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Abstract. MOEA/D is a simple but powerful scalarizing function-based EMO 
algorithm. Its high search ability has been demonstrated for a wide variety of 
multiobjective problems. MOEA/D can be viewed as a cellular algorithm. Each 
cell has a different weight vector and a single solution. A certain number of the 

nearest cells are defined for each cell as its neighbors based on the Euclidean 
distance between weight vectors. A new solution is generated for each cell from 
current solutions in its neighboring cells. The generated solution is compared 
with the current solutions in the neighboring cells for solution replacement. In 
this paper, we examine the relation between the neighborhood size and the 
performance of MOEA/D. In order to examine the effect of local mating and 
local replacement separately, we use a variant of MOEA/D with two different 
neighborhoods: One is for local mating and the other is for local replacement. 
The performance of MOEA/D with various combinations of two neighborhoods 
is examined using the hypervolume in the objective space and a diversity 
measure in the decision space for many-objective problems. Experimental 

results show that MOEA/D with a large replacement neighborhood has high 
search ability in the objective space. However, it is also shown that small 
replacement and mating neighborhoods are beneficial for diversity maintenance 
in the decision space. It is also shown that the appropriate specification of two 
neighborhoods strongly depends on the problem. 

Keywords: Evolutionary multiobjective optimization, many-objective problems, 
MOEA/D, neighborhood size. 

1   Introduction 

Evolutionary multiobjective optimization (EMO) has been successfully applied to 

various application fields [4], [5], [26]. Pareto dominance-based algorithms such as 

NSGA-II [6], SPEA [34] and SPEA2 [32] have frequently been used in the literature. 

Recently, a scalarizing function-based EMO algorithm called MOEA/D (Multi-

Objective Evolutionary Algorithm based on Decomposition [30]) has rapidly 

increased the popularity due to its simplicity, high search ability, and computational 

efficiency. In MOEA/D, a multiobjective problem is decomposed into a number of 
single-objective problems using a scalarizing function with different weight vectors. 

Each single-objective problem optimizes the scalarizing function with a different 
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weight vector. Since fitness evaluation for each individual is based on scalarizing 

function calculation, it can be efficiently performed even for many-objective 

problems. High search ability of MOEA/D has been repeatedly reported especially for 

difficult multiobjective problems in the literature [11], [21], [31]. 

The main feature of MOEA/D is the decomposition using a scalarizing function 

with different weight vectors (as its name explicitly shows). Thus the choice of an 
appropriate scalarizing function is important. Different scalarizing functions work 

well on different problems. Different scalarizing functions may be effective in 

different stages of evolution. Adaptive selection of a scalarizing function and the use 

of multiple scalarizing functions were examined [14], [15]. The population size is also 

an important parameter since it determines the granularity of weight vectors [13]. 

Actually the population size is the same as the number of weight vectors in MOEA/D.  

Another important feature of MOEA/D is the use of a kind of a neighborhood 

structure defined by the Euclidean distance between weight vectors. By viewing each 
weight vector as a point in the weight vector space, MOEA/D can be explained as a 

cellular algorithm. Each cell has a different weight vector and a single solution. Each 

cell has a certain number of neighboring cells. A new solution for a cell is generated 

by choosing a pair of parents from the current solutions in its neighboring cells (i.e., 

local mating). The generated solution is compared with those solutions in the 

neighboring cells for solution replacement (i.e., local replacement). 

The number of neighboring cells (i.e., neighborhood size) is an important user-

definable parameter. However, the importance of its appropriate specification has not 
been stressed in the literature. This may be because MOEA/D on two-objective and 

three-objective problems usually has high search ability over a wide range of different 

specifications of the neighborhood size. In this paper, we demonstrate that its search 

ability for many-objective problems strongly depends on the neighborhood size. In 

order to examine the local mating and the local replacement separately, we use a 

variant of MOEA/D with two neighborhoods as in our former studies on MOEA/D 

[11], [13], [15]. A pair of parents is selected from a mating neighborhood, and the 

generated solution is compared with current solutions in a replacement neighborhood. 
Using such a variant, we examine various combinations of two neighborhoods (e.g., a 

small mating neighborhood and a large replacement neighborhood). Performance of 

MOEA/D with two neighborhoods is evaluated with respect to the hypervolume in the 

objective space and a diversity measure in the decision space. 

This paper is organized as follows. First we explain a variant of MOEA/D with two 

neighborhoods in Section 2. In Section 3, we explain two types of many-objective test 

problems. One is many-objective knapsack problems, which are used to evaluate the 

search ability of MOEA/D in the objective space. The other is many-objective 
distance minimization problems, which are used to visually examine the diversity of 

solutions in the decision space. Performance measures in the objective space and 

diversity measures in the decision space are discussed in Section 4. Then we examine 

the relation between the performance of MOEA/D and the specifications of two 

neighborhoods through computational experiments in Section 5. Experimental results 

show that the performance of MOEA/D on many-objective knapsack problems 

strongly depends on the specifications of two neighborhoods. Different specifications 

are needed for hypervolume maximization in the objective space and diversity 
maximization in the decision space. Finally we conclude this paper in Section 6. 



2   MOEA/D with Two Neighborhoods 

In MOEA/D [30], a multiobjective problem is decomposed into a number of 

single-objective problems using a scalarizing function with different weight vectors. 

A set of weight vectors satisfying the following two conditions is used in MOEA/D: 
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where H is a user-definable positive integer. The number of weight vectors can be 

calculated as N = Hm1Cm1 (i.e., N = 1
1




m
mHC  [30]). For example, we have 101 

weight vectors for a two-objective problem when H = 100:   = (0, 1), (0.01, 0.99), ..., 
(1, 0). In Fig. 1, we show 15 weight vectors for a three-objective problem when H = 4. 
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Fig. 1. A set of weight vectors for a three-objective problem (H = 4). 

 

As a scalarizing function, we mainly use the weighted Tchebycheff in this paper. 

Only for many-objective knapsack problems with six and eight objectives, we use the 

weighted sum since better results were obtained from the weighted sum for those 

problems in our preliminary computational experiments (e.g., see [15]).  

An m-objective maximization problem can be written as  

Maximize ))(...,),(),(()( 21 xxxxf mfff , (3) 

where f(x) is the m-dimensional objective vector, fi(x) is the ith objective to be 

maximized, and x is the decision vector.  



The weighted sum of the m objectives is written using a weight vector  as  
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In Zhang and Li [30], the reference point z* was specified for multiobjective 
knapsack problems (which are multiobjective maximization problems) as  

mitfz ii ...,,2,1)},(|)(max{1.1*  xx , (6) 

where (t) shows the tth population. We use this specification. For multiobjective 

function minimization problems, the following specification was used in [30]:  

mitfz ii ...,,2,1)},(|)(min{*  xx . (7) 

We use this specification for multiobjective distance minimization problems. 
As in our former studies [11], [13], [15], we implemented MOEA/D as a cellular 

algorithm with two neighborhoods. As shown in Fig. 1, a set of weight vectors can be 

viewed as a grid in the weight vector space where each weight vector corresponds to a 

cell. Each cell can be viewed as having a weight vector and a single solution. 

Let N be the number of weight vectors, which is the same as the number of cells 

and the population size. We denote N weight vectors as k, k =1,2,...,N where k is a 
weight vector assigned to the kth cell. In the original MOEA/D [30], each weight 

vectors has a set of neighbors. Our variant of MOEA/D has two sets of neighbors. 

That is, each cell has two sets of neighboring cells. One is for local mating and the 

other is for local replacement of solutions. As in the original MOEA/D [30], the 
definition of neighbors is based on the distance between weight vectors.  

When a solution is to be generated in a cell, a pair of solutions is randomly selected 

from its mating neighborhood. A new solution is generated by crossover and mutation. 

The generated solution for the cell is compared with current solutions in its 

replacement neighborhood. At each cell in the replacement neighborhood, the 

generated solution is evaluated using the weight vector in that cell. The solution 

replacement is performed when the generated solution is better than the current one in 

each cell. It should be noted that the comparison is based on the weight vector at each 
cell. Thus it is not likely that many current solutions are replaced with a single new 

solution even when we use a large replacement neighborhood. This is because a new 

solution is not likely to be evaluated as being better than current solutions at many 

cells with totally different weight vectors such as (0.2, 0.8), (0.5, 0.5) and (0.8, 0.2). 

In the original version of MOEA/D, a parent outside the neighborhood can be 

probabilistically selected. In our variant, we always choose parents from the mating 

neighborhood. The upper bound on the number of replaced solutions with a new 



solution can be specified in the original MOEA/D. We do not use any upper bound on 

the number of replaced solutions in our variant. The original MOEA/D also has an 

option of using an archive population to store non-dominated solutions. We do not 

use any archive population. All of these settings in our variant are to clearly examine 

the effect of the neighborhood size on the performance of MOEA/D. 

It is pointed out in several studies [10], [20], [23] that the recombination of similar 
parents improves the search ability of EMO algorithms on many-objective problems. 

This is because the current population of EMO algorithms has a large diversity in the 

decision space in the case of many objectives [20]. A good solution is not likely to be 

generated from a pair of totally different parents. MOEA/D has two nice properties as 

a many-objective optimizer: One is the scalarizing function-based efficient fitness 

evaluation, and the other is the local mating. It is shown in this paper that an 

appropriate specification of the mating neighborhood is important in the application 

of MOEA/D to difficult many-objective problems. The necessity of local replacement 
is also discussed with respect to the diversity in the decision space. 

3   Many-Objective Test Problems 

It has been pointed out in the literature that many-objective problems are difficult 

for Pareto dominance-based EMO algorithms [8], [19], [22]. When EMO algorithms 

are applied to many-objective problems, almost all solutions in the current population 

become non-dominated with each other within a small number of generations. This 

severely weakens the selection pressure of Pareto dominance-based fitness evaluation 

mechanisms towards the Pareto front. Various approaches have been proposed to 

increase the selection pressure [16], [17], [23]. EMO algorithms with other fitness 

evaluation mechanisms such as indicator-based EMO algorithms (e.g., SMS-EMOA 
[3]) and scalarizing function-based EMO algorithms (e.g., MOEA/D [30]) have been 

actively studied for many-objective problems. Currently evolutionary many-objective 

optimization is a hot topic in the EMO community [1], [2], [24], [35]. 

As test problems, we use two types of many-objective problems. One is knapsack 

problems, which are difficult many-objective problems for Pareto dominance-based 

EMO algorithms. The other is distance minimization problems, which are easy many-

objective problems. We briefly explain those test problems.  

We generated many-objective knapsack problems from the two-objective 500-item 
knapsack problem of Zitzler and Thiele [34]. This problem is written as follows:  

Maximize 
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where n is the number of items (i.e., n = 500), x is a binary string, pij is the profit of 

item j according to knapsack i, wij is the weight of item j according to knapsack i, and 

ci is the capacity of knapsack i. The value of each profit pij is a randomly specified 

integer in [10, 100]. This problem is referred to as the 2-500 problem in this paper. 

We generated additional objectives fi(x) for i = 3, 4, ..., 8 by randomly specifying 

the value of the profit pij as an integer in [10, 100]. In this manner, we generated m-

objective knapsack problems with up to eight objectives. Each of those test problems 

is referred to as the m-500 problem in this paper. It should be noted that all of those 

test problems have the same constraint conditions as the original 2-500 problem. That 

is, all of our multiobjective knapsack problems have the same feasible solution set. As 
a result, the Pareto optimal solutions of the original 2-500 problem are also Pareto 

optimal for the m-500 problems for m = 3, 4, ..., 8. This feature is used to visually 

examine the convergence and the diversity of solutions of many-objective knapsack 

problems by projecting them onto the two-dimensional objective space with f1(x) and 

f2(x). It has been demonstrated that randomly generated many-objective knapsack 

problems are difficult for Pareto dominance-based EMO algorithms [11], [23]. 

We also generated many-objective distance minimization problems with multiple 

Pareto regions to examine the behavior of EMO algorithms in a two-dimensional 
decision space [9], [12]. An example of a four-objective problem is shown in Fig. 2. 

All points in the shaded four squares are Pareto optimal solutions. The ith objective 

fi(x) is the minimum distance from a point x (i.e., solution x) in the two-dimensional 

decision space to the ith vertexes of multiple polygons: 

)},(dis...,),,(dis),,(dismin{)( 21 ikiiif axaxaxx  , i = 1, 2, ..., m, (11) 

where dis(x, aij) is the Euclidean distance between the two points x and aij, aij shows 

the ith vertex of the jth polygon, k is the number of polygons (i.e., j = 1, 2, ..., k), and 

m is the number of objectives (i.e., the number of vertexes: i = 1, 2, ..., m). In Fig. 2, 

the four squares have exactly the same shape and the same size. Thus each square is 

mapped to the same Pareto front in the four-dimensional objective space. 
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Fig. 2. An example of a four-objective distance minimization problem. 



In the same manner as in Fig. 2, we generated distance minimization problems 

with three, five and six objectives as shown in Fig. 3. We also generated four distance 

minimization problems with a single Pareto optimal region as shown in Fig. 4. In our 

test problems in Figs. 2-4, all points in each polygon are Pareto optimal solutions.  

 

0 20 40 60 80 100

20

40

60

80

100

x1

x2

 
0 20 40 60 80 100

20

40

60

80

100

x1

x2

 
0 20 40 60 80 100

20

40

60

80

100

x1

x2

 

Fig. 3. Distance minimization problems with multiple Pareto optimal regions. 
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Fig. 4. Distance minimization problems with a single Pareto optimal region. 

4   Performance Measures and Diversity Measures 

A number of performance measures have been proposed to evaluate a set of non-

dominated solutions in the objective space [33]. We use the hypervolume measure, 

which has been frequently used in the literature. 

With a few exceptions (e.g., Omni-Optimizer [7]), the decision space diversity has 

not been used in EMO algorithms. This is because the diversity maintenance in the 

objective space is very important in EMO algorithms. Recently, the importance of the 

diversity maintenance in the decision space was stressed in some studies [27]-[29] 
where the use of the Solow-Polasky diversity measure [25] was suggested. The use of 

a non-geometric binary crossover was proposed to directly increase the decision space 

diversity [18]. In this paper, we use the average distance between two solutions in the 

decision space as a diversity measure since its meaning can be easily understood. The 

distance between solutions of the knapsack problems (i.e., binary strings) is measured 

by the Hamming distance while the Euclidean distance is used for solutions of the 

distance minimization problems (i.e., two-dimensional real number vectors). Whereas 

we also calculated the Solow-Polasky diversity measure, we only report the average 
distance between solutions due to the page limitation. 



5   Experimental Results 

We applied our variant of MOEA/D, NSGA-II and SPEA2 to the 2-500, 4-500, 6-500 

and 8-500 knapsack problems using the following parameter specifications: 

Coding: Binary string of length 500 (i.e., 500-bit string), 
Population size in NSGA-II and SPEA2: 200, 

Population size in MOEA/D: 200 (2-500), 220 (4-500), 252 (6-500), 120 (8-500), 

Termination condition: 200 2000 solution evaluations, 

Parent selection: Random selection from the neighborhood (MOEA/D), 

             Binary tournament selection with replacement (NSGA-II and SPEA2), 

Crossover: Uniform crossover (Probability: 0.8), 

Mutation: Bit-flip mutation (Probability: 1/500), 

Number of runs for each test problem: 100 runs. 

In MOEA/D, we specified the size of the mating neighborhood as % of the 

population size where  = 1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100. That is, these 11 

specifications of   were examined. When % of the population size was not an 
integer, the non-integer value was rounded down. For example, 1% of the population 

size 220 was handled as 2 by rounding down the calculated value 2.2. The same 11 

specifications were also used for the replacement neighborhood. That is, the size of 

the replacement neighborhood was specified as  % of the population size where   = 
1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100. All the 11 11 combinations were examined in 

our computational experiments. 

The average value of the hypervolume of the final population over 100 runs of our 

variant of MOEA/D for each combination is summarized in Fig. 5. The origin of the 

objective space was used as a reference point in the hypervolume calculation. Good 
results were not obtained for many-objective knapsack problems by NSGA-II and 

SPEA2. For example, their results on the 8-500 problem were 1.10 1034 (NSGA-II) 

and 1.03 1034 (SPEA2) whereas the best result in Fig. 5 was 1.55 1034. From Fig. 5, 

we can see that good results were obtained for all the four test problems when the size 

of the two neighborhoods was specified as follows: 2-10% of the population size for 

the mating neighborhood and 20-100% for the replacement neighborhood. We can 

also see from Fig. 5 that the sensitivity of the MOEA/D performance on the 

neighborhood size increases with the number of objectives. Whereas almost the same 
results were obtained from a wide range of parameter specifications for the 2-500 

problem, very good results were obtained from only a few combinations for the 8-500 

problem. These observations suggest that the use of appropriate neighborhoods is 

important in MOEA/D for many-objective knapsack problems. Fig. 5 also shows that 

the use of two different neighborhoods improves the performance of MOEA/D. 

The average distance between solutions in the final population is summarized in 

Fig. 6. High average distances between solutions were obtained from a small mating 

neighborhood for all the six test problems independent of the size of the replacement 
neighborhood. We can see that there is no clear relation between the hypervolume in 

Fig. 5 and the decision space diversity in Fig. 6. In Fig. 7, we show the projection of a 

solution set onto the f1(x)-f2(x) space obtained by a single run of MOEA/D with a 

different setting of two neighborhoods. We can see from Fig. 7 that a large diversity 

in the objective space was obtained from a small mating neighborhood. 
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Fig. 5. Experimental results on the knapsack problems (Hypervolume measure). 
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Fig. 6. Experimental results on the knapsack problems (Average Hamming distance). 
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(a) 1% mating and 100% replacement.     (b) 100% mating and 1% replacement. 

Fig. 7. Projection of a solution set obtained from a single run of MOEA/D with a different 
setting on the 8-500 problem. The dashed line shows the Pareto front of the 2-500 problem. 

 

In Fig. 8 and Fig. 9, we show experimental results on the four test problems with a 

single Pareto optimal region in Fig. 4. Experimental results on the four test problems 
with four Pareto optimal regions in Fig. 2 and Fig. 3 are shown in Fig. 10 and Fig. 11. 

We can see that the four plots in each figure show somewhat similar patterns: Good 

results were almost always obtained from a small replacement neighborhood in Figs. 

8-11. These observations are totally different from those for the knapsack problems. 
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Fig. 8. Results on the minimization problems in Fig. 4 (Hypervolume measure). 
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Fig. 9. Results on the minimization problems in Fig. 4 (Average distance). 
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Fig. 10. Results on the minimization problems in Fig. 2 and Fig. 3 (Hypervolume measure). 
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Fig. 11. Results on the minimization problems in Fig. 2 and Fig. 3 (Average distance). 
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(a) 1% mating and 100% replacement.     (b) 100% mating and 1% replacement. 

Fig. 12. A solution set from a single run with a different setting (Single hexagon). 
 

In Fig. 12 and Fig. 13, we show an obtained solution set from a single run of 

MOEA/D with a different setting. Whereas the result in Fig. 12 (a) looks nice, a 

higher hypervolume value was obtained from a small replacement neighborhood in 

Fig. 12 (b) as shown in Fig. 8. Fig. 13 clearly shows that a much larger diversity in 

the decision space was obtained from a small replacement neighborhood (see Fig. 11). 
The average hypervolume values 1.08 107 and 1.18 107 were obtained for the 

four-hexagon problem by NSGA-II and SPEA2, respectively, while the best result by 

MOEA/D was 1.16  107 in Fig. 10. These results show that our distance 

minimization problems are not difficult for Pareto dominance-based EMO algorithms. 
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(a) 1% mating and 100% replacement.      (b) 100% mating and 1% replacement. 

Fig. 13. A solution set from a single run with a different setting (Four hexagons). 

6   Conclusions 

In this paper, we explained the relation between the performance of MOEA/D on 

many-objective problems and the specification of the size of the two neighborhoods 

(one is for local mating and the other is for local replacement). For many-objective 

knapsack problems, we obtained the following observations: 

(1) Good results with respect to the hypervolume measure were obtained from the 

following combinations: The mating neighborhood size was 2-10% of the 

population size and the replacement neighborhood size was 20-100%. The larger 
the replacement neighborhood was, the better the performance of MOEA/D was.  

(2) Good results with respect to the decision space diversity were obtained when the 

mating neighborhood size was 1% of the population size. The smaller the mating 

neighborhood was, the larger the decision space diversity was. 

Different results were obtained for the distance minimization problems as follows: 

(3) Good results with respect to both the hypervolume measure and the decision space 
diversity were obtained when the replacement neighborhood size was 1%. The 

smaller the replacement neighborhood was, the better the performance was. 

(4) The best results with respect to both the hypervolume measure and the decision 

space diversity were obtained for the five-objective and six-objective problems 

when the size of the two neighborhoods was specified as 1% of the population 

size (whereas the worst results were obtained from this setting for the knapsack 

problems with respect to the hypervolume measure). 

We can see from these observations that an appropriate specification of the two 

neighborhoods is totally problem-dependent. Moreover, good specifications for the 

hypervolume maximization are not always good for the decision space diversity 

maximization. For difficult many-objective problems, high selection pressure toward 

the Pareto front is needed for efficient search. Thus a large replacement neighborhood 

is beneficial for MOEA/D. For easy many-objective problems, high selection pressure 



is not needed. So a large replacement neighborhood is not needed. One potential 

disadvantage of a large replacement neighborhood is the increase in computation load, 

which should be further discussed in future studies. 
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