectives for the
optimization of a weighted sum fitness function. The proposed idea can be used for
other scalarizing functions as shown in Section 4.

f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2

Pareto front

Weighted sum method
Penalty function method
Reference vector method
50% attainment surface

 by NSGA-II

16000 16500 17000 17500 18000
19000

19500

20000

20500

21000

 f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2 2000th generation
50th generation
20th generation

Pareto
 front

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 (a) Comparison between NSGA-II and SOGA. (b) NSGA-II with the new two objectives.

Fig. 5. Experimental results of NSGA-II and SOGA on the 2-500 knapsack problem.

3 Handling of Weighted Sum Fitness Functions

When we use EMO algorithms to optimize a scalarizing function, it is essential to
generate multiple objectives so that the location of the optimal solution is near the
center of the Pareto front of the generated multiobjective problem. In this section, we
show how we can generate such a multiobjective problem to optimize a weighted sum
fitness function.

3.1 Weighted Sum Fitness Function of Two Objectives

Our task in this subsection is to optimize the weighted sum of two objectives:

)()()(2211 xxx fwfwfitness ⋅+⋅= . (8)

Two objectives can be newly generated by changing the weight vector as follows:

)()()()()(22111 xxx fwfwg ββ −++= , (9)

)()()()()(22112 xxx fwfwg ββ ++−= . (10)

For example, the weight vectors of the newly generated two objectives are specified
as (0.2, 0.8) and (0.4, 0.6) from the weight vector w = (0.3, 0.7) when β = 0.1.

Using various specifications of β, we applied NSGA-II to the two-objective prob-
lem in (9) and (10) generated from the weighted sum fitness function with w = (0.3,
0.7) for the 2-500 knapsack problem. Average results over 50 runs of NSGA-II are
summarized in Fig. 6 (a). It should be noted that NSGA-II with β = 0 is the same as
SOGA because g1(x) and g2(x) become the same as the original weighted sum fitness
function. We also show experimental results for the case of w = (0.1, 0.9) in Fig. 6 (b).
We can observe in Fig. 6 that the multiobjectivization by (9) and (10) clearly im-
proved the quality of the obtained solutions. We can also observe that the perform-
ance of NSGA-II as a single-objective optimizer was not sensitive to the value of β.

SOGA The value of β

W
ei

gh
te

d
su

m

0.0 0.1 0.2 0.3 0.4 0.5

19280

19300

19320

19340

SOGA The value of β

W
ei

gh
te

d
su

m

0.0 0.1 0.2 0.3 0.4 0.5

19940

19960

19980

20000

 (a) Average results with w = (0.3, 0.7). (b) Average results with w = (0.1, 0.9).

Fig. 6. Weighted sum optimization by NSGA-II for the 2-500 knapsack problem.

The multiobjectivization by (9) and (10) is effective in the search not only for a
single optimal solution but also for multiple good solutions around the optimal solu-
tion. In each plot of Fig. 7, we show two intermediate and final populations during a
single run of NSGA-II for each of the two cases: β = 0.3 and β = 0.5. In both cases,
the weight vector of the original weighted sum fitness function was specified as w =
(0.3, 0.7). In Fig. 7, multiple solutions were obtained along the Pareto front of the
original 2-500 knapsack problem. Moreover, the spread of the finally obtained solu-
tion set in each plot depended on the value of β. These observations suggest that the

multiobjectivization by (9) and (10) can drive the population toward an appropriate
search region and adjust its diversity. This means that the proposed idea has a poten-
tial usefulness as an approach to the focused search by EMO algorithms.

f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2 2000th generation
50th generation
20th generation

Pareto
 front

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2 2000th generation
50th generation
20th generation

Pareto
 front

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 (a) β = 0.3 with w = (0.3, 0.7). (b) β = 0.5 with w = (0.3, 0.7).

Fig. 7. Behavior of NSGA-II with the newly generated two objectives from the 2-500 problem.

3.2 Weighted Sum Fitness Function of Many Objectives

The proposed idea in the previous subsection can be easily generalized to the case of
more than two objectives. Let us consider the weighted sum of three objectives with
the weight vector w = (w1 , w2 , w3). Three objectives can be generated by changing
the weight vector w = (w1 , w2 , w3) toward the three directions: (1, 0, 0), (0, 1, 0) and
(0, 0, 1). More specifically, the weight vectors of the three objectives are generated in
the following manner:

||||A a
aww ⋅+= β ,

||||B b
bww ⋅+= β , and

||||C c
cww ⋅+= β , (11)

where || a || denotes the length of the vector, and a, b, c are specified as follows:

wa −=)0,0,1(, wb −=)0,1,0(, and wc −=)1,0,0(. (12)

This method can be directly generalized to the case with more objectives. We ap-
plied NSGA-II to the weighted sum fitness function with w = (0.8, 0.1, 0.1) for the 3-
500 knapsack problem. We also applied SOGA to the same problem. When we used
NSGA-II, we generated a new three-objective problem using (11) and (12) with β =
0.2. The distribution of the obtained solutions by 50 runs of each algorithm is shown
in Fig. 8 (a). We can see from Fig. 8 (a) that NSGA-II outperformed SOGA in their
applications to the optimization of the weighted sum of the three objectives. It should

be noted that NSGA-II did not work well for the same task as a single-objective opti-
mizer when it was applied to the original 3-500 knapsack problem.

We also performed the same computational experiments on the weighted sum fit-
ness function with w = (0.25, 0.25, 0.25, 0.25) for the 4-500 knapsack problem. Ex-
perimental results are shown in Fig. 8 (b). As in Fig. 8 (a), NSGA-II outperformed
SOGA in Fig. 8 (b). The comparison between Fig. 4 (b) and Fig. 8 (b) clearly demon-
strates the effect of the proposed idea on the performance of NSGA-II as a single-
objective optimizer of the weighted sum fitness function. It should be noted that the
difficulty of Pareto ranking-based EMO algorithms in the handling of many objec-
tives was remedied by the use of similar objectives in our approach as shown in Fig. 8.

0

5

10

15

20

18
57

5
18

60
0

18
61

5
18

63
0

18
64

5
18

66
0

18
67

5
18

69
0

18
70

5
18

72
0

18
73

5
18

75
0

18
76

5
18

78
0

18
79

5
18

81
0

18
82

5
18

84
0

N
um

be
r o

f r
un

s NSGA-II
SOGA

Weighted sum of the three objectives

18
58

5

0

5

10

15

20

17
07

0
17

08
0

17
09

0
17

10
0

17
11

0
17

12
0

17
13

0
17

14
0

17
15

0
17

16
0

17
17

0
17

18
0

17
19

0
17

20
0

17
21

0
17

22
0

17
23

0

N
um

be
r o

f r
un

s NSGA-II
SOGA

Weighted sum of the four objectives
 (a) 3-500 with w = (0.8, 0.1, 0.1). (b) 4-500 with w = (0.25, 0.25, 0.25, 0.25).

Fig. 8. Weighted sum optimization by NSGA-II using the proposed approach with β = 0.2.

f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2

16600 16800 17000 17200 17400 17600

16900

17000

17100

17200

17300

17400

17500

 f3: Total profit from knapsack 3

f 4:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

4

17200 17400 17600 17800 18000

16500

16600

16700

16800

16900

17000

17100

 (a) Projection onto the f1-f2 space. (b) Projection onto the f3-f4 space.

Fig. 9. Obtained solutions by a single run of NSGA-II on the modified 4-500 problem.

As shown in Fig. 8 (b), NSGA-II worked very well as a single-objective optimizer
to search for the optimal solution of the weighted sum of the four objectives of the 4-
500 knapsack problem. It also has the ability to find multiple non-dominated solu-
tions as an EMO algorithm. In Fig. 9, we show the obtained non-dominated solution
set by a single run of NSGA-II on the modified 4-500 knapsack problem, which was

generated from the 4-500 knapsack problem with w = (0.25, 0.25, 0.25, 0.25) using
(11) and (12) with β = 0.2. Each plot in Fig. 9 shows the projection of the obtained
non-dominated solution set from the original four-dimensional objective space onto a
two-dimensional space. From Fig. 9, we can see that a number of non-dominated
solutions were obtained by a single run of NSGA-II.

4 Application of a Hybrid EMO Algorithm

In our former studies [8], [10], we proposed a hybrid EMO algorithm where a
weighted sum fitness function was probabilistically used in NSGA-II. We introduced
two probabilities PPS and PGU, which specified how often the weighted sum fitness
function was used for parent selection and generation update in the hybrid EMO
algorithm, respectively. In this section, we compare our approach (i.e., application of
NSGA-II to modified multiobjective problems) with the hybrid EMO algorithm.

One extreme case of the hybrid EMO algorithm with PPS = PGU = 0.0 is exactly
the same as NSGA-II since the weighted sum fitness function is never used. Another
extreme case with PPS = PGU = 1.0 is the same as SOGA since the weighted sum
fitness function is always used. The balance between single-objective and multiobjec-
tive search can be adjusted between the two extreme cases using the two probabilities.

In our computational experiments in this section, we examined the following
11x11 combinations of the two probabilities:

Probability PPS: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
Probability PGU: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

We applied the hybrid EMO algorithm to the 4-500 knapsack problem to optimize
the weighted sum fitness function with the weight vector w = (0.25, 0.25, 0.25, 0.25).
This weighted sum fitness function was used for parent selection with the probability
PPS and generation update with the probability PGU in the hybrid EMO algorithm.
When the weighted sum fitness function was not used, the multiobjective fitness
evaluation scheme in NSGA-II was invoked to evaluate each solution based on the
original four objectives in the 4-500 knapsack problem. Average results over 50 runs
are summarized in Fig. 10 (a). The bottom-left bar with PPS = PGU = 0.0 shows the
result of NSGA-II while the top-right bar with PPS = PGU = 1.0 shows the result of
SOGA. Whereas the performance of NSGA-II was very poor in Fig. 10 (a), it was
significantly improved by the probabilistic use of the weighted sum fitness function.
Better results than SOGA were obtained by the hybrid EMO algorithm in the top-left
corner with PPS = 0.0 and PGU = 1.0 in Fig. 10 (a). We also applied the hybrid EMO
algorithm to the same problem after modifying the 4-500 knapsack problem using the
proposed approach with β = 0.2. Experimental results were shown in Fig. 10 (b)
where good results were obtained even when the weighted sum fitness function was
not used (i.e., the bottom-left bar with PPS = PGU = 0.0). That is, the hybridization is
not necessary in Fig. 10 (b) where we modified the 4-500 knapsack problem by the
proposed approach. Moreover, we can observe that better results were obtained in Fig.
10 (b) after the modification of the 4-500 problem than Fig. 10 (a).

0 0.2 0.4
0.6 0.8 1 0

0.2
0.4

0.6
0.8

1
16600

16800

17000

17200

0.0 0.2
0.4 0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

PPS
PGU

W
ei

gh
te

d
su

m

0 0.2 0.4
0.6 0.8 1 0

0.2
0.4

0.6
0.8

1
16600

16800

17000

17200

0.0 0.2
0.4 0.6

0.8
1.0 0.0

0.2
0.4

0.6
0.8

1.0

PPS
PGU

W
ei

gh
te

d
su

m

 (a) Original 4-500 problem. (b) Modified 4-500 problem.

Fig. 10. Effect of our approach on the performance of the hybrid EMO algorithm.

5 Handling of Other Scalarizing Fitness Functions

The basic idea of our approach is to generate multiple objectives, which are similar to
but different from the given scalarizing function, so that the location of its optimal
solution is near the center of the Pareto front of the generated multiobjective problem.
This idea can be also implemented for other scalarizing functions.

For example, let us assume that we have a reference vector (19000, 20000) for the
2-500 knapsack problem. In this case, we can generate two objectives by specifying
two reference vectors around (19000, 20000). Experimental results with newly gener-
ated two reference vectors (18000, 21000) and (20000, 19000) are shown in Fig. 11
(a). On the other hand, when we have a minimum requirement level (e.g., 18000) for
the first objective of the 2-500 knapsack problem, we can generate two objectives by
specifying two minimum requirement levels around 18000 (e.g., 17000 and 19000).
Experimental results with the newly generated minimum requirement levels 17000
and 19000 are shown in Fig. 11 (b). We can observe in Fig. 11 that the search of
NSGA-II was appropriately directed by the newly generated multiple objectives. We
can also observe that good alternative solutions were obtained around the optimal
solution of the original scalarizing function in each plot in Fig. 11.

Our approach is applicable not only to the optimization of scalarizing function but
also to other optimization problems. For example, let us consider the maximization of
f(x). If we have another objective g (x), we can generate two objectives as f(x) +

⋅w g (x) and f(x) − ⋅w g (x). In this case, the choice of g (x) is not so important be-
cause its effect can be adjusted by the weight w. The direct use of f(x) and g (x) as
two objectives is not a good strategy for optimizing f(x) because the optimal solution
of f(x) is located at the edge of the Pareto front of the two-objective problem with
f(x) and g (x). In Fig. 12, we show experimental results on the optimization of f2(x) of
the 2-500 knapsack problem. We used f1(x) and f2(x) as two objectives in Fig. 12 (a),
which is not a good strategy. On the other hand, we used f2(x) + 0.3 f1(x) and f2(x) −
0.3 f1(x) in Fig. 12 (b), which is a good strategy as multiobjectivization.

f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2

Pareto
 front

Original reference
 vector

New reference
 vector

New

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 f1: Total profit from knapsack 1

f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k

2

Pareto
 front

Original NewNew

2000th generation
50th generation
20th generation

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

 (a) Results based on two reference vectors. (b) Results based on two requirement levels.

Fig. 11. Experimental results on the 2-500 knapsack problem using other scalarizing functions.

0

10

20

30

40

19
72

0
19

76
0

19
80

0
19

84
0

19
88

0
19

92
0

19
96

0
20

00
0

20
04

0
20

08
0

20
12

0
20

16
0

20
20

0
20

24
0

20
28

0
20

32
0

20
36

0
20

40
0

20
44

0
20

48
0

20
52

0

N
um

be
r o

f r
un

s NSGA-II
SOGA

Value of f2(x)

0

10

20

30

40

19
72

0
19

76
0

19
80

0
19

84
0

19
88

0
19

92
0

19
96

0
20

00
0

20
04

0
20

08
0

20
12

0
20

16
0

20
20

0
20

24
0

20
28

0
20

32
0

20
36

0
20

40
0

20
44

0
20

48
0

20
52

0

N
um

be
r o

f r
un

s NSGA-II
SOGA

Value of f2(x)
 (a) Use of the original 2-500 problem. (b) Use of the modified 2-500 problem.

Fig. 12. Optimization of f2(x) of the 2-500 knapsack problem by NSGA-II.

6 Conclusions

In this paper, we proposed an idea of using an EMO algorithm to optimize a scalariz-
ing function. Our approach generates multiple objectives, which are similar to but
different from the given scalarizing function, so that the location of the optimal solu-
tion of the scalarizing function is near the center of the Pareto front of the generated
multiobjective problem. The effectiveness of our approach was examined through
various computational experiments using NSGA-II. Experimental results showed that
the performance of NSGA-II as a single objective optimizer highly depends on the
choice of multiple objectives. One interesting observation is that NSGA-II worked
very well even when it was applied to a four-objective 0/1 knapsack problem gener-
ated by our approach (whereas NSGA-II usually does not work well for many-
objective problems). This is because our approach generates similar objectives.

This work was partially supported by Grant-in-Aid for Scientific Research on Pri-
ority Areas (18049065) and for Scientific Research (B) (17300075).

References

1. Colombo, G., Mumford, C. L.: Comparing Algorithms, Representations and Operators for
the Multi-Objective Knapsack Problem. Proc. of 2005 Congress on Evolutionary Computa-
tion (2005) 2241-2247

2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons,
Chichester (2001)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6 (2002) 182-197

4. Deb, K., Sundar, J.: Reference Point Based Multi-Objective Optimization Using Evolution-
ary Algorithms. Proc. of Genetic and Evolutionary Computation Conference (2006) 635-
642

5. Fonseca, C. M., Fleming, P. J.: On the Performance Assessment and Comparison of Sto-
chastic Multiobjective Optimizers. Lecture Notes in Computer Science, Vol. 114: PPSN IV.
Springer, Berlin (1996) 584-593

6. Hughes, E. J.: Multiple Single Objective Sampling. Proc. of 2003 Congress on Evolutionary
Computation (2003) 2678-2684

7. Hughes, E. J.: Evolutionary Many-Objective Optimization: Many Once or One Many? Proc.
of 2005 Congress on Evolutionary Computation (2005) 222-227

8. Ishibuchi, H., Doi, T., Nojima, Y.: Incorporation of Scalarizing Fitness Functions into Evo-
lutionary Multiobjective Optimization Algorithms. Lecture Notes in Computer Science, Vol.
4193: PPSN IX. Springer, Berlin (2006) 493-502

9. Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Ap-
plication to Flowshop Scheduling. IEEE Trans. on Systems, Man, and Cybernetics - Part C:
Applications and Reviews 28 (1998) 392-403

10. Ishibuchi, H., Nojima, Y., Doi, T.: Application of Multiobjective Evolutionary Algorithms
to Single-Objective Optimization Problems. Abstract Booklet of 7th International Confer-
ence on Multi-Objective Programming and Goal Programming (2006) 4 pages

11. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between Genetic Search and Local Search
in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Trans.
on Evolutionary Computation 7 (2003) 204-223

12. Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimization.
European Journal of Operational Research 137 (2002) 50-71

13. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the
0/1 Knapsack Problem - A Comparative Experiment. IEEE Trans. on Evolutionary Compu-
tation 6 (2002) 402-412

14. Jaszkiewicz, A.: On the Computational Efficiency of Multiple Objective Metaheuristics:
The Knapsack Problem Case Study. European Journal of Operational Research 158 (2004)
418-433

15. Knowles, J. D., Watson, R. A., Corne, D. W.: Reducing Local Optima in Single-Objective
Problems by Multi-Objectivization. Lecture Notes in Computer Science, Vol. 1993: EMO
2001. Springer, Berlin (2001) 269-283

16. Mumford, C. L.: A Hierarchical Solve-and-Merge Framework for Multi-Objective Optimi-
zation. Proc. of 2005 Congress on Evolutionary Computation (2005) 2241-2247

17. Purshouse, R. C., Fleming, P. J.: Evolutionary Many-Objective Optimization: An Explora-
tory Analysis. Proc. of 2003 Congress on Evolutionary Computation (2003) 2066-2073

18. Watanabe, S., Sakakibara K.: Multi-Objective Approaches in a Single-Objective Optimiza-
tion Environment. Proc. of 2005 Congress on Evolutionary Computation (2005) 1714-1721

19. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study
and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3 (1999) 257-
271

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

