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ABSTRACT 1  
Hypervolume has been frequently used as a performance indicator 
for comparing evolutionary multiobjective optimization (EMO) 
algorithms. Hypervolume has been also used in indicator-based 
algorithms. Whereas a reference point is needed for hypervolume 
calculation, its specification has not been discussed in detail from 
a viewpoint of fair comparison. This may be because a slightly 
worse reference point than the nadir point seems to work well. In 
this paper, we tackle this issue: How to specify a reference point 
for fair comparison. First we discuss an appropriate specification 
of a reference point for multiobjective problems. Our discussions 
are based on the well-known theoretical results about the optimal 
solution distribution for hypervolume maximization. Next we 
examine various specifications by computational experiments. 
Experimental results show that a slightly worse reference point 
than the nadir point works well only for test problems with 
triangular Pareto fronts. Then we explain why this specification is 
not always appropriate for test problems with inverted triangular 
Pareto fronts. We also report a number of solution sets obtained 
by SMS-EMOA with various specifications of a reference point. 
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1  INTRODUCTION 
In the field of evolutionary multiobjective optimization (EMO), 

new algorithms continue to be proposed every year. The proposed 
algorithms are compared with existing ones using performance 
indicators. The hypervolume [26] has been the most frequently-
used indicator while a wide variety of choices have been proposed 
in the literature [27]. This may be because no other Pareto 
compliant indicator is known [25]. The hypervolume has also 
been used in indicator-based EMO algorithms such as SMS-
EMOA [4] and HypE [2]. In these algorithms, multiobjective 
optimization is handled as a single-objective problem to search for 
a solution set with the maximum hypervolume. 

One related research question is the optimal distribution of 
solutions for hypervolume maximization. Theoretical studies [1, 6, 
8] show that the hypervolume is maximized by a set of uniformly 
distributed solutions with the same distance between adjacent 
solutions when the Pareto front of a two-objective problem is a 
straight line. It is also shown that such a solution set is not the 
optimal when the Pareto front is nonlinear. Except for the case of 
single-dimensional degenerate Pareto fronts [20], no optimal 
distribution of solutions has been theoretically derived for 
multiobjective problems with three or more objectives (see [13]). 

Selection of a pre-specified number of solutions from a given 
solution set has been studied for hypervolume maximization under 
the name of hypervolume subset selection [3, 5, 9, 10, 17]. This is 
a single-objective combinatorial optimization problem. This can 
be also viewed as a pre-processing procedure for selecting a small 
number of solutions from a large number of obtained solutions by 
EMO algorithms [14]. Efficient subset selection methods have 
been proposed in the literature [3, 5, 9, 10, 16]. 

A reference point is needed for hypervolume calculation. For 
two-objective problems, its effect on the optimal distribution of 
solutions for hypervolume maximization has been theoretically 
studied [1, 6, 8]. It is also shown that performance comparison 
results among different EMO algorithms depend on the location 
of a reference point [12, 13, 14, 15]. However, to the best of our 
knowledge, reference point specification has not been studied in 
detail from a viewpoint of fair performance comparison, 
especially for many-objective problems. A different specification 
was used in a different study. For example, the reference point 
was specified for a many-objective DTLZ1 problem [7] with the 
nadir point (0.5, ..., 0.5) as follows: (0.505, ..., 0.505) in Seada & 
Deb [19], (0.55, ..., 0.55) in Yuan et al. [22, 23], (0.7, ..., 0.7) in 
Wagner et al. [21], and (1.0, ..., 1.0) in Li et al. [18]. 
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In this paper, we discuss reference point specification for fair 
comparison of different EMO algorithms for multiobjective and 
many-objective problems. Our idea is based on the following two 
assumptions with respect to performance evaluation of solution 
sets by the hypervolume: 

(i) A uniformly distributed solution set over the entire linear 
Pareto front should be highly evaluated by the hypervolume. This 
means that such a solution set should have a large hypervolume 
value. 

(ii) Any solution in a solution set should not have a dominant 
effect on the hypervolume. This means that all solutions should 
have similar hypervolume contributions. 

This paper is organized as follows. In Section 2, we discuss 
these two assumptions based on the optimal solution distribution 
for hypervolume maximization for a linear Pareto front of a two-
objective problem. If the reference point is not too close to the 
Pareto front, its location has no effect on the optimal solution 
distribution. However, the relative importance of the two extreme 
solutions increases as the distance between the reference point and 
the Pareto front increases. Based on the theoretical studies [1, 6, 
8], we explain that an appropriate specification of the reference 
point depends on the size of solution sets to be evaluated (i.e., the 
number of solutions). In Section 3, we discuss the reference point 
specification for multiobjective problems with three or more 
objectives. We show that an appropriate specification of the 
reference point depends on the size of solution sets, the number of 
objectives and the shape of the Pareto front. In Section 4, we 
report our experimental results where different solution sets are 
compared using the hypervolume with a different reference point. 
In Section 5, we examine the effect of the reference point on the 
search ability of SMS-EMOA [4] by computational experiments. 
Finally we conclude this paper in Section 6.  

2  REFERENCE POINT SPECIFICATION FOR 
TWO-OBJECTIVE PROBLEMS 
Let us consider a two-objective minimization problem with a 

linear Pareto front, which is the straight line between (0, 1) and (1, 
0) in the objective space. This Pareto front can be represented by 
the following equations: f1 + f2 = 1 and 0fi1 for i = 1, 2 where 
f1 and f2 are the first and the second objective, respectively. 

In Fig. 1, we show uniformly distributed solution sets with the 
same distance between adjacent solutions. The number of 
solutions in each solution set in Fig. 1 is 3 in (a), 5 in (b) and 10 in 
(c). Let us assume that the reference point is given by (r, r). As 
shown in [1, 6, 8], these solution sets are optimal distributions of 
solutions for hypervolume maximization when r1.5 in Fig. 1 (a), 
r1.25 in Fig. 1 (b), and r1.1 in Fig. 1 (c). In Fig. 2, we show 
the optimal distributions of five solutions for r = 1.1, 1.25 and 1.5 
(see [1, 6, 8]). As shown in Fig. 2 (a), the two extreme solutions 
(i.e., the edges of the Pareto front) are not included in the optimal 
solution set for hypervolume maximization when r < 1.25. When 
the Pareto front is the straight line between (0, 1) and (1, 0) as in 
Fig. 1 and Fig. 2, the two extreme solutions are included in the 
optimal solution set if and only if r1+1/(n1) where n is the 
number of solutions (for more general discussions, see [1, 6, 8]). 

         
  (a) Three solutions.        (b) Five solutions.       (c) Ten solutions. 

Figure 1: Uniformly distributed solutions. 
 

        
          (a) r = 1.1.                   (b) r = 1.25.                 (c) r = 1.5. 

Figure 2: Optimal distributions of five solutions. 
 
From the above discussions, one may think that any reference 

point (r, r) can be used as far as r1+1/(n1) since the uniformly 
distributed solution set including the two extreme solutions is 
optimal for hypervolume maximization. However, hypervolume 
contributions of the two extreme solutions (and thus the relative 
importance of each solution) depend on the location of the 
reference point as shown in Fig. 3. 

 

     
          (a) r = 1.1.                   (b) r = 1.25.                 (c) r = 1.5. 

Figure 3: Hypervolume contribution of each solution. 
 

                 
       (a) r = 1.1.                     (b) r = 1.25.                  (c) r = 1.5. 

Figure 4: Comparison of hypervolume contribution in Fig. 3. 
 
The hypervolume contribution of each solution is also shown 

in Fig. 4. The hypervolume contributions of all solutions are the 
same when r = 1.25 in Fig. 3 (b). In this case, all the following 
five solution sets have the same hypervolume value in Fig. 3 (b): 
{A, B, C, D}, {A, B, C, E}, {A, B, D, E}, {A, C, D, E}, {B, C, D, 
E} where a single solution is removed from the original solution 
set. However, in Fig. 3 (c), the three solution sets {A, B, C, E}, 
{A, B, D, E} and {A, C, D, E} with the two extreme solutions A 
and E have larger hypervolume values than the other two solution 
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sets. This is because the two extreme solutions have larger 
hypervolume contributions than the others in Fig. 3 (c). 

If we have a clear reason for believing that the two extreme 
solutions are more important than the others, it is a good idea to 
specify the reference point (r, r) so that r > 1+1/(n1) holds. 
Except for this case, our suggestion is to specify the reference 
point (r, r) as r = 1+1/(n1). In general, the Pareto front is not the 
straight line between (0, 1) and (1, 0) in the objective space. 
However, we can normalize the objective space of a two-objective 
problem so that the ideal and the nadir point are (0, 0) and (1, 1), 
respectively. After this normalization, the reference point (r, r) 
with r = 1+1/(n1) may be a good choice even when the Pareto 
front is nonlinear. This suggestion is exactly the same as the 1% 
worse point than the nadir point when the population size is 101. 
This specification was used in Seada & Deb [19].  

3  REFERENCE POINT SPECIFICATION FOR 
THREE OR MORE OBJECTIVES 

3.1  For Triangular Pareto Fronts 
Let us consider an m-objective minimization problem with a 

linear triangular Pareto front, which is specified by f1 + f2 + ... + fm 

= 1 and 0fi1 for i = 1, 2, ..., m. This is the same as the Pareto 

front of DTLZ1 [7] after the normalization. DTLZ2-4 [7] and 
WFG4-9 [11] have similar Pareto fronts: f1

2 + f2
2 + ... + fm

2 = 1 

and 0fi1 for i = 1, 2, ..., m after the normalization. 
In Figs. 5-7, we show the linear Pareto front for the case of 

three objectives together with uniformly distributed solutions, 
which are specified in the same manner as the weight vector 
specification in MOEA/D [24]. In each plot in these figures, the 
relative size of the hypervolume contribution of each solution is 
shown by the radius of the corresponding circle. In Fig. 5, the 
three extreme solutions have no hypervolume contribution. So, 
they are not shown in Fig. 5. The hypervolume contributions of all 
solutions are the same in Fig. 6 (d) and Fig. 7 (a). 

When r = 1.0 (i.e., the nadir point), all solutions except for the 
three extreme solutions have the same hypervolume contributions 
in Fig. 5. Thus the use of the nadir point is not so bad in Fig. 5. 
However, r = 1.1 may be a better specification since all solutions 
have the same hypervolume contributions in Fig. 6 (d). In Fig. 7 
with r = 1.5, the three extreme solutions have much larger 
hypervolume contributions than the other solutions in Fig. 7 (b)-
(d). Thus r = 1.5 is not a good specification. However, r = 1.5 
seems to be a good specification in Fig. 7 (a) with 6 solutions.  

 

 
Figure 5: Hypervolume contribution: 66 solutions (r = 1.0).  

           
        (a) 6 solutions (H = 2).                (b) 21 solutions (H = 5). 

           
       (c) 45 solutions (H = 8).               (d) 66 solutions (H = 10). 

Figure 6: Hypervolume contribution (r = 1.1).  
 

            
        (a) 6 solutions (H = 2).                (b) 21 solutions (H = 5). 

           
       (c) 45 solutions (H = 8).               (d) 66 solutions (H = 10). 

Figure 7: Hypervolume contribution (r = 1.5).  
 
For two-objective problems in Section 2, we suggested the 

following specification of the reference point (r, r): r = 1+1/(n1) 
where n is the number of solutions. Let us denote the number of 
solutions on each line between the two extreme solutions in Figs. 
5-7 by K including the two extreme solutions (e.g., K = 3 in Fig. 7 
(a), K = 6 in Fig. 7 (b)). Using the user-defined parameter H for 
specifying the number of weight vectors in MOEA/D, K is written 
as K = H + 1. When all solutions are uniformly distributed over 
the entire Pareto front, the distance between adjacent solutions is 
21/2/(n1) in Section 2 and 21/2/(K1) in this section. That is, n 
and K can be viewed as playing the same role in the uniformly 
distributed solution sets. Thus we extend our suggestion in 
Section 2 to r = 1+1/(K1) = 1+1/H. The suggested reference 
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point for each plot in Figs. 6-7 is as follows: r = 1.5 for (a) with 6 
solutions, r = 1.2 for (b) with 21 solutions, r = 1.125 for (c) with 
45 solutions, and r = 1.1 for (d) with 66 solutions. This suggestion 
is the same as the value of r in Fig. 6 (a) and Fig. 7 (d) where all 
solutions have the same hypervolume contribution. 

In MOEA/D [24], the population size npop is calculated for an 
m-objective problem using the user-defined parameter H as  

1
1


 m

mHpop Cn  (1)

Let n be the number of solutions in each solution set to be 
compared. In general, n cannot be written in the form of (1). Thus 
we first specify the value of H using the following relation: 

11
1





  m

mH
m

mH CnC  (2)

Then we calculate the value of r as r = 1 + 1/H. This is our 
suggested reference point specification for m-objective problems.  

3.2  For Inverted Triangular Pareto Fronts 
The Pareto front of the inverted m-objective DTLZ1 [16] can 

be written in the normalized objective space as follows: f1 + f2 + ... 

+ fm = m  1 and 0fi1 for i = 1, 2, ..., m. This Pareto front is 

shown in Fig. 8 for the case of three objectives (i.e., m = 3). 
 

 
Figure 8: Hypervolume contribution: 66 solutions (r = 1.0).  

 
In the same manner as in Figs. 5-7, we show the relative size 

of the hypervolume contribution of each solution in Figs. 8-10. In 
Fig. 8, all solutions on the sides (i.e., boundary) of the inverted 
triangular Pareto front have no hypervolume contribution. Thus 
they are not shown in Fig. 8. In Fig. 9 (d) and Fig. 10 (a), all 
solutions have the same hypervolume contribution. This supports 
our suggested reference point specification: r = 1.1 for H = 10 and 
r = 1.5 for H = 2. The inside solutions in Fig. 9 (b) have larger 
hypervolume contributions whereas the boundary solutions in Fig. 
10 (b) have larger contributions.  

In Fig. 10 (b)-(c), solutions on the sides of the inverted 
triangular Pareto front have larger hypervolume contributions than 
the inside solutions. However, in Fig. 7 (b)-(c), all solutions 
except for the three extreme solutions have the same hypervolume 
contribution. This difference can be explained by projecting the 
two types of Pareto fronts to a two-dimensional subspace as in Fig. 
11. In Fig. 11 (a), only the extreme solution at (0, 0) is non-
dominated. Thus, only this solution has a positive hypervolume 
contribution in the f2-f3 space. By moving the reference point 
away from the Pareto front along the f1 axis, the hypervolume 
contribution of only this extreme solution increases in the original 
three-dimensional objective space. This is the reason why the 

increase in the value of r (i.e., the move of the reference point 
away from the Pareto front) increases the hypervolume 
contributions of only the three extreme solutions in Figs. 5-7. 

 

           
        (a) 6 solutions (H = 2).                (b) 21 solutions (H = 5). 

           
       (c) 45 solutions (H = 8).               (d) 66 solutions (H = 10). 

Figure 9: Hypervolume contribution (r = 1.1).  
 

           
        (a) 6 solutions (H = 2).                (b) 21 solutions (H = 5). 

           
       (c) 45 solutions (H = 8).               (d) 66 solutions (H = 10). 

Figure 10: Hypervolume contribution (r = 1.5).  
 

               
       (a) Triangular front.            (b) Inverted triangular Pareto front. 

Figure 11: Projection of the Pareto front to the f2-f3 space.  
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However, in Fig. 11 (b), all solutions on the line between (1, 0) 
and (0, 1) are non-dominated in the f2-f3 space. This means that all 
solutions on this line have positive hypervolume contributions. As 
a result, by moving the reference point away from the Pareto front 
along the f1 axis, the hypervolume contributions of all solutions 
along this line monotonically increase in the original three-
dimensional objective space. This is the reason why the increase 
in the value of r (i.e., the move of the reference point away from 
the Pareto front) increases the hypervolume contributions of all 
solutions along the sides of the inverted triangular Pareto front in 
Figs. 8-10. When the reference point is far away from the Pareto 
front (e.g., r = 20), the hypervolume contributions of boundary 
solutions are much larger than those of inside solutions. As a 
result, no inside solutions are included in the optimal solution set 
(for details, see our former study [13]). 

From the comparison between Figs. 5-7 and Figs. 8-10, we can 
see that the hypervolume contribution of each solution strongly 
depends on the shape of the Pareto front. Whereas r = 1.0 in Fig. 5 
and r = 1.1 in Fig. 7 (b) seem to be good specifications, they 
clearly look inappropriate in Fig. 8 and Fig. 10 (b).  

The reason for the difference between Fig. 5 and Fig. 8 is that 
the hypervolume is calculated from the top-right corner using the 
inverted triangular front surface as shown in Fig. 12 (a). Thus the 
region of the Pareto front where the hypervolume is calculated 
perfectly overlaps with the inverted triangular Pareto front as 
shown in Fig. 12 (b) when r = 1.0. This means that all solutions 
on the boundary of the inverted triangular Pareto front have no 
hypervolume contribution when the reference point is the nadir 
point (i.e., r = 1.0). However, as shown in Fig. 12 (c) and Fig. 12 
(d), only the three extreme solutions of the triangular Pareto front 
are on the boundary of the hypervolume calculation region. Thus 
all solutions except for the three extreme solutions have positive 
hypervolume contributions even when the reference point is the 
nadir point (see Fig. 5). 

 

                     
 (a) Calculation from top-right.        (b) Calculation region (green). 

               
(c) Calculation from top-right.         (d) Calculation region (green). 

Figure 12: Illustration of the hypervolume calculation. 

4  COMPARISON OF DIFFERENT SOLUTION 
SETS BY THE HYPERVOLUME  

4.1   Triangular Pareto Front 
In this section, we compare a number of artificially generated 

solution sets using the hypervolume. First we generate a set of 
uniformly distributed 91 solutions by specifying the value of H as 
H = 12 in the weight vector specification mechanism in MOEA/D 
[24] as shown in the upper-right plot in Fig. 13. Let us denote the 
distance between two adjacent solutions by l as shown in the 
upper-right plot in Fig. 13. Then we shrink the size of the solution 
distribution by changing the distance between solutions from l to 
0.5l, 0.55l, ..., 0.95l as explained in the upper part of Fig. 13. We 
also increase the distance from l to 1.05l, 1.1l, ..., 1.5l as shown in 
the lower part of Fig. 13. All solutions outside the Pareto front are 
uniformly relocated along the sides of the Pareto front.  

Since H = 12, our suggestion for the reference point 
specification is r = 1 + 1/H = 13/12  1.0833. Using three 
reference point specifications (r = 1.01, 13/12, 1.5), we compared 
the generated 21 solution sets by the hypervolume. In Fig. 14, we 
show the hypervolume-based comparison results of the 21 
solution sets. The calculated hypervolume values are normalized 
in Fig. 14 so that the largest hypervolume value becomes 1.0 for 
each specification of the reference point. In Fig. 14, the solution 
set with the distance 1.0l (i.e., the original solution set generated 
by the weight vector specification method) is evaluated as the best 
solution set in all the three reference point specifications.  
 

 

 
Figure 13: Explanations of the generated solution sets.  

 

 
Figure 14: Comparison results for the triangular three-objective 
Pareto front (H = 12, r = 1.01, 13/12, 1.5).  
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Figure 15: Comparison results for the triangular five-objective 
Pareto front (H = 6, r = 1.01, 7/6, 1.5).  

 
In the same manner as Fig. 13, we generate 21 solution sets on 

the triangular-shape Pareto front of a five-objective problem. First, 
a set of uniformly distributed 210 solutions is generated by 
specifying the value of H as H = 6. Then the other 20 solution sets 
are generated by changing the distance between adjacent solutions 
from l to 0.5l, 0.55l, 0.6l, ..., 1.5l. Among the generated 210 
solutions by specifying H as H = 6 for a five-objective problem, 
205 solutions are boundary solutions (i.e., only five solutions are 
inside the Pareto front). When we increase the distance between 
the adjacent solutions, we change the locations of only the five 
inside solutions since all the other 205 solutions are on the 
boundary of the Pareto front. When we decrease the distance, we 
change the locations of all the 210 solutions. By decreasing the 
distance between adjacent solutions, all the 210 solutions become 
inside solutions (see Fig. 13).  

Since H = 6, our suggestion for the reference point 
specification is r = 1 + 1/H = 7/6  1.1667. Using three reference 
point specifications (r = 1.01, 7/6, 1.5), we compare the generated 
21 solution sets. As in Fig. 14, we obtain the similar results from 
the three specifications of the reference point in Fig. 15.  

4.2  Inverted Triangular Pareto Front 
The generated solution sets in the previous subsection are 

inverted as shown in 16 in this subsection. In the same manner as 
in Fig. 14, the inverted solution sets are compared by the 
hypervolume using the three reference point specifications: r = 
1.01, 13/12, 1.5. Experimental results are shown in Fig. 17.  

Fig. 17 shows that the performance comparison results 
strongly depend on the reference point specification. When the 
reference point is close to the nadir point (i.e., when r = 1.01), the 
best evaluation is obtained for the solution set with the solution 
distance 0.8l. That is, a shrunk solution set is evaluated as being 
the best for r = 1.01. When the reference point is far from the 
nadir point (i.e., r = 1.5), the best evaluation is obtained for the 
solution set with the solution distance 1.35l. That is, a solution set 
with a large number of solutions around the sides of the inverted 
triangular Pareto front is evaluated as being the best for r = 1.5. 
When the suggested value (i.e., r = 13/12) is used, the original 
solution set with the solution distance 1.0l and some similar 
solution sets have high hypervolume values in Fig. 17. That is, 
intuitively acceptable results are obtained from r = 13/12. 

 

 
Figure 16: Explanations of the inverted solution sets.  

 

 
Figure 17: Comparison results for the inverted triangular three-
objective Pareto front (H = 12, r = 1.01, 13/12, 1.5).  

 

 
Figure 18: Comparison results for the inverted triangular five-
objective Pareto front (H = 6, r = 1.01, 7/6, 1.5).  

 
We also evaluate the inverted solution sets of a five-objective 

problem using the three reference point specifications: r = 1.01, 
7/6, 1.5. Experimental results are shown in Fig. 18. When r = 1.01, 
a shrunk solution set with the solution distance 0.55l is evaluated 
as the best solution set by the hypervolume. When the suggested 
specification (i.e., r = 7/6) and r = 1.5 are used, the original 
solution set with the solution distance l and some similar solution 
sets have large hypervolume values in Fig. 18. It should be noted 
that the locations of only the five inside solutions are changed 
when the distance between adjacent solutions is increased. 

5  EFFECT ON THE SEARCH OF SMS-EMOA 
In this section, we report experimental results of SMS-EMOA 

[4] on the three-objective DTLZ1 and inverted DTLZ1 problems. 
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Some results are also shown for the five-objective inverted 
DTLZ1 problem. We performed computational experiments under 
the following setting: 

      Number of distance variables: 5, 
      Population size (npop): 15 and 100, 
      Crossover: SBX with the index 20 (probability: 1.0), 
      Mutation: Polynomial mutation with the index 20  
                      (probability: 1/L where L is the string length), 
      Termination conditions: 100,000 generations, 
      Number of runs: 5. 
Three reference point specifications (r = 1.0, 1.1, 1.5) are 

examined in the normalized objective space. The normalization is 
performed using non-dominated solutions among solutions in the 
current population at each generation. It should be noted that our 
suggested reference point is as follows: r = 1.25 (m = 3, npop = 15, 
H = 4), r = 1.08333 (m = 3, npop = 100, H = 12), r = 1.5 (m = 5, 
npop = 15, H = 2), r = 1.25 (m = 5, npop = 100, H = 4).  

Obtained solution sets are shown for the three-objective 
DTLZ1 and inverted DTLZ1 problems in Figs. 19-24. When r = 
1.0 (i.e., nadir point) in Fig. 19 and Fig. 22, good solution sets are 
not obtained. This is because the extreme solutions in the current 
population are likely to be removed since they have no 
hypervolume contribution. When r = 1.1 in Fig. 20 and Fig. 23, 
good solution sets are obtained only when the population size is 
100. This is consistent with our suggested specification (i.e., r = 
1.08333 for the case of the population size 100). When r = 1.5, 
many solutions are obtained on the sides of the inverted triangular 
Pareto front in Fig. 24 whereas uniformly distributed solutions are 
obtained in Fig. 21 for the triangular Pareto front. These results 
are consistent with our discussions in Section 3 and our solution 
evaluation results in Section 4.  

 

 

 
Figure 19: Obtained solution sets for the DTLZ1 with r = 1.0 
(top: population size 15, bottom: population size 100). 
 

 

 
Figure 20: Obtained solution sets for the DTLZ1 with r = 1.1 
(top: population size 15, bottom: population size 100). 

 

 
Figure 21: Obtained solution sets for the DTLZ1 with r = 1.5 
(top: population size 15, bottom: population size 100). 

 

 

 
Figure 22: Obtained solution sets for the inverted DTLZ1 with r 
= 1.0 (top: population size 15, bottom: population size 100).  
 

 

 
Figure 23: Obtained solution sets for the inverted DTLZ1 with r 
= 1.1 (top: population size 15, bottom: population size 100).  

 

 

 
Figure 24: Obtained solution sets for the inverted DTLZ1 with r 
= 1.5 (top: population size 15, bottom: population size 100).  

 
Due to the page limitation, we cannot show all experimental 

results on the five-objective DTLZ1 and inverted DTLZ1 
problems. In Fig. 25, we only show our experimental results on 
the inverted DTLZ1 problem for the case of the population size 
100. Our suggested reference point is r = 1.25 in this case (m = 5, 
npop = 100, H = 4). In Fig. 25, good solution sets are obtained 
when r = 1.5. When r = 1.0 in Fig. 25 (the top five results), the 
diversity of the obtained solutions is very small as in Fig. 19 and 
Fig. 22. When r = 1.1 (the middle five results), the diversity of the 
obtained solutions is larger than the case of r = 1.0. However, the 



 

 

obtained solutions are not fully covered the entire Pareto front. 
Especially, the best objective value of each objective (i.e., fi = 0.0) 
is not obtained for any objective in the middle five results. When r 
= 1.5 in Fig. 25 (the bottom five results), a wide variety of 
solutions are obtained over the entire Pareto front. It should be 
noted that the original objective values before the normalization 
are shown in Fig. 25 (i.e., the ideal point and the nadir point are 
(0.0, 0.0, ..., 0.0) and (0.5, 0.5, ..., 0.5) in Fig. 25). 
 

 
Figure 25: Results on the inverted DTLZ1 with the population 
size 100 (top: r = 1.0, middle: r = 1.1, bottom: r = 1.5).  

6  CONCLUSIONS 
In this paper, we discussed the reference point specification in 

hypervolume calculation for fair performance comparison. Based 
on the existing theoretical studies on the optimal distribution of 
solutions on a linear Pareto front of a two-objective problem, we 
suggested the reference point specification as r = 1 + 1/H where H 
is the user-defined parameter for specifying the number of weight 
vectors in MOEA/D. Through computational experiments, we 
demonstrated that the suggested specification is appropriate for 
three-objective and five-objective test problems. We also showed 
that the effect of the reference point is totally different between 
the triangular and inverted triangular Pareto fronts. It is clearly 
shown that the reference point should be carefully specified for 
multiobjective problems with inverted triangular Pareto fronts. 
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