
 

 

Hypervolume Subset Selection for Triangular and Inverted 
Triangular Pareto Fronts of Three-Objective Problems 

Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima 
Department of Computer Science and Intelligent Systems 

Osaka Prefecture University 
Sakai, Osaka, 599-8531 

Japan 
{hisaoi@, ryo.imada@ci., yu.setoguchi@ci., nojima@}cs.osakafu-u.ac.jp 

 

 

ABSTRACT 
Hypervolume subset selection is to find a pre-specified number of 
solutions for hypervolume maximization. The optimal distribution 
of solutions on the Pareto front has been theoretically studied for 
two-objective problems in the literature. In this paper, we discuss 
hypervolume subset selection for three-objective problems with 
triangular and inverted triangular Pareto fronts. Our contribution 
is to show that the effect of the location of a reference point for 
hypervolume calculation on the optimal distribution of solutions is 
totally different between triangular and inverted triangular Pareto 
fronts. When the reference point is far from the Pareto front, most 
solutions are on the sides of the inverted triangular Pareto front 
while they are evenly distributed over the entire triangular Pareto 
front. These properties seem to hold in multiobjective problems 
with four or more objectives. We also show that the effect of the 
location of a reference point on the optimal distribution is totally 
different between maximization and minimization problems with 
the same triangular Pareto fronts. This property is supported by 
the fact that maximization problems with triangular Pareto fronts 
are equivalent to minimization problems with inverted triangular 
Pareto fronts. The optimal distribution of solutions is also 
discussed when the reference point is close to the Pareto front (i.e., 
when its location is between the nadir point and the Pareto front). 

CCS Concepts 
•Computing methodologies; Optimization algorithms; Search 
methodologies. 

Keywords 
Evolutionary multiobjective optimization; Pareto front; solution 
subset selection; hypervolume maximization. 

1. INTRODUCTION 
Hypervolume [23] has been frequently used to evaluate a set of 
solutions in the evolutionary multiobjective optimization (EMO) 
community [24] (i.e., to compare the search ability of different 
EMO algorithms). This is mainly because the hypervolume is a 
Pareto compliant performance indicator (e.g., see [22]). It has also 
been frequently used in indicator-based algorithms such as SMS-
EMOA [5] and HypE [3] where multiobjective optimization is 

handled as single-objective hypervolume maximization. In those 
algorithms, a population of solutions is evolved to maximize its 
hypervolume. Hypervolume maximization needs the convergence 
of solutions to the Pareto front as well as their diversification over 
the entire Pareto front. When a two-objective problem has a linear 
Pareto front, the optimal distribution of solutions for hypervolume 
maximization is equidistant solutions on the Pareto front [1], [9].  

Recently, hypervolume maximization by selecting a pre-specified 
number of solutions from a large number of candidates has been 
actively studied in the EMO community [4], [6], [7], [11]-[13], 
[15], [17], [20]. This task is referred to as hypervolume subset 
selection. The optimal distribution of solutions for hypervolume 
maximization has been also theoretically studied in the literature 
[1], [2], [9], [10], [21]. Almost all of those studies are for two-
objective problems. Whereas the optimal distribution of solutions 
for multiobjective problems with three or more objectives was 
discussed in [21], a single-dimensional curve was assumed as the 
Pareto front. In this paper, we discuss hypervolume maximization 
for multiobjective problems with three or more objectives. We 
focus on a frequently-used many-objective test problem DTLZ1 
[8] and its two variants: inverted DTLZ1 [19] and Max-DTLZ1 
[18]. We show that these three problems have different optimal 
distributions for hypervolume maximization while they have the 
same (or inverted) Pareto front in the normalized objective space.  

In Figure 1, we show solution sets obtained for the three-objective 
DTLZ1 and inverted DTLZ1 problems by SMS-EMOA [5]. A 
population of size 50 was evolved for 1,000,000 generations to 
maximize the hypervolume for the reference point (20, 20, 20). 
Since the Pareto front of each test problem is included in the cube 
[0.0, 0.5]3, the reference point (20, 20, 20) is far from the Pareto 
front. In this paper, we explain why all solutions in Figure 1 (b) 
are on the sides of the inverted triangular Pareto front whereas 
well-distributed solutions are obtained over the entire triangular 
Pareto front in Figure 1 (a). 

         
                (a) DTLZ1.                                  (b) Inverted DTLZ1. 

Figure 1. Obtained solution sets by SMS-EMOA when the 
reference point is far from the Pareto front: (20, 20, 20).  
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The triangular Pareto front of the three-objective DTLZ1 problem 
is written as follows [8]: 

PF = {(f1, f2, f3) | f1 + f2 + f3 = 0.5,  0  fi  0.5 for i = 1, 2, 3}. (1) 

Thus the nadir point is (0.5, 0.5, 0.5). The three-objective inverted 
DTLZ1 problem [19] has the same nadir point since its inverted 
triangular Pareto front is written as follows: 

PF = {(f1, f2, f3) | f1 + f2 + f3 = 1,  0  fi  0.5 for i = 1, 2, 3}.    (2) 

In the same manner as in Figure 1, we applied SMS-EMOA to 
DTLZ1 and its inverted version using the nadir point (0.5, 0.5, 
0.5) as the reference point. Figure 2 shows the obtained solution 
set for each test problem. Whereas the two solution sets in Figure 
2 are well distributed over the Pareto fronts, they have a clear 
difference. No solutions are very close to the sides of the inverted 
triangular Pareto front in Figure 2 (b) whereas about six solutions 
in Figure 2 (a) are very close to each side of the triangular Pareto 
front. In this paper, we explain the reason for this difference. 

        
                (a) DTLZ1.                                (b) Inverted DTLZ1. 

Figure 2. Obtained solution sets by SMS-EMOA when the 
nadir point (0.5, 0.5, 0.5) is used as the reference point. 

For comparison, we also examine another variant of DTLZ1 
called Max-DTLZ1 [18]. In Max-DTLZ1, all objectives to be 
minimized in DTLZ1 are maximized. In this paper, we handle 
DTLZ1, inverted DTLZ1 and Max-DTLZ1 under a special setting 
where the number of distance variables is always 0 while the 
number of position variables is m 1 for m-objective problems. In 
this setting, all feasible solutions of each problem are Pareto 
optimal. As a result, the DTLZ1 and Max-DTLZ1 problems have 
the same triangular Pareto front in (1). It should be noted that the 
ideal point (0, 0, 0) of DTLZ1 is the nadir point of Max-DTLZ1.  

In the same manner as in Figure 1 and Figure 2, we applied SMS-
EMOA to Max-DTLZ1 using the nadir point (0, 0, 0) as the 
reference point. We also applied SMS-EMOA to Max-DTLZ1 
using 20, 20, 20) as the reference point. This reference point 
is far from the Pareto front. The obtained solution set for each 
reference point is shown in Figure 3.  

        
      (a) Nadir point (0, 0, 0).                      (b) 20, 20, 20). 

Figure 3. Obtained solution sets by SMS-EMOA for Max-
DTLZ1 for the reference points (0, 0, 0) and 20, 20, 20). 

From Figures 1-3, we can see that the obtained solution sets for 
Max-DTLZ1 in Figure 3 are similar to those for the inverted 
DTLZ1 in Figures 1 and 2. This is because Max-DTLZ1, which is 
a maximization problem with a triangular Pareto front (see Figure 
3), is equivalent to a minimization problem with an inverted 
triangular Pareto front as we will explain later in this paper.  

This paper is organized as follows. In Section 2, first we briefly 
explain basic concepts in multiobjective optimization such as 
Pareto optimality, Pareto front, hypervolume, and hypervolume 
subset selection. Then we explain the Pareto front of each test 
problem: DTLZ1, inverted DTLZ1 and Max-DTLZ1. We show 
that the three test problems have exactly the same Pareto front: 

PF = {(f1, f2, f3) | f1 + f2 + f3 = 1,  0  fi  1 for i = 1, 2, 3},       (3) 

in the normalized objective space when the inverted DTLZ1 is 
handled as the equivalent maximization problem. When the 
inverted DTLZ1 is handled as a minimization problem in the 
normalized objective space, its Pareto front can be written as PF = 
{(f1, f2, f3) | f1 + f2 + f3 = 2, 0  fi  1 for i = 1, 2, 3}. In Section 3, 
we discuss hypervolume subset selection for the case where the 
reference point is far from the Pareto front. We explain why 
totally different distributions of solutions are obtained in Figure 1 
for the three-objective DTLZ1 and inverted DTLZ1 problems. In 
Section 4, we discuss hypervolume subset selection for the case 
where the nadir point is used as the reference point. We explain 
why different solution sets are obtained in Figure 2 for the three-
objective DTLZ1 and inverted DTLZ1 problems. We also discuss 
the optimal distribution of solutions when a reference point is 
close to the Pareto front (i.e., when its location is between the 
nadir point and the Pareto front). In this case, different solution 
sets are obtained by SMS-EMOA for DTLZ1 and Max-DTLZ1 as 
shown in Figure 4. We explain why obtained solutions for DTLZ1 
are in an inverted triangle whereas those for Max-DTLZ1 are 
triangular. In Section 5, we discuss the effect of the reference 
point on the hypervolume-based comparison results of different 
solution sets. Experimental results on other test problems are 
shown in Section 6. Finally we conclude this paper in Section 7. 

        
                  (a) DTLZ1.                                  (b) Max-DTLZ1. 

Figure 4. Obtained solution sets by SMS-EMOA when the 
reference point is close to the Pareto front, which is specified 
as (0.25, 0.25, 0.25) in (a) and (0.05, 0.05, 0.05) in (b).  

2. MULTIOBJECTIVE TEST PROBLEMS 
2.1 Multiobjective Optimization 
First we show some basic concepts in multiobjective optimization 
before explaining hypervolume subset selection and test problems. 
Let us assume that we have an m-objective minimization problem:  

Minimize f1(x), f2(x), ..., fm(x) subject to xX,         (4) 

where x is a decision vector, X is its feasible region, and fi(x) is 
the ith objective to be minimized (i = 1, 2, ..., m). The m-objective 
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minimization problem in (4) can be rewritten as the following m-
objective maximization problem by multiplying each objective by 
(1): 

Maximize   f1(x),  f2(x), ...,  fm(x) subject to xX.        (5) 

Let us assume that a and b are two solutions in the objective space 
of the m-objective minimization problem in (4): a = (a1, a2, ..., am) 
and b = (b1, b2, ..., bm). When the following condition holds, b is 
referred to as being dominated by a (i.e., a is better than b in the 
sense of Pareto dominance): ai  bi for all i’s and aj < bj for at least 
one j. This condition can be rewritten as a  b (i.e., ai  bi for all 
i’s) and a  b. When a solution x* (i.e., a point f(x*) = (f1(x

*), 
f2(x

*), ..., fm(x*)) in the objective space) is not dominated by any 
other solution, x* is referred to as a Pareto optimal solution. In 
general, a multiobjective optimization problem has a number of 
Pareto optimal solutions. The set of all Pareto optimal solutions is 
the Pareto optimal solution set. The Pareto optimal solution set in 
the objective space is referred to as the Pareto front. The Pareto 
front shows the tradeoff relation among the objectives.  

A multiobjective problem has two special points in the objective 
space. One is the ideal point zIdeal, which is defined by the best 
value of each objective. The other is the nadir point zNadir, which is 
defined by the worst value of each objective in the Pareto optimal 
solution set. These two points are illustrated in Figure 5 for 
minimization and maximization problems. 

               

     (a) Minimization problem.            (b) Maximization problem.  

Figure 5. Ideal point and nadir point for minimization and 
maximization problems. 

2.2 Hypervolume Subset Selection 
A reference point for hypervolume calculation is a point in the m-
dimensional objective space. We denote the reference point by r = 
(r1, r2, ..., rm). The hypervolume of a point a = (a1, a2, ..., am) is the 
area (m = 2), volume (m = 3) or hypervolume (m  4) of the 
dominated region by a bounded by the reference point r. This 
region can be written for the m-objective minimization problem as 
follows (see Figure 6 (a)): 

D(a, r) = {(z1, z2, ..., zm) | ai   zi   ri for i = 1, 2, ..., m}.        (6) 

The hypervolume of a set of  points, S = {a1, a2, ..., a}, is the 
area, volume or hypervolume of the union of the dominated 
region by each point (see Figure 6 (b)): 

D(S, r) = D(a1, r)D(a2, r)  ... D(a, r).         (7) 

If the reference point r is not dominated by any point in the point 
set S, the hypervolume of S is 0. This is because the dominated 
region by each point bounded by the reference point is empty. 

For the m-objective maximization problem, the hypervolume of a 
single point a is calculated from the following dominated region 
by a bounded by the reference point r (see Figure 7 (a)): 

D(a, r) = {(z1, z2, ..., zm) | ri  zi  ai for i = 1, 2, ..., m}.        (8) 

The hypervolume of a set of  points, S = {a1, a2, ..., a}, is 
calculated in the same manner as in (7). That is, the hypervolume 
is the area, volume or hypervolume of the union of the dominated 
region by each point (see Figure 7 (b)). 

                
  (a) Dominated region by a.               (b) Dominated region by S. 

Figure 6. Illustration of the hypervolume of a point a in (a) 
and the hypervolume of a point set S = {a1, a2, a3} in (b) for 
minimization problems. 

                 
  (a) Dominated region by a.               (b) Dominated region by S. 

Figure 7. Illustration of the hypervolume of a point a in (a) 
and the hypervolume of a point set S = {a1, a2, a3} in (b) for 
maximization problems.  

The hypervolume contribution of a point a j in a point set S (a j S) 
is the amount of decrease in the hypervolume by removing a j 
from S. That is, the hypervolume contribution of aj in S is defined 
as HV(S)  HV(S\{a j}) where HV(S) is the hypervolume of S and 
HV(S\{a j}) is the hypervolume of S excluding a j. Figure 8 shows 
the hypervolume contribution of a2 in the point set S = {a1, a2, a3}. 

                
     (a) Minimization problem.               (b) Maximization problem. 

Figure 8. Hypervolume contribution of a2 in S = {a1, a2, a3}.  

Hypervolume subset selection for finding  solutions can be 
written as the following optimization problem: 

Maximize HV(S) subject to |S| =  .          (9) 

Hypervolume subset selection is usually formulated as a discrete 
optimization problem for selecting  solutions from a number of 
given non-dominated solutions (i.e., from a pre-specified set of 
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candidate solutions). In this paper, we discuss the selection of  
solutions for hypervolume maximization from all Pareto optimal 
solutions. That is, the entire Pareto optimal solution set is assumed 
as the candidate solution set in our hypervolume subset selection. 

The optimal -distribution is the distribution of  solutions which 
maximizes the hypervolume, i.e., the distribution of  solutions in 
the optimal solution set S* of the hypervolume subset selection 
problem in (9). When the Pareto front of a two-objective problem 
is linear (i.e., a line), it was shown in the literature (e.g., see [2]) 
that the hypervolume is maximized by a set of equidistant points 
on the Pareto front as shown in Figure 9. The two extreme 
solutions of the Pareto front are included in the optimal solution 
set S* when some conditions on the Pareto front and the location 
of the reference point are satisfied (for details, see [2]).  

The optimal solution set S* (i.e., the optimal -distribution) does 
not depend on the location of the reference point in Figure 9 as 
long as the following two conditions hold: (i) the two extreme 
solutions of the Pareto front are included in the optimal solution 
set S*, and (ii) the reference point r is dominated by the nadir 
point as in Figure 9. The second condition (ii) holds when the 
reference point is far from the Pareto front (see Figure 9). Under 
these conditions, subset selection is to maximize the hypervolume 
of ( 2) solutions in the shaded region in Figure 10 (since the 
two extreme solutions are included in the optimal solution set S*).  

             
     (a) Minimization problem.               (b) Maximization problem. 

Figure 9. Optimal solution set S* with five solutions. 

             
     (a) Minimization problem.               (b) Maximization problem. 

Figure 10. Hypervolume contribution of all solutions on the 
Pareto front excluding the two extreme solutions.  

2.3 DTLZ1 Test Problem 
As a scalable test problem where the number of objectives can be 
arbitrarily specified, DTLZ1 [8] has been frequently used for 
evaluating the search ability of many-objective evolutionary 
algorithms. Each objective in DTLZ1 can be written as 

Minimize  )())(1()( posdis xxx ii hgf  , mi ...,,2,1 ,      (10) 

where the decision vector x  = (x1, x2, …, xm+k1) is separable into 
the first m1 position variables in xpos = (x1, x2, …, xm1) and the 

other k distance variables in xdis =(xm, xm+1, …, xm+k1). The 
number of decision variables is specified by the parameter k. In 
(10), hi (xpos) determines the shape of the Pareto front (hi (xpos)  0) 
while g(xdis) specifies the distance from the Pareto front (g(xdis) 
0). All decision variables have the same constraint condition: 0
xj 1 for j = 1, 2, ..., m  k 1. 

The Pareto optimal solution set of DTLZ1 is the set of all feasible 
solutions with g(xdis) = 0. DTLZ1 has no Pareto optimal solution 
with g(xdis) > 0. Since the decision vector x is separable into xpos 
and xdis, the Pareto front of DTLZ1 can be written as 

)()( posxx ii hf  , mi ...,,2,1 ,        (11) 

where 0  xj  1 for j = 1, 2, ..., m 1. It is well known that DTLZ1 
has the following linear Pareto front [8]: 

{(f1, f2, ..., fm) | 5.0
1




m

i
if , 0   fi  0.5 for i = 1, 2, ..., m}.        (12) 

When we applied SMS-EMOA to DTLZ1 in Section 1, we 
specified the number of distance variables in xdis as zero (i.e., k = 
0) to remove g(xdis) from each objective in (10). Under this setting, 
all feasible solutions of DTLZ1 are Pareto optimal. This means 
that SMS-EMOA examined only Pareto optimal solutions in 
Section 1. We also applied SMS-EMOA to the inverted DTLZ1 
and Max-DTLZ1 problems in the same setting (i.e., k = 0) in 
Section 1. This is to focus on hypervolume subset selection from 
Pareto optimal solutions.  

2.4 Variants of DTLZ Test Problems 
The inverted DTLZ1 problem was formulated in [19] as a scalable 
test problem with an inverted triangular Pareto front by modifying 
each objective function of DTLZ1 as 

),())(1(5.0)( dis xxx ii fgu   i = 1, 2, ..., m,       (13) 

where ui (x) is the ith objective of the inverted DTLZ1 problem. 
As in DTLZ1, the Pareto optimal solution set of the inverted 
DTLZ1 problem is the set of all feasible solutions with g(xdis) = 0. 
Using g(xdis) = 0 in the right-hand side of (13) and also in (10), the 
Pareto front of the inverted DTLZ1 problem can be written as  

)(5.0)( posxx ii hu  , mi ...,,2,1 .        (14) 

Since the Pareto front in (12) is generated by hi (xpos) in (11) using 
all feasible solutions in xpos, we have the following relation for 
ui(x) on the Pareto front in (14) from (11) and (12): 

2/)1(5.05.0)(5.0)(
1 1

pos
1

 
 

m

i

m

i
i

m

i
i mmhu xx ,     (15) 

where 5.0)(0  xiu  (i = 1, 2, ..., m). Since all feasible solutions 
satisfying (15) are Pareto optimal, the Pareto front of the m-
objective inverted DTLZ1 is written as 

{(f1, f2, ..., fm)| 2/)1(
1




mf
m

i
i , 0  fi  0.5 for i=1, 2, ..., m}.  (16) 

Max-DTLZ1 was formulated in [18] by replacing “Minimize” 
with “Maximize” in the formulation of DTLZ1 as  

Maximize  )())(1()( posdis xxx ii hgf  , mi ...,,2,1 .      (17) 

Except for this replacement, Max-DTLZ1 is the same as DTLZ1. 
Thus these two test problems have the same objective functions, 
the same decision variables, and the same feasible region. 
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In general, DTLZ1 and Max-DTLZ1 have different Pareto fronts 
[18]. However, when k = 0 (i.e., the number of distance variables 
is 0), Max-DTLZ1 has the same linear Pareto front as DTLZ1. 
That is, the Pareto front of Max-DTLZ1 can be also written by 
(12). This is because the entire feasible region of DTLZ1, which 
is the same as the entire feasible region of Max-DTLZ1, is the 
Pareto front of DTLZ1 when k = 0 (i.e., because no feasible 
solution is dominated by any other feasible solutions when k = 0). 

For simplicity of explanations, we normalize the objective space 
of DTLZ1 and Max-DTLZ1 so that the Pareto front in (12) is 
normalized in [0, 1]m as follows (i.e., [0, 0.5]m  [0, 1]m): 

{(f1, f2, ..., fm) | 1
1




m

i
if , 0   fi  1 for i = 1, 2, ..., m}.     (18) 

We also apply the same normalization to the objective space of 
the inverted DTLZ1 so that the Pareto front in (16) is normalized 
in [0, 1]m as follows (i.e., [0, 0.5]m  [0, 1]m): 

{(f1, f2, ..., fm) | )1(
1




mf
m

i
i , 0   fi  1 for i = 1, 2, ..., m}.    (19) 

Let us explain that the normalized Pareto front in (19) of the 
inverted DTLZ1 problem can be viewed as being the same as the 
normalized Pareto front in (18) of Max-DTLZ1. In general, the 
minimization problem of fi (x) is equivalent to the maximization 
problem of fi (x). So, we can formulate the following equivalent 
maximization problem of qi (x) from the inverted DTLZ1 problem 
with fi (x), i = 1, 2, ..., m: 

Maximize qi (x) =  fi (x),  i = 1, 2, ..., m.      (20) 

By replacing fi (x) with qi (x) in (19), we obtain the following 
Pareto front of the maximization problem in (20): 

{(q1, q2, ..., qm)| ),1(
1

mq
m

i
i 


   qi  0 for i = 1, 2, ..., m}.    (21) 

We normalize the objective space of the maximization problem in 
(20) so that the Pareto front in (21) is normalized in [0, 1]m as 
follows (i.e., [1, 0]m  [0, 1]m: qi = fi  1 in (21)):  

{(f1, f2, ..., fm) | 1
1




m

i
if , 0  fi  1 for i = 1, 2, ..., m}.     (22) 

This is the same as the normalized Pareto front of Max-DTLZ1 in 
(18). That is, the normalized inverted triangular Pareto front in 
(19) of the inverted DTLZ1 problem is equivalent to the 
normalized triangular Pareto front in (18) of Max-DTLZ1.  

In general (i.e., when k > 0), the Pareto front of Max-DTLZ1 can 
be written as  

{(f1, f2, ..., fm) | max
1

gf
m

i
i 


, max0 gfi   for i = 1, 2, ..., m}, (23) 

where gmax is the maximum value of the distance function g(xdis). 
This Pareto front can be normalized to [0, 1]m. Thus we can see 
that Max-DTLZ1 and DTLZ1 have the same normalized Pareto 
front, which is also the same as the normalized Pareto front of the 
inverted DTLZ1 when it is handled as a maximization problem. 

Since the inverted triangular Pareto front of the inverted DTLZ1 
problem is equivalent to the triangular Pareto front of Max-
DTLZ1, we mainly discuss the optimal distribution of solutions 
on the normalized triangular Pareto front in (22) for minimization 
and maximization problems in the rest of this paper.  

3. FAR REFERENCE POINT 
In this section, we discuss the optimal distribution of solutions on 
the normalized triangular Pareto front in (22) when the reference 
point for hypervolume calculation is far from the Pareto front. Our 
main focus in this section is the effect of the location of the 
reference point on the optimal distribution of solutions.  

As we explained in Section 2, the location of the reference point 
has no effect on the optimal distribution of solutions for two-
objective problems under the following conditions: (i) the two 
extreme solutions of the Pareto front are included in the optimal 
solution set, and (ii) the reference point is dominated by the nadir 
point. When these conditions hold, the location of the reference 
point has no effects on the hypervolume contribution of each 
solution except for the two extreme solutions as shown in Figure 9 
and Figure 10. In this section, we discuss whether the three 
extreme solutions of the triangular Pareto front of a three-
objective problem play the same role as in the case of two 
objectives. Then we show that the extreme solutions of the 
triangular Pareto front play different roles between the DTLZ1 
problem and the Max-DTLZ1 problem (i.e., between DTLZ1 and 
the inverted DTLZ1). We will see from our discussions that the 
extreme solutions of the triangular Pareto front of only DTLZ1 
play the same role as those of two-objective problems.  

3.1 DTLZ1 
The normalized triangular Pareto front of the three-objective 
DTLZ1 problem is shown by the shaded triangle in Figure 11, 
which is written as f1 + f2 + f3 = 1 and 0 fi 1 for i = 1, 2, 3. In 
Figure 11, the nadir point is (1, 1, 1) since DTLZ1 is a 
minimization problem. We assume that the reference point r = (r1, 
r2, r3) is far from the Pareto front (e.g., r = (10, 10, 10)). We also 
assume that the three extreme solutions A (1, 0, 0), B (0, 1, 0), C 
(0, 0, 1) of the normalized triangular Pareto front in Figure 11 are 
included in the optimal solution set S*.  

 

Figure 11. The normalized triangular Pareto front of DTLZ1: 
f1 + f2 + f3 = 1 and 0  f

i
 1 for i = 1, 2, 3. 

The dominated region by each extreme solution in Figure 11 
bounded by the reference point r = (r1, r2, r3) can be written as  

D(A, r) = {(z1, z2, z3) | 1 z1 r1, 0 z2 r2, 0 z3 r3},      (24) 

D(B, r) = {(z1, z2, z3) | 0 z1 r1, 1 z2 r2, 0 z3 r3},      (25) 

D(C, r) = {(z1, z2, z3) | 0 z1 r1, 0 z2 r2, 1 z3 r3}.      (26) 

Figure 12 shows the dominated region by the extreme solution A 
bounded by the reference point r. We can see from Figure 12 that 
all solutions in the cuboid [1, r1]  [0, r2]  [0, r3] (i.e., all solutions 
with 1 f1) are dominated by the extreme solution A. In the same 
manner as Figure 12, we can show that all solutions in the cuboid 
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[0, r1]  [1, r2]  [0, r3] (i.e., all solutions with 1  f2) are 
dominated by the extreme solution B. We can also show that all 
solutions in the cuboid [0, r1]  [0, r2]  [1, r3] (i.e., all solutions 
with 1 f3) are dominated by the extreme solution C. 

 

Figure 12. The dominated region by the extreme solution A. 

From these discussions, we can see that the dominated region by 
the triangular Pareto front in the three-dimensional objective 
space is also dominated by at least one of the three extreme 
solutions A, B and C except for the inside of the unit cube [0, 1]3 
in Figure 12. This situation is the same as the case of two-
objective problems in Figure 10. The optimal distribution of 
solutions except for the three extreme solutions can be specified 
by maximizing their hypervolume inside the unit cube [0, 1]3. As 
a result, when the reference point is far from the Pareto front, the 
location of the reference point has no effect on the optimal 
distribution of solutions as long as the three extreme solutions are 
included in the optimal solution set. Thus a set of well-distributed 
solutions was obtained by SMS-EMOA in Figure 1 (a) when (20, 
20, 20) was used as the reference point. 

These discussions can be easily extended to the case of four or 
more objectives. Let us assume that an m-objective minimization 
problem has the normalized triangular Pareto front defined by 
(22): f1 + f2 + ... + fm = 1 and 0  fi  1. This Pareto front has the m 
extreme solutions: (1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1). 
The dominated region by the first extreme solution A bounded by 
the reference point r = (r1, r2, ..., rm) can be written as  

D(A, r) = {(z1, ..., zm) | 1 z1 r1, 0 zi ri for i = 2, ..., m}.  (27) 

That is, all solutions in the hyper-cuboid [1, r1]  [0, r2]  [0, r3] 
  ...  [0, rm] are dominated by A. Since the dominated region by 
each extreme solution can be written in the same manner, we can 
see that the dominated region by the triangular Pareto front in the 
m-dimensional objective space is also dominated by at least one of 
the m extreme solutions except for the inside of the unit 
hypercube [0, 1]m. This means that the location of the reference 
point has no effect on the optimal distribution as long as (i) all the 
m extreme solutions are included in the optimal solution set and 
(ii) the reference point is far from the Pareto front.  

These discussions show that the extreme solutions of the 
triangular Pareto front of the multiobjective DTLZ1 problem with 
three or more objectives play the same role in hypervolume 
calculation as in the case of two-objective problems in Figure 10 
when the reference point is far from the Pareto front.  

The above-mentioned role of the extreme solutions of the Pareto 
front in hypervolume calculation can be explained in a different 
manner using the projection from the three-dimensional objective 
space to a two-dimensional subspace. Let us assume that a 
solution set S has the following four solutions L (0, 0.5, 0.5), M 
(0.5, 0, 0.5), N (0.5, 0.5, 0) and Z (1/3, 1/3, 1/3) on the Pareto 
front in addition to the three extreme solutions A, B and C in 
Figure 12. Their projections to the two-dimensional subspace with 
f2 and f3 are shown in Figure 13 (a). Since DTLZ1 is a 
minimization problem, the extreme solution A dominates all the 
other solutions in the two-dimensional subspace with f2 and f3 in 
Figure 13 (a). That is, the f2-f3 subspace in Figure 13 (a) has only a 
single non-dominated solution. 

   

(a) Seven solutions.               (b) Hypervolume contribution. 

Figure 13. Projection of the Pareto front and the seven 
solutions to the two-dimensional subspace with f2 and f3. 

When the extreme solution A is included in a solution set S, no 
other solution has a positive hypervolume contribution in the f2-f3 
subspace in Figure 13 (a). Let us denote the hypervolume 
contribution of A in the f2-f3 subspace as HC23(A), which is shown 
by the red area in Figure 13 (b). When the reference point r = (r1, 
r2, r3) is far from the Pareto front, the extreme solution A has a 
large hypervolume contribution calculated as (r1  1) HC23(A) in 
the original three-dimensional objective space, which increases as 
the value of r1 increases. Hypervolume contribution of no other 
solution increases as the value of r1 increases. These discussions 
for the extreme solution A (1, 0, 0) on the f2-f3 subspace hold for 
the extreme solution B (0, 1, 0) on the f1-f3 subspace and the 
extreme solution C (0, 0, 1) on the f1-f2 subspace. Thus 
hypervolume contribution of any non-extreme solution in Figure 
13 does not depend on the location of the reference point as far as 
the reference point is dominated by the nadir point. 

These discussions can be generalized to the case of m objectives. 
Let us assume that a solution set S includes some Pareto optimal 
solutions and all the m extreme solutions (1, 0, ..., 0), (0, 1, 0, ..., 
0), ..., (0, ..., 0, 1) of the triangular Pareto front defined by f1 + f2 
+ ... + fm = 1 and 0  fi  1. First we consider the projection to the 
(m1)-dimensional subspace with f2, f3, ..., fm. The extreme 
solution (1, 0, ..., 0) is projected to (0, 0, ..., 0), which dominates 
all the other solutions in the f2-f3-...-fm subspace. Thus the increase 
of r1 of the reference point r = (r1, r2, ..., rm) increases only the 
hypervolume contribution of the extreme solution (1, 0, ..., 0). The 
increase of r1 has no effect on the hypervolume contribution of 
any other solution. These discussions hold for the other extreme 
solutions of the Pareto front and the other (m1)-dimensional 
subspaces (e.g., for the extreme solution (0, 1, 0, ..., 0) and the f1-
f3-...-fm subspace). Thus the hypervolume contribution of any non-

C (0, 0, 1)

f2

B (0, 1, 0)

0

r = (r1, r2, r3) f3

f1
A (1, 0, 0)

Minimize  f2
NA

B

M

C

L

Z
M

in
im

iz
e 

 f 3

Minimize  f2

B

C

L

M
in

im
iz

e 
 f 3

NA

M
Z

HC23(A)

r = (r1, r2, r3) 



 

 

extreme solution does not depend on the location of the reference 
point as far as (i) all the m extreme solutions of the Pareto front 
are included in the solution set, and (ii) the reference point is 
dominated by the nadir point. 

These discussions show that the optimal distribution of solutions 
for hypervolume maximization does not depend on the location of 
a reference point when (i) all the m extreme solutions of the 
triangular Pareto front of the m-dimensional DTLZ1 problem are 
included in the optimal solution set and (ii) the reference point is 
far from the Pareto front.  

3.2 Max-DTLZ1 and Inverted DTLZ1 
In this subsection, we discuss the optimal distribution of solutions 
for hypervolume maximization for the Max-DTLZ1 problem and 
the inverted-DTLZ1 problem.  

Let us consider a three-objective maximization problem with the 
normalized triangular Pareto front in Figure 11. As in Subsection 
3.1, we assume that the three extreme solutions A (1, 0, 0), B (0, 1, 
0) and C (0, 0, 1) of the normalized triangular Pareto front in 
Figure 11 are included in a solution set S for hypervolume 
maximization. We also assume that the reference point r = (r1, r2, 
r3) is far from the Pareto front: r1 << 0, r2 << 0 and r3 << 0. 

In our maximization problem with the normalized triangular 
Pareto front, the dominated region by each extreme solution 
bounded by the reference point r = (r1, r2, r3) can be written as  

D(A, r) = {(z1, z2, z3) | r1 z1 1, r2 z2 0, r3 z3 0},      (28) 

D(B, r) = {(z1, z2, z3) | r1 z1 0, r2 z2 1, r3 z3 0},      (29) 

D(C, r) = {(z1, z2, z3) | r1 z1 0, r2 z2 0, r3 z3 1}.      (30) 

Figure 14 (and Figure 15) shows the dominated region by the 
extreme solution A (and C) bounded by the reference point r. 
From these figures, we can see that some regions outside the unit 
cube [0, 1]3 are not dominated by any extreme solution whereas 
they are dominated by the Pareto front. For example, we can see 
from Figure 14 and Figure 15 that the triangle pole in Figure 16 in 
the region with f2  0 is not dominated by any extreme solution 
whereas it is dominated by the Pareto front.  

The triangle pole in the region with f2  0 in Figure 16, which is 
dominated by the Pareto front but not dominated by any extreme 
solution, can be written as follows: 

{(z1, z2, z3) | 0 z1 1, r2 z2 0, 0 z3 1, z1 + z3 1}.     (31) 

 
Figure 14. The dominated region by the extreme solution A. 

 

Figure 15. The dominated region by the extreme solution C. 

 

Figure 16. Uncovered region with f2  0 by the three extreme 
solutions A, B and C. 

Similar triangle poles exist in the regions with f1  0 and f3  0. 
They can be written as  

{(z1, z2, z3) | r1 z1 0, 0 z2 1, 0 z3 1, z2 + z3 1},     (32) 

{(z1, z2, z3) | 0 z1 1, 0 z2 1, r3 z3 0, z1 + z2 1}.     (33) 

From (31)-(33) and Figure 16, we can see that the length of each 
uncovered triangle pole depends on the location of the reference 
point. The length increases (i.e., its hypervolume increases) by 
moving the reference point away from the Pareto front. Thus the 
hypervolume contributions of some non-extreme solutions depend 
on the location of the reference point. This means that the optimal 
distribution of solutions for hypervolume maximization also 
depends on its location.  

Since all solutions are on the sides of the triangular Pareto front of 
the three-objective Max-DTLZ1 problem in Figure 3 (b) when the 
reference point is far from the Pareto front, one may expect that 
the hypervolume contribution of a solution on a side of the Pareto 
front of Max-DTLZ1 increases by moving the reference point 
away from the Pareto front. One may also expect that the 
hypervolume contribution of a solution inside the Pareto front 
does not increase by moving the reference point away from the 
Pareto front (since no solution exists inside the the triangular 
Pareto front in Figure 3 (b)). Let us examine these expectations. 

In Figure 17, we show the hypervolume contribution of a solution 
M (0.5, 0, 0.5) in the solution set {A, B, C, M} where M is the 
midpoint of A and C. The hypervolume contribution of M is the 
volume of the following square pole (which is |r2|/4): 

{(z1, z2, z3) | 0 z1 0.5, r2 z2 0, 0 z3 0.5}.           (34) 
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Figure 17. Hypervolume contribution of the solution M (0.5, 0, 
0.5) in the solution set {A, B, C, M}. 

The square pole dominated by M in Figure 17 covers 1/2 of the 
uncovered triangle pole with f2  0. In addition to M, let us 
include solutions L (0, 0.5, 0.5) and N (0.5, 0.5, 0) to the solution 
set {A, B, C, M}. The hypervolume contributions of L, M and N 
in {A, B, C, L, M, N} are |r1|/4|, |r2|/4 and |r3|/4, respectively, 
which are calculated in different regions. In Figure 17, the volume 
of the square pole is the hypervolume contribution of M.  

Now, let us consider the inclusion of a new solution Y (0.25, 0, 
0.75) to the solution set {A, B, C, L, M, N} as shown in Figure 18. 
The hypervolume contribution of Y is the volume of the smaller 
square pole in Figure 18, which is calculated as |r2|/16.  

 

Figure 18. Hypervolume contribution of the solution Y (0.25, 0, 
0.75) in the solution set {A, B, C, L, M, N}. 

Instead of including the solution Y, let us consider the inclusion of 
a solution Z = (1/3, 1/3, 1/3), which is at the center of the 
triangular Pareto front. The hypervolume contribution of Z is 
calculated as 1/27 (i.e., the volume of the cube [0, 1/3]3) since the 
outside of the cube [0, 0.5]3 is covered by the solution set {A, B, 
C, L, M, N}. When the reference point is far from the Pareto front 
(i.e., |r2| is large), the hypervolume contribution 1/27 of the 
solution Z (1/3, 1/3, 1/3) at the center of the Pareto front is much 
smaller than |r2|/16 of the solution Y (0.25, 0, 0.75) on the line AC. 
This may explain why all solutions are on the sides of the Pareto 
front in Figure 3 (b) for hypervolume maximization using 50 
solutions for the reference point (20, 20, 20).  

Of course, the solution Z (1/3, 1/3, 1/3) at the center of the Pareto 
front has a large hypervolume contribution when only the three 
extreme solutions A, B and C are included in the solution set. That 
is, the hypervolume contribution of Z in the solution set {A, B, C, 
Z} is calculated as |r1|/9 + |r2|/9 + |r3|/9 + 1/27. The first three 
terms are the volumes of the three square poles in the three 
regions with f1 0, f2 0 and f3 0. However, these three parts 
completely disappear by including the three solutions L, M and N. 

It should be noted that the inclusion of Z decreases the 
hypervolume contribution of each of L, M and N from |ri|/4 to 
(|ri|/4  |ri|/9), which is still large when |ri| is large. As shown by 
these calculations, it is difficult for inside solutions to continue to 
have a large hypervolume contribution. 

Let us assume that all solutions in the solution set are on the sides 
of the triangular Pareto front. Under this assumption, we discuss 
the hypervolume maximization in the triangle pole in Figures 16-
18 by a pre-specified number of solutions on the line AC. Since 
the contribution of each solution is always the volume of a pole of 
the length |r2|, this task is exactly the same as the hypervolume 
maximization for a two-objective problem with the linear Pareto 
front between (1, 0) and (0, 1) for the reference point (0, 0). This 
may explain why equidistant solutions are obtained in Figure 3 (b). 

It is difficult to extend these discussions on the three-objective 
Max-DTLZ1 problem to the case of four or more objectives. 
However, our experimental results suggest that all solutions are on 
the sides of the triangular Pareto front in the case of four 
objectives (i.e., four-objective Max-DTLZ1). In Figure 19, we 
show 50 solutions obtained after 1,000,000 generations of SMS-
EMOA for the four-objective Max-DTLZ1 problem when the 
reference point is (20, 20, 20, 20). The obtained solutions in 
the four-dimensional objective space are shown by projecting 
them to its two-dimensional subspaces. Figure 19 suggests that all 
solutions are on the sides of the triangular Pareto front of the four-
objective Max-DTLZ1 problem. 

 
Figure 19. The obtained solutions for the four-objective Max-
DTLZ1 problem for the reference point (20, 20, 20, 20).  

As in the previous subsection, let us discuss the effect of the 
location of the reference point on the optimal distribution of 
solutions using the projection of solutions of the three-objective 
Max-DTLZ1 problem to the two-dimensional subspace with f2 
and f3. We use the solution set including the seven solutions A, B, 
C, L, M, N and Z in Figure 13 (see Figure 20). 

Since our problem in this subsection is a maximization problem, 
all solutions on the side BC of the triangular Pareto front between 
solution B (0, 1, 0) and solution C (0, 0, 1) are Pareto optimal in 
the f2-f3 subspace (see Figure 20). In Figure 20, we show the 
hypervolume contribution of B, C and L on the side BC in the f2-f3 
subspace. Not only the two extreme solutions B (0, 1, 0) and C (0, 
0, 1) but also the solution L (0, 1/2, 1/2) on the side BC has a 
positive hypervolume contribution in the f2-f3 subspace. Thus their 
hypervolume contributions increase as the absolute value of r1 
increases (i.e., the value of r1 decreases, e.g., to 20). Since these 
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discussions hold for the f1-f2 and f1-f3 subspaces, we can see that 
the hypervolume contributions of solutions on the sides of the 
triangular Pareto front increase as the distance of the reference 
point from the Pareto front increases. On the contrary, the 
hypervolume contributions of solutions inside the triangular 
Pareto front do not increase (when they are dominated solutions in 
all two-dimensional subspaces). These discussions explain why all 
solutions are obtained on the sides of the triangular Pareto front in 
Figure 3 (b) when the reference point is far from the Pareto front. 

 

Figure 20. Projection of the Pareto front and the seven 
solutions to the two-dimensional subspace with f2 and f3. 
Hypervolume contribution of each solution in the subspace is 
shown by the shaded region in red. 

These discussions can be generalized to the case of m objectives. 
For simplicity of explanation, we specify the reference point r as r 
= (r1, r2, ..., rm) = (r, r, ..., r) using a positive value r. Let us 
examine the projection of the triangular Pareto front (which is 
defined by f1 + f2 + ... + fm = 1 and 0  fi  1 for i = 1, 2, ..., m in 
the m-dimensional objective space) to its subspaces.  

First we consider the projection of the Pareto front to the (m1)-
dimensional subspace with f2, f3, ..., fm. The projected Pareto front 
can be written as f2 + ... + fm  1 and 0  fi  1 for i = 2, ..., m (e.g., 
the projected Pareto front in Figure 20 is written as f2 + f3  1 and 
0  fi  1 for i = 2, 3). The set of the non-dominated solutions in 
the f2-f3- ... -fm subspace can be written as f2 + ... + fm = 1 and 0  fi

 1 for i = 2, 3, ..., m (e.g., the set of the non-dominated solutions 
in Figure 20 is written as f2 + f3 = 1 and 0  fi  1 for i = 2, 3). The 
hypervolume contribution of each non-dominated solution in the 
f2-f3- ... -fm subspace increases as the value of r1 decreases (i.e., as 
the value of r increases). That is, their hypervolume contributions 
increase with r.  

Next, let us consider the projection to the f3-f4-  ... -fm subspace. 
The projected Pareto front can be written as f3 + ... + fm  1 and 0
 fi  1 for i = 3, 4, ..., m. The set of the non-dominated solutions 
in the f3-f4- ... -fm subspace can be written as f3 + ... + fm = 1 and 0
 fi  1 for i = 3, 4, ..., m. The hypervolume contribution of each 
non-dominated solution in the f3-f4- ... -fm subspace increases as 
the values of r1 and r2 decrease (i.e., as the value of r increases). 
That is, their hypervolume contributions increase with r2.  

In the same manner, we can examine the projection of the m-
dimensional objective space to its k-dimensional subspace. As the 
extreme case, let us examine the case with k = 1. The Pareto front 
in the m-dimensional objective space is projected to the interval [0, 
1] in the single-dimensional subspace with fm. The single point 
with fm = 1 is the non-dominated solution in the interval [0, 1]. 
This point is the projection of the extreme solution (0, 0, ..., 0, 1). 

Its hypervolume contribution increases with rm1 by increasing the 
value of r (i.e., by specifying the reference point far away from 
the Pareto front). This discussion holds for all extreme solutions. 
Thus, when the reference point is far from the Pareto front, the 
extreme solutions are likely to be in the optimal solution set. 
However, this is not always the case (e.g., when the number of 
solutions in the solution set is one, the Pareto optimal solution at 
the center of the Pareto front is the optimal selection).  

When the triangular Pareto front in the m-dimensional objective 
space is projected to the 2-dimensional subspace with f2 and f3, the 
projected Pareto front is written as f2 + f3  1 and 0  fi  1 for i = 
2, 3 (see Figure 20). The set of the non-dominated solutions in the 
f2-f3 subspace is written as f2 + f3 = 1 and 0  fi  1 for i = 2, 3. The 
Pareto optimal solutions on the line between the two extreme 
solutions (0, 1, 0, ..., 0) and (0, 0, 1, 0, ..., 0) are projected to the 
non-dominated solutions in the f2-f3 subspace. Their hypervolume 
contributions increase with rm2 when we increase the value of r. 
These discussions hold for all pairs of two extreme solutions. That 
is, the hypervolume contributions of the Pareto optimal solutions 
on the lines between any two extreme solutions increase with rm2. 
As a result, when the reference point is far from the Pareto front 
and the size of a solution set is much larger than the number of the 
extreme solutions, it is likely that some solutions on the line 
between each pair of the extreme solutions (i.e., some solutions on 
each edge of the m-dimensional triangular Pareto front) are 
included in the optimal solution set. These discussions explain 
why all the obtained solutions in Figure 19 are on the lines of the 
four extreme solutions (including the four extreme solutions). 

3.3 Optimal Solution Sets 
From the discussions in Subsection 3.2, we can obtain the 
following property with respect to the hypervolume contribution 
of a Pareto optimal solution of an m-objective maximization 
problem when the reference point r = (r, r, ..., r) moves far 
away from the Pareto front: The hypervolume contribution of a 
Pareto optimal solution increases with rmk  when it is a non-
overlapping non-dominated solution in at least one k-dimensional 
subspace and not a non-overlapping non-dominated solution in 
any (k1)-dimensional subspace. The condition “non-overlapping” 
is needed since overlapping solutions have no hypervolume 
contribution. This property also holds for an m-dimensional 
minimization problem with the reference point r = (r, r, ..., r).  

Let us discuss the implication of this property for the case of m = 
3 (i.e., three-objective problems) and a large value of r. In this 
case, Pareto optimal solutions in a solution set of a three-objective 
problem can be categorized into the following three classes: 

Class 0: A Class 0 solution has no two-dimensional subspace 
where it is a non-overlapping non-dominated solution. Its 
hypervolume contribution does not increase when we increase the 
value of r. 

Class 1: A Class 1 solution has at least one two-dimensional 
subspace and no single-dimensional subspace where it is a non-
overlapping non-dominated solution. Its hypervolume 
contribution increases with r when we increase the value of r. 

Class 2: A Class 2 solution has at least one single-dimensional 
subspace where it is a non-overlapping non-dominated solution. 
Its hypervolume contribution increases with r2 when we increase 
the value of r. 

For example, the Pareto optimal solutions of the normalized three-
objective DTLZ1 problem in Subsection 3.1 are categorized as 
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(i) The three extreme solutions A (1, 0, 0), B (0, 1, 0), C (0, 0, 1): 
If the three extreme solutions A, B and C are included in a 
solution set, they are Class 1 solutions. They are not Class 2 
solutions because two of them always overlap at the point of fi = 0 
in each single-dimensional subspace. 

(ii) All the other Pareto optimal solutions: 
They are Class 0 solutions (when the three extreme solutions are 
included in the solution set). They are not Class 1 solutions 
because they are always dominated by one of the three extreme 
solutions in all of the two-dimensional subspaces (e.g., they are 
dominated by C (0, 0, 1) in the two-dimensional f1-f2 subspace).  

When r is large, all the three extreme solutions are likely to be 
included in the optimal solution set. Let us consider a solution set 
S with  (  3) solutions including two extreme solutions of the 
three-objective DTLZ1 problem. By adding the other extreme 
solution, we generate a new solution set S' with ( + 1) solutions 
including all the three extreme solutions. Then we generate a new 
solution set S'' by removing a single solution with the smallest 
hypervolume contribution from S'. Since the hypervolume 
contribution of each extreme solution increases with r and that of 
any other solution does not increase, we can specify a large value 
of r so that a non-extreme solution has the smallest hypervolume 
contribution. The obtained solution set S'' by removing such a 
non-extreme solution has a larger hypervolume than the solution 
set S for the specified value of r. This means that the solution set S 
excluding a single extreme solution cannot be the best solution set 
with  (  3) solutions. Thus, we can say that all the three 
extreme solutions are included in the optimal solution set with  
(  3) solutions when r is large.  

These discussions for the three-objective DTLZ1 problem can be 
generalized to the case of four or more objectives. That is, for the 
m-objective DTLZ1 problem, it is likely that all the m extreme 
solutions are included in the optimal solution set with  (  m) 
solutions. If a solution set includes all the m extreme solutions, the 
hypervolume contribution of any other solution does not increase 
when we increase the value of r.  

Discussions for Max-DTLZ1 are more complicated. For example, 
the Pareto optimal solutions of the normalized three-objective 
Max-DTLZ1 problem in Subsection 3.2 are categorized as 

(i) The three extreme solutions A (1, 0, 0), B (0, 1, 0), C (0, 0, 1): 
If the three extreme solutions A, B and C are included in the 
solution set, they are Class 2 solutions. This is because each 
extreme solution is the non-overlapping best solution at fi = 1 in 
the corresponding single-dimensional subspace with fi. 

(ii) All solutions on the sides of the Pareto front:  
They are Class 1 solutions (if all the three extreme solutions are 
included in a solution set). As explained in Figure 20, each 
solution on a side of the Pareto front is a non-overlapping non-
dominated solution in a two-dimensional subspace. They are not 
Class 2 solutions because their projections to each single-
dimensional subspace with fi are always dominated by an extreme 
solution at fi = 1. 

(iii) All the other Pareto optimal solutions: 
If all the three extreme solutions and all solutions on the sides of 
the Pareto front are included in a solution set, all the other Pareto 
optimal solutions are Class 0 solutions. If solutions on a part of a 
side are not included in a solution set, some inside Pareto optimal 
solutions around the uncovered part can be Class 1 solutions. By 
increasing the number of solutions on the sides of the Pareto front, 
more inside solutions become Class 0 solutions. 

When r is large (i.e., when the reference point is far from the 
Pareto front), all the three extreme solutions of the three-objective 
Max-DTLZ1 problem are likely to be included in the optimal 
solution set with  solutions (  3). This can be explained in the 
same manner as the above discussions for the DTLZ1 problem. 
When r is large and > 3, some Class 1 solutions are included in 
the optimal solution set. However, it is not likely that any Class 0 
solution is included in the optimal solution set. Let us assume that 
a Class 0 solution is included in a solution set S with  solutions. 
We generate a new solution set S' with ( +1) solutions by adding 
a Class 1 solution. For the new solution set S', we can specify a 
large value of r so that the Class 0 solution has the smallest 
hypervolume contribution. A new solution set S'' is generated by 
removing the Class 0 solution with the smallest hypervolume 
contribution. Since S'' has a larger hypervolume than S, S is not 
the optimal solution set with  solutions. That is, no Class 0 
solution is included in the optimal solution set of the three-
objective Max-DTLZ1 problem when r is large.  

4. NEAR REFERENCE POINT 
In this section, we discuss hypervolume maximization for the case 
where the reference point is the same as the nadir point or very 
close to the Pareto front (i.e., closer than the nadir point). 

4.1 DTLZ1 
First we discuss the case where the nadir point (1, 1, 1) of the 
normalized three-objective DTLZ1 problem is used as the 
reference point (see Figure 21). In this figure, it is clear that the 
hypervolume contribution of the three extreme solutions A, B and 
C is zero. Thus they are not included in the optimal solution set as 
shown in Figure 2 (a). However, solutions on the sides of the 
Pareto front have positive hypervolume contributions. Thus some 
solutions are obtained on the sides in Figure 2 (a). 

 
Figure 21. The normalized three-objective DTLZ1 Problem 
and the reference point (1, 1, 1). 

For example, the hypervolume of solution M (0.5, 0, 0.5) at the 
midpoint between A and C is the volume of the following region: 

D(M, r) = {(z1, z2, z3) | 0.5 z1 1, 0 z2 1, 0.5 z3 1}.  (35) 

Thus the hypervolume of M is 1/4, which is 1/4 of the volume of 
the unit cube [0, 1]3. Whereas M has a large hypervolume, its 
contribution is decreased by other solutions. Let us consider the 
solution set {M, Z} where Z (1/3, 1/3, 1/3) is the solution at the 
center of the Pareto front. In this case, the hypervolume 
contribution of M is the volume of the following region: 

{(z1, z2, z3) | 0.5 z1 1, 0 z2 1/3, 0.5 z3 1}.     (36) 

Thus the hypervolume contribution of M is calculated as 1/12. Let 
us consider another solution set {M, Y} where Y (0.25, 0, 0.75) is 
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a point on the line AC (see Figure 18). In this case, the 
hypervolume contribution of M is the volume of the region: 

{(z1, z2, z3) | 0.5 z1 1, 0 z2 1, 0.5 z3 0.75}.     (37) 

Thus the hypervolume contribution is calculated as 1/8. As shown 
by these calculations, all Pareto optimal solutions except for the 
three extreme solutions have positive hypervolume contributions. 
The hypervolume contribution of a solution on the sides of the 
triangular Pareto front (and also a solution inside the Pareto front) 
is decreased by adding other solutions to the solution set. Since 
the hypervolume contribution of each solution is calculated in the 
unit cube [0, 1]3, there exists no particular region (e.g., the sides 
of the triangular Pareto front) where solutions have dominatingly 
large hypervolume contributions. Thus solutions do not 
concentrate on a particular region of the Pareto front.  

Next let us consider the case where the reference point is close to 
the Pareto front (more specifically, the reference point dominates 
the nadir point). For example, let us assume that the reference 
point is (0.6, 0.6, 0.6) in the normalized objective space with the 
nadir point (1, 1, 1) and the ideal point (0, 0, 0). Under this setting 
of the reference point, the hypervolume contribution is zero in the 
following part of the Pareto front: 0.6 f1, 0.6 f2 or 0.6 f3. This 
is because any solutions satisfying 0.6 f1, 0.6 f2 or 0.6 f3 do 
not dominate the reference point. Only solutions on the Pareto 
front between the three lines f1 = 0.6, f2 = 0.6 and f3 = 0.6 in 
Figure 22 have positive hypervolume contributions. Figure 22 
shows the obtained solutions by SMS-EMOA with 1,000,000 
generations for the normalized three-objective DTLZ1 problem 
with the reference point (0.6, 0.6, 0.6). It should be noted that the 
hypervolume contribution of any solution on the three lines in 
Figure 22 is zero. So no solutions are obtained on the three lines. 
When the reference point is the nadir point (1, 1, 1), the three lines 
move to the three extreme solutions. In this case, the hypervolume 
contribution of each extreme solution is zero whereas all the other 
Pareto optimal solutions have positive hypervolume contributions. 
When the reference point is (0.5, 0.5, 0.5), the three lines in 
Figure 22 form the inscribed inverted triangle in the Pareto front. 
In Figure 4 (a), the reference point is specified as (0.5, 0.5, 0.5) in 
the normalized objective space. The obtained solutions are inside 
the inscribed inverted triangle in the Pareto front in Figure 4 (a). 

 
Figure 22. The obtained solutions by SMS-EMOA for the 
three-objective normalized DTLZ1 problem for the reference 
point (0.6, 0.6, 0.6). 

Almost all discussions in this subsection can be extended to the 
case of four or more objectives. For example, when the nadir 
point is used as the reference point, no extreme solution of the 
triangular Pareto front on the hyperplane f1 + f2 + ... + fm = 1 has a 

positive hypervolume contribution. Thus they are not included in 
the optimal solution set for hypervolume maximization. However, 
solutions on the sides of the Pareto front can be included in the 
optimal solution sets. When the reference point is close to the 
Pareto front (i.e., the reference point dominates the nadir point), 
solutions in the optimal solution set are inside an inverted 
triangular region of the Pareto front since no solutions outside the 
region have positive hypervolume contributions. 

4.2 Max-DTLZ1 and Inverted DTLZ1 
First we consider the case where the nadir point (0, 0, 0) is used as 
the reference point in the normalized three-objective Max-DTLZ1 
problem. In this case, it is clear that the hypervolume contribution 
of all solutions on the sides of the triangular Pareto front is zero. 
For example, all solutions on the side between A (1, 0, 0) and C (0, 
0, 1) in Figure 21 have zero as the value of the second objective. 
Thus the hypervolume contributions of all points on this line are 
always zero. As a result, no solutions are obtained on the sides of 
the triangular Pareto front as shown in Figure 3 (a). 

Next let us consider the case where the reference point is very 
close to the Pareto front (i.e., the reference point dominates the 
nadir point). For example, let us assume that the reference point is 
(0.2, 0.2, 0.2) in the normalized objective space with the nadir 
point (0, 0, 0) and the ideal point (1, 1, 1). Under this setting, only 
Pareto optimal solutions inside the triangular region satisfying the 
following condition have positive hypervolume values: 0.2  f1, 
0.2 f2 and 0.2 f3. This triangular region is shown in Figure 23 
together with the obtained solutions by SMS-EMOA. Since no 
solutions on the sides of this triangular region have positive 
hypervolume contributions, no solutions are obtained on the sides 
of the smaller triangle in Figure 23. It is interesting to observe that 
solutions are obtained in the triangular region for Max-DTLZ1 
(whereas they are obtained in the inverted triangular region for 
DTLZ1) when the reference point is close to the Pareto front. This 
observation may be a useful insight when we try to focus the 
search of an indicator-based algorithm on a small region of the 
Pareto front using a reference point. When the nadir point (0, 0, 0) 
is used as the reference point, the small triangle in Figure 23 
becomes the same as the triangular Pareto front (see Figure 3 (a)).  

Almost all discussions in this subsection can be extended to the 
case of four or more objectives. For example, when the nadir 
point (0, 0, ..., 0) is used as the reference point, no solutions on the 
sides of the triangular Pareto front are obtained in the optimal 
solution set of Max-DTLZ1 with four or more objectives. We may 
be able to focus on a small triangular region of the Pareto front by 
using a reference point close to the Pareto front.  

 
Figure 23. The obtained solutions by SMS-EMOA for the 
three-objective normalized Max-DTLZ1 problem for the 
reference point (0.2, 0.2, 0.2). 
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5. EFFECTS ON COMPARISON RESULTS  
In this section, we examine the effect of the location of the 
reference point for hypervolume calculation on hypervolume-
based performance comparison results of multiple solution sets. 
First we generated four solution sets by applying MOEA/D-PBI to 
the normalized three-objective DTLZ1 using four settings of the 
reference point in the PBI function: (0.2, 0.2, 0.2), (0.1, 0.1, 0.1), 
(0, 0, 0) and (0.1, 0.1, 0.1). In the PBI function, we used only 
the distance d2 from the reference line since all feasible solutions 
were Pareto optimal under our setting of the number of distance 
variables (i.e., k = 0). The population size was specified as 105. 
The generated solution sets are referred to as solution sets A, B, C 
and D as shown in Figure 24. For comparison, we also generated 
solution set E by uniformly sampling solutions only on the sides 
of the Pareto front. This solution set is shown in Figure 25.  

Then we compared the five solution sets using the hypervolume 
where five settings of the reference point for hypervolume 
calculation were examined: (1.0, 1.0, 1.0), (1.1, 1.1, 1.1), (1.2, 1.2, 
1.2), (1.5, 1.5, 1.5) and (2.0, 2.0, 2.0). The evaluation result of 
each solution set is shown as the rank among the five solution sets 
in Table 1 (1: the best, 5: the worst). Independent of the setting of 
the reference point for hypervolume calculation, we obtained the 
same performance comparison results for the five solution sets in 
Table 1. This observation is consistent with the discussions in 
Subsection 3.1 where we showed that the optimal distribution of 
solutions is independent of the reference point as long as the three 
extreme solutions are included in the solution set and the 
reference point is dominated by the nadir point.  

       
     (a) Solution set A (0.2).                 (b) Solution set B (0.1). 

       
    (c) Solution set C (0.0).                   (d) Solution set D (0.1). 

Figure 24. Four solution sets obtained by MOEA/D-PBI. 

 
Figure 25. Solution set E. 

Table 1. Ranking of the five solution sets when they are 
compared as solution sets of the normalized three-objective 
DTLZ1 Problem for each setting of the reference point: 
Comparison results for the minimization problem.  

Reference Point 1.0 1.1 1.2 1.5 2.0 

Solution set A 5 5 5 5 5 

Solution set B 4 4 4 4 4 

Solution set C 1 1 1 1 1 

Solution set D 2 2 2 2 2 

Solution set E 3 3 3 3 3 

 
We also compared the five solution sets as solution sets of the 
normalized three-objective Max-DTLZ1 problem. Experimental 
results are shown in Table 2. When the nadir point (0, 0, 0) is used 
as the reference point, the solution set B has the largest 
hypervolume value. This may be because all solutions on the sides 
of the triangular Pareto front have no hypervolume contribution in 
this setting. When the reference point is a little bit smaller than the 
nadir point (i.e., (0.1, 0.1, 0.1): a little bit away from the 
Pareto front than the nadir point (0, 0, 0)), the solution set C has 
the largest hypervolume value. When the reference point is far 
from the Pareto front (i.e., (20, 20, 20)), the solution set E 
has the largest hypervolume value in Table 2. As shown in Table 
2, performance comparison results depend heavily on the location 
of the reference point for hypervolume calculation.  

Table 2. Ranking of the five solution sets when they are 
compared as solution sets of the normalized three-objective 
Max-DTLZ1 Problem for each setting of the reference point: 
Comparison results for the maximization problem.  

Reference Point 0.0 0.1 0.2 0.5 20 

Solution set A 4 4 5 5 5 

Solution set B 1 3 3 4 4 

Solution set C 2 1 1 2 3 

Solution set D 3 2 2 1 2 

Solution set E 5 5 4 3 1 

 
Our experimental results on DTLZ1 (Table 1) and Max-DTLZ1 
(Table 2) are consistent with our discussions on the optimal 
distribution of solutions in Section 3 and Section 4. We also 
performed computational experiments for the case of four 
objectives in the same manner as in Table 1 and Table 2. First 
MOEA/D-PBI with the population size 969 was applied to the 
normalized four-objective DTLZ1 problem to obtain four solution 
sets using four settings of the reference point: (0.2, 0.2, 0.2, 0.2), 
(0.1, 0.1, 0.1, 0.1), (0, 0, 0, 0) and (0.1, 0.1, 0.1, 0.1). The 
obtained four solution sets are referred to as solution sets A, B, C 
and D, respectively. Solution set E with 969 solutions was 
generated by uniformly sampling solutions on the sides of the 
triangular Pareto front (i.e., solutions were sampled uniformly on 
the lines between all pairs of the four extreme solutions (1, 0, 0, 0), 
(0, 1, 0, 0), (0, 0, 1. 0) and (0, 0, 0, 1)). Then the five solution sets 
were compared using the hypervolume for different settings of the 
reference point for hypervolume calculation. 

Table 3 shows the performance comparison results when the five 
solution sets were evaluated as solution sets of the normalized 
four-objective DTLZ1 problem. As in Table 1, we obtained the 
same performance comparison results independent of the setting 
of the reference point for hypervolume calculation in Table 3. 
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Table 3. Ranking of the five solution sets when they are 
compared as solution sets of the normalized four-objective 
DTLZ1 Problem for each setting of the reference point: 
Comparison results for the minimization problem. 

Reference Point 1.0 1.1 1.2 1.5 2.0 

Solution set A 5 5 5 5 5 

Solution set B 4 4 4 4 4 

Solution set C 1 1 1 1 1 

Solution set D 2 2 2 2 2 

Solution set E 3 3 3 3 3 

We also compared the same five solution sets for the normalized 
four-objective Max-DTLZ1 problem. Experimental results are 
shown in Table 4. As in Table 2, the performance comparison 
results of the five solution sets in Table 4 heavily depend on the 
setting of the reference point for hypervolume calculation. For 
example, a different solution set is evaluated as being the best for 
each of the three similar specifications: 0.0, 0.1 and 0.2.  

Table 4. Ranking of the five solution sets when they are 
compared as solution sets of the normalized four-objective 
Max-DTLZ1 Problem for each setting of the reference point: 
Comparison results for the maximization problem. 

Reference Point 0.0 0.1 0.2 0.5 20 

Solution set A 4 4 5 5 5 

Solution set B 1 3 3 4 4 

Solution set C 2 1 2 2 3 

Solution set D 3 2 1 1 2 

Solution set E 5 5 4 3 1 

 

6. FURTHER EXAMINATIONS 
In this section, we examine the property derived in Section 3: The 
hypervolume contribution of a Pareto optimal solution of an m-
objective problem increases with rmk when it is a non-overlapping 
non-dominated solution in a k-dimensional subspace and not in 
any (k1)-dimensional subspace. When it is not a non-overlapping 
non-dominated solution in any (m1)-dimensional subspace, its 
hypervolume contribution does not increase with r. 

6.1 DTLZ1 with a Constraint on f3 
We added a constraint condition f3(x)  0.5 to the three-objective 
normalized DTLZ1 problem. Its Pareto front is shown in Figure 
26. All solutions on the line with f3(x) = 0.5 (i.e., all solutions on 
the line ML in Figure 26) are non-overlapping non-dominated 
solutions in the f1-f2 subspace. Computational experiments were 
performed using SMS-EMOA in the same manner as in Section 1. 
That is, the objective space was normalized for the original 
DTLZ1 problem without the constraint condition f3(x)  0.5 as 
shown in Figure 26.  

Experimental results are shown in Figure 27 where we can 
observe a clear dependence of the obtained solution sets on the 
location of a reference point r = (r, r, r). This is because all Pareto 
optimal solutions on the line ML with f3(x) = 0.5 are non-
overlapping non-dominated solutions in the f1-f2 subspace of the 
modified DTLZ1 problem in this subsection. By increasing the 
value of r (i.e., by moving the reference point far from the Pareto 
front), more solutions are obtained on the line ML (most solutions 
are on the line ML when r = 100).  

 
Figure 26. Pareto front of DTLZ1 with f3(x)  0.5. 

    
                    (a) r = 0.7.                                       (b) r = 1.0. 

    
                    (c) r = 10.                                       (d) r = 100. 

Figure 27. Obtained solution sets by SMS-EMOA for different 
reference points (DTLZ1 with f3(x)  0.5). 

6.2 Inverted DTLZ1 with a Constraint on f3 
We added a constraint condition f3(x)  0.5 to the three-objective 
normalized inverted DTLZ1 problem. Its Pareto front is shown in 
Figure 28. No Pareto optimal solution on the line ML with f3(x) = 
0.5 except for M and L is non-dominated in any two-dimensional 
subspace (whereas all Pareto optimal solutions on the other sides 
of the Pareto front are non-overlapping non-dominated solutions 
in a two-dimensional subspace). Experimental results of SMS-
EMOA are shown in Figure 29.  

From Figure 29 (and also from Figure 27), we can see that many 
solutions were obtained on some sides of the Pareto front where 
the Pareto optimal solutions were non-overlapping non-dominated 
solutions in a two-dimensional subspace. More solutions were 
obtained on those sides by increasing the value of r (i.e., by 
moving the reference point far away from the Pareto front). 

 

Figure 28. Pareto front of Inverted DTLZ1 with f3(x)  0.5. 
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                    (a) r = 0.7.                                  (b) r = 1.0. 

    
                    (c) r = 10.                                   (d) r = 100. 

Figure 29. Obtained solution sets by SMS-EMOA for different 
reference points (Inverted DTLZ1 with f3(x)  0.5). 

6.3 DTLZ1 with Constraints on f1 and f2 
We added constraint conditions f1(x)   0.5 and f2(x)   0.5 to the 
three-objective normalized DTLZ1 problem. The Pareto front of 
this problem is shown in Figure 30. The projections of the Pareto 
front to the f1-f2, f1-f3 and f2-f3 subspaces are shown in Figure 31. 
In Figure 31 (a), only a single solution C is Pareto optimal in the 
f1-f2 subspace as in the three-objective normalized DTLZ1 
problem. However, in Figure 31 (b), all Pareto optimal solutions 
on the line with f2(x) = 0.5 (i.e., all Pareto optimal solutions on the 
line LN) are non-overlapping non-dominated solutions in the f1-f3 
subspace. In Figure 31 (c), all Pareto optimal solutions on the line 
MN with f1(x) = 0.5 are non-overlapping non-dominated solutions 
in the f2-f3 subspace. Experimental results of SMS-EMOA are 
shown in Figure 32. We can see from Figure 32 that many 
solutions were obtained on the lines LN and MN. By increasing 
the value of r, more solutions were obtained on the two lines. 

 
Figure 30. Pareto front of DTLZ1 with f1(x)  0.5 and f2(x) 
0.5. 

 
   (a) f1-f2 subspace.         (b) f1-f3 subspace.         (c) f2-f3 subspace. 

Figure 31. Projections of the Pareto front in Figure 30 to the 
two-dimensional subspaces. 

        
                    (a) r = 0.7.                                   (b) r = 1.0. 

        
                    (c) r = 10.                                   (d) r = 100. 

Figure 32. Obtained solution sets by SMS-EMOA for different 
reference points (DTLZ1 with f1(x)  0.5 and f2(x)  0.5). 

6.4 WFG3 
The WFG3 problem [14] was intended to be a test problem with a 
degenerate Pareto front. However, recently it has been shown in 
[16] that the WFG3 problem with three or more objectives has a 
non-degenerate part of the Pareto front in addition to the intended 
degenerate Pareto front. The Pareto front of the three-objective 
WFG3 test problem is shown in Figure 33. Its projections to the 
two-objective subspaces are shown in Figure 34. The line AB in 
Figure 33 is the originally intended degenerate Pareto front. 
Figure 34 shows that all solutions on the line AB in (b) and the 
line CB in (c) are non-overlapping non-dominated solutions in at 
least one of the three two-dimensional subspaces. In Figure 34 (a), 
solution A is the best solution (no other non-dominated solutions). 

 
Figure 33. Pareto front of the three-objective WFG3 problem.  

 
   (a) f1-f2 subspace.         (b) f1-f3 subspace.         (c) f2-f3 subspace. 

Figure 34. Projections of the Pareto front in Figure 33 to the 
two-dimensional subspace (WFG3). 
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Experimental results by SMS-EMOA are shown in Figure 35. We 
can see from Figure 35 that (almost) all solutions were obtained 
on the right and bottom boundaries of the Pareto front (i.e., on the 
lines AB and BC) when the reference point was far from the 
Pareto front. We can also see from Figure 35 that many solutions 
were not obtained inside the Pareto front even when r = 1.0 (i.e., 
even when the reference point was (1, 1, 1)). This is because all 
inside solutions have very small hypervolume contributions. We 
can also see that more solutions were obtained on an upper part of 
the line AB with large values of f3 than its lower part with small 
values of f3. This is because the upper part of AB is non-
dominated in both the f2-f3 and f1-f3 subspaces whereas the lower 
part is non-dominated only in the f2-f3 subspace (see Figure 34).  

        
                    (a) r = 0.7.                                  (b) r = 1.0. 

        
                    (c) r = 10.                                   (d) r = 100. 

Figure 35. Obtained solution sets by SMS-EMOA (WFG3). 

7. CONCLUDING REMARKS 
In this paper, we discussed the optimal distribution of solutions 
for hypervolume maximization on the triangular Pareto fronts of 
the three-objective DTLZ1 test problem [8] and its two variants: 
inverted DTLZ1 [19] and Max-DTLZ1 [18]. Our contribution was 
to show that the optimal distribution is totally different between 
three-objective minimization and maximization problems even 
when they have the same triangular Pareto front. This fact has not 
necessarily been well recognized in the EMO community because 
such a large difference does not exist in the case of two objectives. 
This is also because maximization problems with triangular Pareto 
fronts and minimization problems with inverted triangular Pareto 
front have not been used in many studies.  

The reason for the large difference in the optimal distribution of 
solutions between three-objective minimization and maximization 
problems is that the extreme solutions play different roles. In the 
case of a three-objective minimization problem with a triangular 
Pareto front, the optimal distribution of solutions can be discussed 
within the unit cube [0, 1]3 in the normalized objective space 
independent of the location of the reference point (when the three 
extreme solutions are included in a solution set and the reference 
point is far from the Pareto front). This is because the outside of 
the unit cube [0, 1]3 is dominated by at least one extreme solution. 
As a result, a set of the three extreme solutions and well-
distributed solutions over the entire Pareto front has a large 
hypervolume value independent of the location of the reference 

point for hypervolume calculation as far as the reference point is 
far from the Pareto front. However, in the case of a three-
objective maximization problem with a triangular Pareto front, the 
optimal distribution of solutions heavily depends on the location 
of the reference point. For example, when the reference point is 
far from the Pareto front, a larger hypervolume value is obtained 
from a set of solutions on the sides of the Pareto front than a set of 
well-distributed solutions over the entire Pareto front. This is 
because the extreme solutions cannot dominate all the regions 
outside the unit cube [0, 1]3. As a result, every solution on each 
side of the triangular Pareto front is non-dominated on the 
corresponding two-dimensional subspace of the three-dimensional 
objective space. Thus their hypervolume contributions increase as 
the reference point moves away from the Pareto front.  

From our discussions in this paper, one may think that 
minimization problems with triangular Pareto fronts such as 
DTLZ1 seem to have a good property as test problems in their 
performance evaluation: robustness with respect to the location of 
the reference point. We do not have to examine multiple reference 
points for hypervolume calculation, which leads to multi-objective 
solution set optimization [15]. However, minimization problems 
with triangular Pareto fronts have a somewhat strange property as 
multiobjective test problems: A single extreme solution of an m-
objective problem simultaneously optimizes (m 1) objectives. 
For example, an extreme solution (1, 0, 0, 0) simultaneously 
optimizes the second, third and fourth objectives of a four-
objective minimization problem with the normalized triangular 
Pareto front where the ideal point is (0, 0, 0, 0) and the nadir point 
is (1, 1, 1, 1). If we remove the first objective to formulate a three-
objective problem, the formulated three-objective problem has a 
single optimal solution for all objectives. This strange property is 
related to the robustness of minimization problems with triangular 
Pareto fronts with respect to the location of the reference point in 
hypervolume-based performance comparison results.   

On the contrary, performance comparison results of solution sets 
of maximization problems with triangular Pareto fronts strongly 
depend on the location of the reference point for hypervolume 
calculation. In our computational experiments on the three-
objective and four-objective Max-DTLZ1 problems, a different 
solution set had the largest hypervolume for a different reference 
point. Our experimental results suggest that we should be careful 
when performance is compared for multiobjective maximization 
problems with triangular Pareto fronts (and many other test 
problems with constraint conditions as shown in Section 6). For 
those test problems, multiple reference points may be needed [15]. 
Whereas maximization problems with triangular Pareto fronts (i.e., 
minimization problems with inverted triangular Pareto fronts) do 
not have robustness with respect to the location of the reference 
point in hypervolume-based performance comparison, their 
extreme points do not have the above-mentioned strange property. 
Each extreme solution optimizes only a single objective. For 
example, the extreme solution (1, 0, 0, 0) optimizes only the first 
objective of a four-objective maximization problem while it 
simultaneously optimizes all the other three objectives of a four-
objective minimization problem with a triangular Pareto front. 

Whereas we clearly demonstrated the difference in the effect of 
the reference point on the optimal distribution of solutions 
between three-objective minimization and maximization problems, 
we did not theoretically derive any optimal distribution of 
solutions in a three-dimensional objective space. Derivation of the 
optimal distributions of solutions for triangular and inverted 
triangular Pareto fronts is left for future research.   
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