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Abstract. Recently MOEA/D (multi-objective evolutionary algorithm based on 
decomposition) was proposed as a high-performance EMO (evolutionary multi-
objective optimization) algorithm. MOEA/D has high search ability as well as 
high computational efficiency. Whereas other EMO algorithms usually do not 
work well on many-objective problems with four or more objectives, MOEA/D 
can properly handle them. This is because its scalarizing function-based fitness 
evaluation scheme can generate an appropriate selection pressure toward the 
Pareto front without severely increasing the computation load. MOEA/D can 
also search for well-distributed solutions along the Pareto front using a number 
of weight vectors with different directions in scalarizing functions. Currently 
MOEA/D seems to be one of the best choices for multi-objective optimization 
in various application fields. In this paper, we examine its performance on 
multi-objective problems with highly correlated objectives. Similar objectives 
to existing ones are added to two-objective test problems in computational 
experiments. Experimental results on multi-objective knapsack problems show 
that the inclusion of similar objectives severely degrades the performance of 
MOEA/D while it has almost no negative effects on NSGA-II and SPEA2. We 
also visually examine such an undesirable behavior of MOEA/D using many-
objective test problems with two decision variables. 

Keywords: Evolutionary multi-objective optimization, evolutionary many-
objective optimization, similar objectives, correlated objectives, MOEA/D. 

1   Introduction 

Since Goldberg’s suggestion in 1989 [6], Pareto dominance-based fitness evaluation 
has been the main stream in the evolutionary multi-objective optimization (EMO) 
community [3], [26]. Pareto dominance is used for fitness evaluation in almost all 
well-known and frequently-used EMO algorithms such as NSGA-II [4], SPEA [34] 
and SPEA2 [33]. Whereas Pareto dominance-based EMO algorithms usually work 
very well on multi-objective problems with two or three objectives, they often show 
difficulties in the handling of many-objective problems with four or more objectives 
as pointed out in several studies [7], [10], [16], [23], [24], [35]. This is because almost 
all individuals in the current population are non-dominated with each other when they 
are compared using many objectives. As a result, Pareto dominance-based fitness 



 

 

evaluation cannot generate strong selection pressure toward the Pareto front. This 
means that good solutions close to the Pareto front are not likely to be obtained. 

Various approaches have been proposed to improve the search ability of Pareto 
dominance-based EMO algorithms for many-objective problems [13], [14]. The basic 
idea of those approaches is to increase the selection pressure toward the Pareto front. 
The increase in the selection pressure, however, usually leads to the decrease in the 
diversity of obtained solutions along the Pareto front. Thus simultaneous performance 
improvement in both the convergence and the diversity is not easy. 

The use of other fitness evaluation schemes has also been examined for many-
objective problems. One promising approach to many-objective optimization is the 
use of an indicator function that measures the quality of a solution set [1], [27], [28], 
[31], [32]. Hypervolume has been frequently used in such an indicator-based 
evolutionary algorithm (IBEA) where multi-objective problems are handled as single-
objective hypervolume maximization problems. One difficulty of this approach is the 
exponential increase in the computation load for hypervolume calculation with the 
increase in the number of objectives. Thus some form of approximate hypervolume 
calculation may be needed when we have six or more objectives. Another promising 
approach to many-objective problems is the use of scalarizing functions [8], [15], [19], 
[29]. A number of scalarizing functions with different weight vectors are used to 
realize various search directions in the objective space. The main advantage of this 
approach is computational efficiency of scalarizing function calculation. 

MOEA/D (multi-objective evolutionary algorithm based on decomposition) is a 
scalarizing function-based EMO algorithm proposed by Li and Zhang [19], [29]. High 
search ability of MOEA/D on various test problems including many-objective 
problems has already been demonstrated in the literature [2], [11], [12], [17], [20], 
[22], [30]. Its main feature is the decomposition of a multi-objective problem into a 
number of single-objective problems, which are defined by a scalarizing function with 
different weight vectors. MOEA/D can be viewed as a kind of cellular algorithm. 
Each cell has a different weight vector and a single elite solution with respect to its 
own weight vector. The task of each cell is to perform single-objective optimization 
of a scalarizing function with its own weight vector. To generate a new solution for 
each cell, parents are selected from its neighboring cells (i.e., local parent selection). 
If a better solution is generated by genetic operations, the current solution is replaced 
with the newly generated one. This solution replacement mechanism is applied to not 
only the current cell for which a new solution is generated but also its neighboring 
cells. That is, a good solution has a chance to survive at multiple cells. Such a local 
solution replacement mechanism together with local parent selection accelerates 
multi-objective search for better solutions (i.e., accelerates the convergence toward 
the Pareto front). At the same time, the diversity of solutions is maintained by the use 
of a number of weight vectors with various directions in MOEA/D. 

In this paper, we report some interesting observations on the behavior of NSGA-II, 
SPEA2 and MOEA/D on multi-objective problems with highly correlated objectives. 
In computational experiments, we generate similar objectives to existing ones and add 
them to test problems with two objectives. Experimental results show that the 
inclusion of similar objectives severely deteriorates the search ability of MOEA/D 
while it has almost no negative effects on NSGA-II and SPEA2. As a result, 
MOEA/D does not always outperform NSGA-II and SPEA2 on many-objective 



 

 

problems with highly correlated objectives while it clearly shows better performance 
on many-objective problems with no strong correlations among objectives. 

This paper is organized as follows. First we briefly explain MOEA/D in Section 2. 
Next we examine its behavior on two types of multi-objective knapsack problems in 
comparison with NSGA-II and SPEA2 in Section 3. One type has randomly generated 
objectives, and the other includes highly correlated objectives. Then we visually 
examine the behavior of MOEA/D using many-objective test problems in the two-
dimensional decision space in Section 4. Finally we conclude this paper in Section 5. 

2   MOEA/D 

Let us consider the following m-objective maximization problem:  

Maximize ))(...,),(),(()( 21 xxxxf mfff= , (1) 

where f (x) is the m-dimensional objective vector, fi (x) is the i-th objective to be 
maximized, and x is the decision vector. 

In MOEA/D [19], [29], a multi-objective problem is decomposed into a number of 
single-objective problems where each problem is to optimize a scalarizing function 
with a different weight vector. In this paper, we use the weighted Tchebycheff 
function since this function works very well on a wide range of multi-objective test 
problems [9], [11], [12]. Let us denote a weight vector as λ = (λ1 , λ2 , ..., λm). The 
weighted Tchebycheff function measures the distance from the reference point z* to a 
solution x in the objective space as follows: 
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For multi-objective knapsack problems, we use the following specification of the 
reference point z* in the same manner as in Zhang and Li [29]: 

mitfz ii ...,,2,1)},(|)(max{1.1* =Ω∈⋅= xx , (3) 

where Ω(t) shows the population at the t-th generation. The reference point z* is 
updated whenever the maximum value of each objective in (3) is updated. 

For multi-objective function minimization problems, Zhang and Li [29] specified 
the reference point z* as follows: 

mitfz ii ...,,2,1)},(|)(min{* =Ω∈= xx . (4) 

We use this specification for multi-objective continuous minimization problems. 
MOEA/D uses a set of weight vectors placed on a uniform grid. More specifically, 

it uses all weight vectors satisfying the following two conditions: 
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where H is a positive integer parameter that specifies the granularity or resolution of 
weight vectors. The number of weight vectors is calculated from this parameter H and 
the number of objectives m as N = H+m−1Cm−1 [29]. The same weight vector 
specification was used in a multi-objective cellular algorithm in Murata et al. [21]. 

Let N be the number of weight vectors. Then a multi-objective optimization 
problem is decomposed into N single-objective problems in MOEA/D. Each single-
objective problem has the same scalarizing function (i.e., the weighted Tchebycheff 
function in this paper) with a different weight vector. Each weight vector can be 
viewed as a cell in a cellular algorithm with a grid of size N in the m-dimensional unit 
cube [0, 1]m. A single individual is assigned to each cell. Thus the population size is 
the same as the number of weight vectors. In MOEA/D, genetic operations at each 
cell are locally performed within its neighboring cells as in cellular algorithms. For 
each cell, a pre-specified number of its nearest cells (e.g., ten cells including the cell 
itself in our computational experiments) are handled as its neighbors. Neighborhood 
structures in MOEA/D are defined by the Euclidean distance between weight vectors.  

First MOEA/D generates an initial solution at each cell. In our computational 
experiments, initial solutions are randomly generated. Next an offspring is generated 
by local selection, crossover and mutation at each cell in an unsynchronized manner. 
In local selection, two parents are randomly chosen for the current cell from its 
neighboring cells (including the current cell itself). Local selection leads to the 
recombination of similar parents in the objective space. The generated offspring is 
compared with the solution at each of the neighboring cells. The comparison is 
performed based on the scalarizing function with the weight vector of the compared 
neighbor. All the inferior solutions are replaced with the newly generated offspring. 
That is, solution replacement is performed not only at the current cell for which the 
new offspring is generated but also at each of its neighboring cells. Since each cell 
has a different weight vector, the diversity of solutions can be maintained whereas a 
single offspring is compared with multiple neighbors for solution replacement. Local 
selection, crossover, mutation and local replacement are performed at each cell. These 
procedures are iterated over all cells until the termination condition is satisfied. In our 
computational experiments, we do not use any secondary population in MOEA/D.  

3   Computational Experiments on Knapsack Problems 

We used the same test problem as the two-objective 500-item knapsack problem of 
Zitzler & Thiele [34] with two constraint conditions. We denote this test problem as 
the 2-500 problem. The two objectives f1(x) and f2(x) of the 2-500 problem were 
generated by randomly assigning an integer in the closed interval [10, 100] to each 
item as its profit (see [34]). In the same manner, we generated other two objectives 



 

 

f3 (x) and f4(x). Since all the four objectives were randomly generated, they have no 
strong correlation with each other. Using these randomly-generated four objectives, 
we generated a four-objective 500-item knapsack problem with the same two 
constraint conditions as in the 2-500 problem in [34]. Exactly the same two constraint 
conditions as in [34] were also used in all the other test problems in this section. 

We generated highly correlated objectives from the two objectives f1(x) and f2(x) 
of the 2-500 problem in the following manner: 

)(01.0)()( 215 xxx fff += , (7) 
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It is clear that f5(x) and f6 (x) are similar to f1(x) while f7 (x) and f8(x) are similar to 
f2 (x). In computational experiments, we used the following four test problems: 

1. The 2-500 test problem with f1 (x) and f2(x) of Zitzler & Thiele [34], 
2. Random four-objective problem with f1 (x), f2 (x), f3 (x) and f4(x), 
3. Correlated four-objective problem with f1(x), f2(x), f5(x) and f6 (x), 
4. Correlated six-objective problem with f1 (x), f2 (x), f5 (x), f6(x), f7(x) and f8 (x). 

In the correlated four-objective problem, f1(x), f5 (x) and f6(x) are similar to each 
other while they are not similar to f2(x). In the correlated six-objective problem, f2 (x), 
f7 (x) and f8(x) are also similar to each other.  

We applied MOEA/D to these four test problems using the following setting: 
Population size (which is the same as the number of weight vectors): 
 200 (two-objective problem), 220 (four-objective), 252 (six-objective), 
Parameter H for generating weight vectors: 
 199 (two-objective problem), 9 (four-objective), 5 (six-objective), 
Coding: Binary string of length 500, 
Stopping condition: 400,000 solution evaluations, 
Crossover probability: 0.8 (Uniform crossover), 
Mutation probability: 1/500 (Bit-flip mutation), 
Constraint handling: Greedy repair used in Zitzler & Thiele [34], 
Neighborhood size T (i.e., the number of neighbors): 10. 

Since all the four test problems have the same constraint conditions, the same 
greedy repair as in the 2-500 problem in [34] was used in all test problems.  

We also applied NSGA-II [4] and SPEA2 [33] to the four test problems using the 
same setting as in MOEA/D except that the population size was always specified as 
200 in NSGA-II and SPEA2. Each EMO algorithm was applied to each test problem 
100 times. In this section, we report experimental results by NSGA-II, SPEA2 and 
MOEA/D on each of the above-mentioned four test problems. 



 

 

Results on the 2-500 Knapsack Problem: Experimental results of a single run of 
each algorithm are shown in Fig. 1 (a)-(c) where all solutions at the 20th, 200th and 
2000th generations are depicted together with the true Pareto front. The 50% 
attainment surface [5] at the 2000th generation over 100 runs of each algorithm is 
depicted in Fig. 1 (d). As pointed out in the literature (e.g., see Jaszkiewicz [15]), it is 
not easy for EMO algorithms to find non-dominated solutions along the entire Pareto 
front of the 2-500 test problem. NSGA-II and SPEA2 found non-dominated solutions 
around the center of the Pareto front. Only MOEA/D found non-dominated solutions 
over almost the entire Pareto front. That is, MOEA/D found better solution sets than 
NSGA-II and SPEA2 with respect to the diversity of solutions along the Pareto front. 
With respect to the convergence property toward the Pareto front, the three algorithms 
have almost the same performance in Fig. 1 (d). 
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  (c) MOEA/D.   (d) 50% attainment surfaces.  

Fig. 1. Experimental results on the original two-objective knapsack problem. 
 

Results on Random Four-Objective Knapsack Problem: We calculated the 
average hypervolume and the standard deviation over 100 runs of each algorithm. The 
origin (0, 0, 0, 0) of the four-dimensional (4-D) objective space was used as the 
reference point for the hypervolume calculation. The following results were obtained: 



 

 

NSGA-II: 1.23× 1017 (Average), 9.67× 1014 (Standard Deviation), 
SPEA2: 1.19× 1017 (Average), 9.47× 1014 (Standard Deviation), 
MOEA/D: 1.43× 1017 (Average), 6.00× 1014 (Standard Deviation). 

The best results were obtained by MOEA/D for the random four-objective problem 
with respect to the hypervolume measure. In Fig. 2 (a)-(c), we show all solutions at 
the final generation in a single run of each algorithm in the two-dimensional (2-D) 
objective space with f1(x) and f2(x). That is, each plot in Fig. 2 shows the projection 
of the final population of each algorithm in the 4-D objective space onto the 2-D 
objective space. The 50% attainment surface is depicted using those projections for 
100 runs in Fig. 2 (d). For comparison, the Pareto front of the 2-500 problem is also 
shown in Fig. 2. In Fig. 2 (d), the convergence performance of NSGA-II and SPEA2 
was severely degraded by the inclusion of the randomly generated objectives f3(x) 
and f4(x). The convergence performance of MOEA/D was also degraded but less 
severely than NSGA-II and SPEA2. It is interesting to observe that NSGA-II in Fig. 2 
(a) and SPEA2 in Fig. 2 (b) did not have large diversity in the objective space even in 
the case of the four-objective test problem with the randomly generated objectives.  
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  (c) MOEA/D.   (d) 50% attainment surfaces.  

Fig. 2. Experimental results on the random four-objective knapsack problem (Projections of the 
final population in the 4-D objective space onto the 2-D one). 



 

 

Results on Correlated Four-Objective Knapsack Problem: This problem has 
the three highly correlated objectives f1 (x), f5 (x) and f6 (x). As in the previous 
computational experiments, we calculated the average hypervolume over 100 runs: 

NSGA-II: 1.42× 1017 (Average), 1.59× 1015 (Standard Deviation), 
SPEA2: 1.41× 1017 (Average), 1.32× 1015 (Standard Deviation), 
MOEA/D: 1.55× 1017 (Average), 7.46× 1014 (Standard Deviation). 

The best average result was obtained by MOEA/D. In the same manner as Fig. 2, 
we show experimental results on the correlated four-objective problem in Fig. 3. 
From the comparison between Fig. 1 and Fig. 3, we can see that the inclusion of f5 (x) 
and f6 (x) had almost no negative effects on the performance of NSGA-II and SPEA2. 
The performance of MOEA/D, however, was clearly degraded by their inclusion. We 
can also see that many solutions in Fig. 3 (c) are overlapping, which leads to the wavy 
50% attainment surface by MOEA/D in Fig. 3 (d). In spite of the performance 
deterioration, the largest average hypervolume was still obtained by MOEA/D. 
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  (c) MOEA/D.   (d) 50% attainment surfaces. 

Fig. 3. Experimental results on the correlated four-objective knapsack problem (Projections 
from the 4-D objective space to the 2-D one). The number of generations of MOEA/D with 
population size 220 was converted to the equivalent one in the case of population size 200.  



 

 

Results on Correlated Six-Objective Knapsack Problem: This problem has the 
two sets of the three highly correlated objectives: {f1(x), f5 (x), f6 (x)} and {f2 (x), f7(x), 
f8 (x)}. We calculated the average hypervolume over 100 runs: 

NSGA-II: 5.46× 1025 (Average), 5.69× 1023 (Standard Deviation), 
SPEA2: 5.40× 1025 (Average), 4.59× 1023 (Standard Deviation), 
MOEA/D: 5.87× 1025 (Average), 4.72× 1023 (Standard Deviation). 

As in the other three test problems, the best results were obtained by MOEA/D 
with respect to the hypervolume measure. In the same manner as Fig. 2 and Fig. 3, we 
show experimental results in the two-dimensional (2-D) objective space in Fig. 4. 
From the comparison between Fig. 1 and Fig. 4, we can see that the inclusion of the 
four correlated objectives had almost no negative effects on the performance of 
NSGA-II and SPEA2. The performance of MOEA/D, however, was clearly degraded 
by their inclusion. That is, the convergence performance was degraded and the 
number of obtained solutions was decreased (see Fig. 1 (c), Fig. 3 (c) and Fig. 4 (c)).  
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  (c) MOEA/D.   (d) 50% attainment surfaces. 

Fig. 4. Experimental results on the correlated six-objective knapsack problem (Projections from 
the 6-D objective space to the 2-D one). The number of generations of MOEA/D with 
population size 252 was converted to the equivalent one in the case of population size 200. 



 

 

As in Figs. 2-4, we projected the solution set obtained by each run onto the 2-D 
objective space with f1(x) and f2(x). Then we calculated its hypervolume in the 2-D 
objective space using the origin (0, 0) as the reference point. Table 1 summarizes the 
average result over 100 runs of each algorithm on each test problem. When we 
included the two randomly generated objectives into the 2-500 knapsack problem, the 
performance of NSGA-II and SPEA2 was severely degraded (see the row labeled as 
“Random 4-Obj.” in Table 1). However, the inclusion of the two and four correlated 
objectives did not degrade their performance at all. MOEA/D shows a totally different 
behavior from the others. The performance of MOEA/D was clearly degraded by the 
inclusion of the correlated objectives as well as the randomly generated objectives. In 
spite of the performance deterioration, the best results were obtained by MOEA/D for 
all the four problems in Table 1. 

 
Table 1. Average hypervolume and standard deviation in the original two-objective space. 

Problem 
NSGA-II SPEA2 MOEA/D 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
Original 2-Obj. 3.800E+08 1.764E+06 3.790E+08 1.390E+06 4.005E+08 9.291E+05 
Random 4-Obj. 3.577E+08 2.184E+06 3.537E+08 1.862E+06 3.902E+08 1.435E+06 

Correlated 4-Obj. 3.800E+08 1.618E+06 3.790E+08 1.255E+06 3.949E+08 1.491E+06 
Correlated 6-Obj. 3.804E+08 1.483E+06 3.782E+08 5.481E+06 3.947E+08 1.194E+06 

4   Computational Experiments on Two-Dimensional Problems  

In this section, we visually examine the behavior of EMO algorithms using test 
problems with only two decision variables. In our test problems, the distance to each 
of the given points in the two-dimensional decision space [0, 100]× [0, 100] is 
minimized. In Fig. 5, we show our three test problems used in this section. 
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 (a) Two-objective problem.    (b) Four-objective problem.    (c) Six-objective problem. 

Fig. 5. Three test problems used in Section 4. 
 

For example, let us assume that four points A, B, C and D are given as in Fig. 5 (b). 
In this case, our four-objective test problem is written as follows: 

Minimize distance(A, x), distance(B, x), distance(C, x) and distance(D, x), (11) 



 

 

where distance(A, x) shows the Euclidean distance between the point A and a two-
dimensional decision vector x in the decision space [0, 100]× [0, 100]. 

As shown in this formulation, the number of objectives is the same as the number 
of the given points. Thus we can generate various test problems with an arbitrary 
number of objectives. As in Fig. 5, we can also generate highly correlated objectives 
using closely located points. Regular polygons were used to generate this type of test 
problems in [18], [25]. Multiple polygons were used to generate test problems with 
multiple equivalent Pareto regions and/or disjoint Pareto regions in [9].  

We applied NSGA-II, SPEA2 and MOEA/D to our three test problems in Fig. 5 
using the following setting: 
Population size in NSGA-II and SPEA2: 200 
Population size in MOEA/D: 200 (2-objective), 220 (4-objective), 252 (6-objective), 
Parameter H for generating weight vectors in MOEA/D: 
      199 (2-objective), 9 (4-objective), 5 (6-objective), 
Coding: Real number string of length 2, 
Stopping condition: 400,000 solution evaluations, 
Crossover probability: 1.0 (SBX with ηc = 15),  
Mutation probability: 0.5 (Polynomial mutation with ηm = 20),  
Neighborhood size T (i.e., the number of neighbors): 10. 

Experimental results of a single run of each algorithm on the two-objective test 
problem in Fig. 5 (a) are shown in Fig. 6. All solutions at the final generation are 
shown in each plot in Fig. 6 where Pareto optimal solutions are points on the line 
between the points A and B. In Fig. 6 (a) and Fig. 6 (b), the final populations included 
many sub-optimal solutions that are not on the line between the points A and B. Much 
better results with respect to the convergence to the Pareto front were obtained by 
MOEA/D in Fig. 6 (c) where all solutions are on the line between the points A and B. 
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        (a) NSGA-II.              (b) SPEA2.                (c) MOEA/D. 

Fig. 6. Experimental results on the two-objective test problem in Fig. 5 (a). 
 

Fig. 7 shows experimental results on the four-objective test problem in Fig. 5 (b) 
where Pareto optimal solutions are points inside the four points A, B, C and D. As in 
Fig. 6, the best results with respect to the convergence were obtained by MOEA/D in 
Fig. 7. However, we can observe some regions with no solutions in Fig. 7 (c). That is, 
obtained solutions in Fig. 7 (c) are not uniformly distributed. 

Fig. 8 shows experimental results on the six-objective test problem in Fig. 5 (c) 
where Pareto optimal solutions are points inside the six points A, B, C, D, E and F. 
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        (a) NSGA-II.              (b) SPEA2.                (c) MOEA/D. 

Fig. 7. Experimental results on the four-objective test problem in Fig. 5 (b). 
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        (a) NSGA-II.              (b) SPEA2.                (c) MOEA/D. 

Fig. 8. Experimental results on the six-objective test problem in Fig. 5 (c). 
 

As in Fig. 6 and Fig. 7, the best results with respect to the convergence were 
obtained by MOEA/D in Fig. 8. However, we can observe that obtained solutions in 
Fig. 8 (c) by MOEA/D are not uniformly distributed. 

We calculated the average hypervolume over 100 runs. The reference point for 
hypervolume calculation was specified as 1.1× (the maximum objective value for 
each objective among Pareto optimal solutions of each problem), which is 1.1× (the 
distance from each point to its farthest point). Experimental results are summarized in 
Table 2. For the two-objective problem, the best results were obtained by MOEA/D in 
Table 2, which is consistent with Fig. 6. The performance of MOEA/D, however, was 
the worst in Table 2 for the four-objective and six-objective problems. This is due to 
the existence of regions with no solutions as shown in Fig. 7 (c) and Fig. 8 (c).  

 
Table 2. Average hypervolume and standard deviation for each test problem. 

Problem 
NSGA-II SPEA2 MOEA/D 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
Two-Objective 4.521E+03 7.409E-01 4.518E+03 1.616E+00 4.528E+03 3.801E-03 
Four-Objective 1.992E+07 1.720E+04 1.987E+07 2.694E+04 1.912E+07 6.626E+02 
Six-Objective 3.761E+10 4.322E+07 3.736E+10 6.520E+07 3.227E+10 6.724E+06 

 
We also calculated the average hypervolume in the 2-D objective space with the 

two objectives defined by the two points A and B. That is, solution sets obtained for 



 

 

the four-objective and six-objective problems were projected onto the two-
dimensional (2-D) objective space as in Table 1 in the previous section. Then the 
average hypervolume were calculated. Experimental results are summarized in Table 
3. When the three algorithms were applied to the two-objective problem, the best 
average value 4.528× 103 was obtained by MOEA/D. However, this average value 
was decreased to 4.216× 103 by 6.89% when MOEA/D was applied to the six-
objective problem. In the case of NSGA-II, the decrease in the average hypervolume 
value was only 0.35% from 4.521× 103 to 4.505× 103. The decrease in the case of 
SPEA2 was also small (i.e., 0.58%). That is, the inclusion of the highly correlated 
objectives severely degraded the performance of MOEA/D whereas it had almost no 
negative effects on the other two algorithms. 

In Fig. 7 (c) and Fig. 8 (c), solution sets with strange distributions were obtained by 
MOEA/D for the four-objective and six-objective problems. Such an undesirable 
behavior disappeared when we decreased the correlation among the similar objectives 
(i.e., when we increased the distance among the closely located points as shown in Fig. 
9). From Fig. 9, we can see that the decrease in the correlation among the objectives 
leads to better distributions along the line between the two points A and B. 

 
Table 3. Average hypervolume and standard deviation in the 2-D objective space. 

Problem 
NSGA-II SPEA2 MOEA/D 

Average Stand. Dev. Average Stand. Dev. Average Stand. Dev. 
Two-Objective 4.521E+03 7.409E-01 4.518E+03 1.616E+00 4.528E+03 3.801E-03 
Four-Objective 4.504E+03 2.894E+00 4.485E+03 4.198E+00 4.412E+03 1.380E-01 
Six-Objective 4.505E+03 2.013E+00 4.492E+03 3.283E+00 4.216E+03 1.216E-01 
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Fig. 9. Experimental results of MOEA/D on other six-objective test problems. 

5   Conclusions 

We demonstrated that highly correlated objectives severely degraded the performance 
of MOEA/D whereas they had almost no negative effects on the performance of 
NSGA-II and SPEA2. The reason for the performance deterioration of MOEA/D may 
be the use of a uniform grid of weight vectors independent of the correlation among 
objectives. When an m-objective problem has highly correlated objectives, its Pareto 
front in the objective space has a totally different shape from the uniform grid of 



 

 

weight vectors in the m-dimensional weight vector space [0, 1]m. This leads to a 
strange distribution of obtained solutions by MOEA/D. Our experimental results 
clearly suggest the necessity of the adjustment of weight vectors according to the 
correlation among objectives, which is left as a future research issue. Further 
discussions on the behavior of each algorithm are also left as a future research issue. 
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