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Abstract 
 

This paper discusses a genetic-algorithm-based 
approach for selecting a small number of 
representative instances from a given data set in 
a pattern classification problem. The genetic 
algorithm also selects a small number of 
significant features. That is, instances and 
features are simultaneously selected for finding a 
compact data set. The selected instances and 
features are used as a reference set in a nearest 
neighbor classifier. Our goal is to improve the 
classification performance (i.e., generalization 
ability) of our nearest neighbor classifier by 
searching for an appropriate reference set. In this 
paper, we first describe the implementation of 
our genetic algorithm for instance and feature 
selection. Next we discuss the definition of a 
fitness function in our genetic algorithm. Then 
we examine the classification performance of 
nearest neighbor classifiers designed by our 
approach through computer simulations on 
artificial data sets and real-world data sets. 

1. INTRODUCTION 
Genetic algorithms (Holland, 1975) have been 
successfully applied to various problems (Goldberg, 
1989). Genetic algorithms can be viewed as a general-
purpose optimization technique in discrete search spaces. 
They are suitable for complex problems with multi-modal 
objective functions. Their application to instance selection 
was proposed by (Kuncheva, 1995) for designing nearest 
neighbor classifiers. In her approach, the classification 
performance of selected instances was maximized by a 
genetic algorithm. A penalty term with respect to the 
number of selected instances was added to the fitness 
function of her genetic algorithm in (Kuncheva, 1997) for 
maximizing the classification ability and minimizing the 
size of nearest neighbor classifiers. In the design of 

nearest neighbor classifiers, genetic algorithms were also 
used for selecting features in (Siedlecki and Sklansky, 
1989) and finding an appropriate weight of each feature in 
(Kelly, Jr. and Davis, 1991, and Punch et al., 1993). 

In the nearest neighbor classification (Cover and Hart, 
1967), each new instance is classified by its nearest 
neighbor in a reference set. Usually all the given instances 
are used as the reference set for classifying new instances. 
For decreasing the number of instances in the reference 
set and improving its classification performance, various 
approaches to instance selection have been proposed (for 
example, see Hart, 1968, Dasarathy, 1994, and Chaudhuri 
et al., 1994). Some of those approaches intended to find 
the minimum reference set that can correctly classify all 
the given instances. The main advantage of the genetic-
algorithm-based approach in (Kuncheva, 1997) is its 
flexibility in the handling of the tradeoff between the 
classification ability and the size of reference sets. The 
tradeoff is handled by weight values with respect to these 
two objectives in the fitness function. This means that the 
genetic algorithm does not always search for the reference 
set that can correctly classify all the given instances. 
Much smaller reference sets with slightly inferior 
classification ability can be found if the weight value for 
the size of reference sets is large.  

In our former work (Ishibuchi and Nakashima, 1999, 
2000), we proposed a GA-based approach to the design of 
compact reference sets with high classification ability by 
instance and feature selection. Our approach used several 
ideas such as instance selection (Kuncheva, 1997), feature 
selection (Siedlecki and Sklansky, 1989), and biased 
mutation probabilities (Ishibuchi et al., 1997). In this 
paper, we examine two definitions of a fitness function in 
our genetic algorithm for instance and feature selection. 
Our fitness function is basically defined by the 
classification performance of a reference set, the number 
of selected instances, and the number of selected features. 
One definition, which was used in our former work, is 
based on the classification results on the given instances 



 

by a reference set. This definition is to find compact 
reference sets that can correctly classify almost all the 
given instances. In the other definition, the classification 
of each instance is performed by a reference set excluding 
that instance (as in the leaving-one-out procedure). That is, 
each instance in the reference set is not selected as its own 
nearest neighbor in the calculation of the fitness function. 
This definition of the fitness function is to find compact 
reference sets with high generalization ability. The same 
idea as the second definition has been used in some 
instance selection methods (Wilson, 1972 and Kuncheva, 
1995, 1997). 

2. GENETIC ALGORITHMS 

2.1   CODING 
Let us assume that m labeled instances =px  

)...,,( 1 pnp xx , mp ...,,2,1=  are given from c classes in 
an n-dimensional pattern space where pix  is the value of 
the i-th feature in the p-th instance. Our task is to select a 
small number of representative instances together with a 
few significant features for designing a compact nearest 
neighbor classifier with high classification ability. Let 

ALLP  be the set of the given m instances: =ALLP  
},...,,{ 21 mxxx . We also denote the set of the given n 

features as }...,,,{ 21ALL nfffF =  where if  is the label 
of the i-th feature. Let F and P be the set of selected 
features and the set of selected instances, respectively, 
where ALLFF ⊆  and ALLPP ⊆ . We denote the 
reference set as ),( PFS = .  

For handling our instance and feature selection problem 
by genetic algorithms, every reference set ),( PFS =  is 
coded as a binary string of the length )( mn +  as  

mn sssaaaS ⋅⋅⋅⋅⋅⋅= 2121 ,      (1) 

where ia  denotes the inclusion ( 1=ia ) or the exclusion 
( 0=ia ) of the i-th feature if , and ps  denotes the 
inclusion ( 1=ps ) or the exclusion ( 0=ps ) of the p-th 
instance px . The feature set F and the instance set P are 
obtained by decoding the string S as follows: 

},...,2,1 ,1 | { niafF ii === ,     (2) 
},...,2,1 ,1 | { mpsP pp === x .     (3) 

2.2   FITNESS FUNCTION 

In our nearest neighbor classification with the reference 
set ),( PFS = , the nearest neighbor p̂x  of a new 
instance x is found from the instance set P as 

} | ),(min{),( ˆ Pdd ppFpF ∈= xxxxx ,    (4) 

where ),( xx pFd  is the distance between px  and x , 

which is defined by the feature set F as 

∑
∈

−=
Fi

ipipF xxd
   

2)(),( xx .     (5) 

When the instance set P or the feature set F is empty, the 
classification of new instances is always rejected. 

In our instance and feature selection problem, the number 
of selected instances and the number of selected features 
are to be minimized, and the classification performance of 
the reference set ),( PFS =  is to be maximized. Thus 
our problem is formulated as follows: 

Minimize || F , minimize || P ,  
                         and maximize )(SePerformanc ,   (6) 

where || F  is the number of features in F, || P  is the 
number of instances in P, and )(SePerformanc  is a 
performance measure of the reference set ),( PFS = . The 
performance measure is defined based on the 
classification results of the given m instances. 

In our former work (Ishibuchi and Nakashima, 1999, 
2000), we defined the performance measure 

)(SePerformanc  by the number of correctly classified 
instances by ),( PFS = . Each instance qx  
( mq ...,,2,1= ) was classified by its nearest neighbor p̂x , 
which is defined as 

} | ),(min{),( ˆ Pdd pqpFqpF ∈= xxxxx .    (7) 

We denote this performance measure for the reference set 
S as )(A SePerformanc . The following formulation 
corresponds to the instance selection problem for finding 
the minimum consistent set that can correctly classify all 
the given instances (Wilson, 1972 and Dasarathy, 1994): 

Minimize || P  subject to mSePerformanc =)(A ,   (8) 

where ),( ALL PFS =  and ALLPP ⊆ . From the 
comparison between (6) and (8), we can see the difference 
between our task and the instance selection problem for 
the minimum consistent set. 

In the definition of the performance measure in 
(Kuncheva, 1995, 1997) for the instance selection, when 
an instance qx  was included in the reference set, qx  was 
not selected as its own nearest neighbor. In the context of 
instance and feature selection, this means that the nearest 
neighbor p̂x  of qx  is selected as follows: 

⎩
⎨
⎧

∈−∈
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= .if}},{ | ),(min{
,if}, | ),(min{

),( ˆ

PPd
PPd

d

qqpqpF

qpqpF
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xxxxx
xxxx

xx
 

        (9) 



 

We denote the performance measure defined in this 
manner as )(B SePerformanc . The instance selection 
problem discussed in (Kuncheva, 1995) can be written as  

Maximize )(B SePerformanc ,   (10) 

where ),( ALL PFS =  and ALLPP ⊆ .  

These two definitions of the performance measure are 
different only in the classification of instances included in 
the reference set. When a small number of instances are 
selected and included in the reference set (e.g., 1/30 of the 
given instances), these two definitions are almost the 
same because most instances are classified in the same 
manner. Thus it seems that we will obtain almost the same 
results from these two definitions. This expectation is 
examined by computer simulations in the next section. 

The fitness value of the reference set ),( PFS =  is 
defined by the weighted sum of our three objectives as 

,||   ||   

)()(

PWFW

SePerformancWSfitness

PF

ePerformanc

⋅−⋅−

⋅=
 (11) 

where ePerformancW , FW , and PW  are user definable 
non-negative weights. Since the three objectives in our 
instance and feature selection problem in (6) are 
combined into the single scalar fitness function in (11), a 
single-objective genetic algorithm is used for searching 
for a single solution. Of course, it is possible to use multi-
objective genetic algorithms for searching for multiple 
non-dominated solutions as in (Ishibuchi et al., 1997). 

2.3   BASIC ALGORITHM 

We use a genetic algorithm for maximizing the fitness 
function in (11). In our genetic algorithm, first a number 
of binary strings (say, popN  strings) of the length 

)( mn +  are randomly generated. Next a pair of strings are 
randomly selected from the current population to generate 
two strings by crossover and mutation. The selection, 
crossover, and mutation are iterated to generate popN  
strings. The newly generated popN  strings are added to 
the current population to form an enlarged population of 
the size pop2 N⋅ . The next population is constructed by 
selecting the best popN  strings from the enlarged 
population. The population update is iterated until a pre-
specified stopping condition is satisfied. Our genetic 
algorithm is written as follows: 

Step 1 (Initialization): 
Randomly generate popN  strings of the length )( mn + . 

Step 2 (Genetic Operations): 
Iterate the following procedures 2/popN  times for 

generating popN  strings. 
 1) Randomly select a pair of strings from the current 

population. 
 2) Apply a crossover operation to the selected pair of 

strings for generating two offspring. In computer 
simulations of this paper, we use the uniform crossover.  

 3) Apply a mutation operation to each bit value of the two 
strings generated by the crossover operation. The 
mutation operation changes the bit value from 1 to 0 or 
from 0 to 1. 

Step 3 (Generation Update): 
Add the newly generated popN  strings in Step 2 to the 
current population of the popN  strings to form an 
enlarged population of the size pop2 N⋅ . Select the best 

popN  strings with the largest fitness values from the 
enlarged population to form the next population. 

Step 4 (Termination Test): 
If a pre-specified stopping condition is not satisfied, 
return to Step 2. Otherwise end the algorithm. 

Our genetic algorithm is different from the standard 
implementation (Goldberg, 1989) in the selection and 
generation update procedures. In our algorithm, the 
selection of parent strings for the crossover is performed 
randomly. The selection of good strings is performed in 
the generation update procedure. In this sense, the 
generation update procedure of our genetic algorithm can 
be viewed as a selection procedure for generating a 
mating pool from which parent strings are randomly 
selected. We adopted this implementation according to 
the first attempt of the application of genetic algorithms to 
instance selection in (Kuncheva, 1995, 1997). We also 
examined a more standard implementation based on the 
roulette wheel selection with the linear scaling and a 
single elite string. Simulation results of these two 
implementations were almost the same. So we only report 
simulation results by the above implementation. 

2.4   ILLUSTRATION BY SIMPLE EXAMPLE 
Let us illustrate our approach to instance and feature 
selection by a simple numerical example in Fig. 1 (a) 
where 30 instances from each class are given. We 
artificially generated this simple example with 60 
instances only for illustration purpose. In Fig. 1 (a), the 
classification boundary is drawn by the nearest neighbor 
classification using all the given instances. We used our 
genetic algorithm with the parameter specifications: 

String length: 62 (2 features and 60 instances), 
Population size: =popN 50, 
Crossover probability: 1.0, 



 

Mutation probability: 0.01, 
Stopping condition: 1000 generations, 
Weight values: =ePerformancW 10; =FW 1; =PW 1, 
Performance measure: )(A SePerformanc . 

Our genetic algorithm selected 11 instances and the two 
features (i.e., no feature was removed). The selected 
instances are shown in Fig. 1 (b) together with the 
classification boundary generated by them. In Fig. 1 (b), 
all the given instances are correctly classified. Since we 
used the large weight value (i.e., =ePerformancW 10) for 
the performance measure )(A SePerformanc , we had a 
100% classification rate on the given instances by the 
selected reference set. In Fig. 2 (a), we show a simulation 
result by the performance measure )(B SePerformanc . 
The other parameters including the weight values were 
specified in the same manner as in Fig. 1 (b). In Fig. 2 (a), 
a single instance is misclassified by the selected nine 
instances. The classification boundary in Fig. 2 (a) was 
drawn by the selected instances. In the case of the second 
definition of the performance measure, each instance in 
the reference set is not classified by itself when the fitness 
value is evaluated. Thus the inclusion of misclassified 
instances in the reference set does not always improve the 
performance measure. On the contrary, the inclusion of 
misclassified instances always corrects the classification 
of those patterns in the case of the first definition. The 
difference between these two definitions is also discussed 
in the next section through computer simulations. 

Our genetic algorithm with different weight values 
generates different reference sets. For example, three 
instances in Fig. 2 (b) were selected by our genetic 
algorithm with =ePerformancW 0.5 (The other parameters 
were the same as in Fig. 1 (b)). In Fig. 2 (b), three 
instances are misclassified by the selected instances. 
Since a larger weight value (i.e., =PW 1) is assigned to 
the number of selected instances (i.e., || P ) than the 
number of correctly classified instances (i.e., 

)(A SePerformanc ), a reference set with a 100% 
classification rate on the given instances does not always 
have the maximum fitness value. As a result, our genetic 
algorithm selected the reference set in Fig. 2 (b), which 
can not correctly classify all the given instances. In 
computer simulations with small weight values for the 
performance measure, the second feature 2f  (i.e., 2x -
axis in Fig. 2 (b))) was often removed. Actually, it was 
not selected by our genetic algorithm with 

5.0=ePerformancW  in 25 out of 30 independent trials. 
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Figure 1: Given instances and selected instances. 
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Figure 2: Example of selected instances that can not 
correctly classify all the given instances. 

2.5   BIASED MUTATION 
As we can see from the coding of each reference, our 
instance and feature selection method is computationally 
intensive. The string length is )( mn +  where n  is the 
number of features and m  is the number of instances. 
Thus the size of the search space is mn+2 , which is 
terribly large especially when the number of given 
instances is large. Since the number of features is usually 
much smaller than the number of instances in many real-
world pattern classification problems, we concentrate on 
how to effectively decrease the number of selected 
instances by our genetic algorithm in this subsection.  

Let us examine the effect of the crossover and mutation 
on the number of instances included in each string. Since 
the crossover just exchanges bit values between two 
parent strings, the total number of selected instances in 
the parent strings is exactly the same as that in their 
offspring. This means that the crossover does not change 
the number of instances on the average. Of course, strings 
with fewer instances are more likely to survive the 
generation update due to the definition of the fitness 
function. Thus the average number of selected instances 
in each population gradually decreases by iterating the 
generation update. 



 

On the contrary, the mutation tends to increase the 
average number of selected instances. We illustrate this 
fact using simple numerical calculation. Let 1m  be the 
number of instances included in a string before the 
mutation. We also denote the number of excluded 
instances in the string by 0m  where mmm =+ 10  (m is 
the number of given instances). Among the 1m  instances 
included in the string, the mutation removes 1m mp ⋅  
instances from the string on the average where mp  is the 
mutation probability. At the same time, the mutation adds 
some instances to the string by changing some 0’s to 1’s. 
The expected value of the number of added instances is 

0m mp ⋅ . Thus the expected value of the number of 
selected instances after the mutation is calculated as  

0m1m11ˆ mpmpmm ⋅+⋅−= .   (12) 

Since a small number of instances are to be selected from 
a large number of given instances in our instance and 
feature selection, 1m  should be much smaller than 0m  
and m . For example, let us assume that we have a binary 
string with 10 instances out of 1000 instances (i.e., 

=m 1000, =1m 10, and =0m 990). In this case, the 
expected value 1m̂  of the number of selected instances 
after the mutation is calculated as follows: 

=1m̂ 108  when  =mp 0.1,   (13) 
=1m̂  19.8  when =mp 0.01,   (14) 
=1m̂  10.98  when =mp 0.001.   (15) 

From these calculations, we can see that large mutation 
probabilities prevent our genetic algorithm from 
decreasing the number of selected instances. 

For demonstrating the effect of the mutation on the 
number of selected instances, we applied our genetic 
algorithm to a numerical example with 500 instances from 
each of two classes. In this numerical example, we 
generated 500 instances from each class using the 
following normal distribution ),( kkN Σµ  for =k 1,2.  

)1,0(1 =µ ,  )0,1(2 =µ ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ=Σ 2

2
21 3.00

03.0 . (16) 

In our genetic algorithm, we examined three 
specifications of the mutation probability for instance 
selection: =mp 0.1, 0.01, 0.001. The other parameters 
were specified in the same manner as in Fig. 1 (b). 
Simulation results are shown in Table 1 where the CPU 
time was measured by a PC with a Pentium II 400MHz 
processor. From this table, we can see that the large 
mutation probability prevented our genetic algorithm 
from finding compact reference sets. We can also see that 
the larger the size of reference sets is, the longer the 
computation time is. 

Table 1. Simulation results on pattern classification 
problems with 1000 instances. 

Mutation )(SePerformanc A  || P  CPU time 
0.1 9657.0 341.0 317.8 (min.)
0.01 9971.0 26.0 108.3 (min.)

0.001 9978.0 16.7 82.1 (min.)

Our trick for effectively decreasing the number of 
selected instances is to bias the mutation probability 
(Ishibuchi and Nakashima, 1999, 2000). In the biased 
mutation, a much larger probability is assigned to the 
mutation from “ 1=ps ” to “ 0=ps ” than the mutation 
from “ 0=ps ” to “ 1=ps ”. That is, we use two different 
mutation probabilities )01(m →p  and )10(m →p  for 
instance selection (i.e., for the last m bits of each binary 
string). Since the number of features is usually much 
smaller than the number of instances in many real-world 
pattern classification problems, we use the standard 
unbiased mutation for feature selection. That is, the 
mutation probability mp  is not biased for the first n bits 
of each binary string. 

In the same manner as in the above computer simulations 
with the unbiased mutation, we applied our genetic 
algorithm with the biased mutation to the pattern 
classification problem with 1000 instances. The three 
mutation probabilities were specified as =→ )01(mp 0.1, 

=→ )10(mp 0.001, and =mp 0.1. The following average 
results were obtained from three independent trials. 

)(A SePerformanc =9967.0, =|| P 4.3, CPU time: 49 min. 

From these results, we can see our genetic algorithm with 
the biased mutation can efficiently search for compact 
reference sets.  

3. PERFORMANCE EVALUATION 

3.1   DATA SETS 

We used six data sets: two data sets were artificially 
generated using normal distributions, and the others were 
real-world data sets used in the literature. In our computer 
simulations, we applied our genetic algorithm to each data 
set after normalizing given attribute values to real 
numbers in the unit interval [0,1]. In the nearest neighbor 
classification based on the Euclidean distance, such 
normalization may be essential for handling data sets 
including features with different magnitudes. Each data 
set is briefly described in the following.  

Data Set I from Normal Distributions with Small Overlap: 



 

We generated a two-class pattern classification problem in 
the unit square ]1,0[]1,0[ × . For each class, we generated 
50 instances using the normal distribution ),( kkN Σµ  
where kµ  and kΣ  were specified as follows:  

)1,0(1 =µ ,  )0,1(2 =µ ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ=Σ 2

2
21 4.00

04.0 . (17) 

Data Set II from Normal Distributions with Large 
Overlap: We generated a two-class pattern classification 
problem in the same manner as in the above data set using 
larger variances. We specified the normal distribution of 
each class as follows:  

)1,0(1 =µ ,  )0,1(2 =µ ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ=Σ 2

2
21 6.00

06.0 . (18) 

Iris Data: The iris data set is one of the most commonly 
used data sets in the literature. This data set consists of 
150 instances with four features from three classes (50 
instances from each class). The best result reported in 
(Weiss and Kulikowski, 1991) was a 2.0% error rate on 
test data (i.e., unseen instances) by linear discriminants. 

Appendicitis Data: The appendicitis data set consists of 
106 instances with eight features from two classes. Since 
one feature has some missing values, we used seven 
features as in (Weiss and Kulikowski, 1991) where ten 
classification methods were examined by the leaving-one-
out procedure for the appendicitis data. The best result 
reported in their book was a 10.4% error rate on test data 
by a machine learning technique. 

Cancer Data: The cancer data set consists of 286 
instances with nine features from two classes. This data 
set was also used in (Weiss and Kulikowski, 1991) for 
evaluating the performance of ten classification methods 
by random resampling where 70% of given instances 
were used as training data. The best result reported in 
their book was a 22.9% error rate on test data by a 
machine learning technique. 

Wine Data: The wine data set consists of 178 instances 
with 13 features from three classes, which is available 
from the machine learning database in the University of 
California, Irvine. This data set was used in (Corcoran and 
Sen, 1994) for evaluating the performance of their 
genetics-based machine learning algorithm. 

3.2   PERFORMANCE ON TRAINING DATA 

We applied our genetic algorithm to the six data sets 
using the following parameter specifications: 

Population size: =popN 50, 
Crossover probability: 1.0, 

Mutation probability: =mp 0.01 for feature selection, 
     =→ )01(mp 0.1, =→ )10(mp 0.01 
                  for instance selection, 
Stopping condition: 500 generations, 
Weight values: =ePerformancW 5; =FW 1; =PW 1, 
Performance measure:  
         )(A SePerformanc  or )(B SePerformanc . 

All the given instances were used as training data in this 
subsection. The aim of computer simulations in this 
subsection is to compare the two definitions of the 
performance measure. Our genetic algorithm was applied 
to each data set 30 times for calculating average results. 
Average simulation results over 30 trials are summarized 
in Table 2 and Table 3 where each figure in parentheses 
denotes the number of given features or given instances in 
each data set. 

Table 2. Simulation results on training data using the first 
performance measure. 

Data set Features Instances Classification    
Data Set I 1.9 (2) 14.5 (100) 96.7% 
Data Set II 1.8 (2) 31.0 (100) 94.4% 

Iris 2.0 (4) 6.1 (150) 99.4% 
Appendicitis 3.3 (7) 16.0 (106) 97.5% 

Cancer 5.1 (9) 54.3 (286) 89.2% 
Wine 6.3 (13) 5.9 (178) 100% 

 
Table 3. Simulation results on training data using the 

second performance measure. 

Data set Features Instances Classification    
Data Set I 2.0 (2) 6.2 (100) 92.3% 
Data Set II 1.8 (2) 12.3 (100) 80.9% 

Iris 2.6 (4) 7.6 (150) 94.2% 
Appendicitis 3.2 (7) 4.4 (106) 91.8% 

Cancer 2.9 (9) 27.2 (286) 81.3% 
Wine 6.6 (13) 7.3 (178) 99.9% 

 
In Table 2 and Table 3, we used the first definition 

)(A SePerformanc  and the second definition 
)(B SePerformanc  of the performance measure, 

respectively. The first definition directly evaluates the 
classification ability on training data for the evolution of 
reference sets. As a result, we obtained higher 
classification rates on training data in Table 2 than Table 
3. Such higher classification rates were realized by 
selecting much more instances for constructing reference 
sets in the case of data sets with large overlaps such as 



 

Data Set II, the appendicitis data, and the cancer data. On 
the other hand, in Table 3, the generalization ability of 
each reference set on unseen data was estimated in our 
genetic algorithm by the second definition. Thus the 
classification rates on training data in Table 3 are inferior 
to those in Table 2.  

From the projection of the iris data into the 3x - 4x  plane, 
we can see that these two features are important for the 
classification purpose of the iris data. These two features 
were selected by our genetic algorithm in 29 out of the 30 
trials in Table 2. In Table 3, },{ 43 ff  were selected in 16 
trials, and },,{ 432 fff  were selected in the other 14 
trials. 

3.3   PERFORMANCE ON TEST DATA 
In the previous subsection, we demonstrated that our 
genetic algorithm can select a small number of instances 
together with only significant features. It was also shown 
that the selected reference sets can correctly classify 
almost all the given instances. While we examined 
classification rates on training data in the previous 
subsection, the performance of classification systems 
should be evaluated by classification rates on test data 
(i.e., unseen instances). In this subsection, we examine the 
generalization ability of selected reference sets. 

Since the first two data sets were artificially generated 
from the given normal distributions, we can generate 
unseen instances from the same normal distributions. In 
our computer simulations, 1000 instances (500 from each 
class) were generated as test data. That is, a reference set 
selected from 100 instances was examined on 1000 
instances at each trial. This procedure was iterated 50 
times for Data Set I and Data Set II. For the iris data and 
the appendicitis data, we used the leaving-one-out (LV1) 
procedure as in (Weiss and Kulikowski, 1991). The LV1 
procedure was iterated ten times for the iris data and the 
appendicitis data. For the cancer data and the wine data, 
we used the 10-fold cross-validation (10CV) procedure. 
In the 10CV procedure, the given instances are divided 
into ten subsets of the same size. One subset is used as 
test data, and the other subsets are used as training data. 
This is iterated ten times so that all the subsets are used as 
test data. The 10CV procedure was employed ten times 
for the cancer data and the wine data. 

We used the same parameter values of our genetic 
algorithm as in the previous subsection. We examined the 
two definitions of the performance measure (i.e., 

)(A SePerformanc  and )(B SePerformanc ). Simulation 
results are summarized in Table 4. For comparison, we 
also examined the generalization ability of the original 

data sets before instance and feature selection. From 
Table 4, we can see that the generalization ability was 
improved by the use of )(B SePerformanc  in many data 
sets. The improvement of the generalization ability is 
clear in the appendicitis data and the cancer data with 
large overlaps between different classes. On the contrary, 
we can not observe such clear improvement in the iris 
data and the wine data. Those data sets, for which we 
obtained high classification rates on test data by the 
original nearest neighbor classifiers, do not have large 
overlaps between different classes in the pattern spaces. 
From the comparison between the two definitions of the 
performance measure, we can see that higher 
classification rates on test data were obtained by the 
second definition )(B SePerformanc  than the first 
definition )(A SePerformanc . This is because the first 
definition is based on the classification ability on training 
data. That is, the evolution of reference sets guided by the 
first definition tends to overfit to training data. As a result, 
instance and feature selection based on the first definition 
is not likely to improve the generalization ability of 
nearest neighbor classifiers. 

Let us briefly compare the simulation results in Table 4 
with those by ten classification methods reported in 
(Weiss and Kulikowski, 1991). The 96.9% classification 
rate for the iris data set in Table 4 is better than six 
methods (e.g., 96.7% by the back-propagation algorithm). 
The 85.7% classification rate for the appendicitis data is 
better than five methods. This result is almost the same as 
the reported result 85.8% by the back-propagation 
algorithm. The 73.6% classification rate for the cancer 
data is better than eight methods (e.g., 71.5% by the back-
propagation algorithm). 

Table 4. Average classification rates on test data. 

Data set Original data )(A SPerf  )(B SPerfe    
Data Set I 81.3% 80.2% 84.7% 
Data Set II 60.6% 60.2% 64.8% 

Iris 95.3% 96.9% 94.2% 
Appendicitis 80.2% 77.0% 85.7% 

Cancer 65.3% 68.3% 73.6% 
Wine 95.3% 94.8% 96.5% 

 

4. CONCLUSIONS 
In this paper, we discussed instance and feature selection 
for the design of compact nearest neighbor classifiers. 
Through computer simulations on artificially generated 



 

data sets and real-world data sets, we demonstrated that a 
small number of instances were selected together with 
only significant features by our genetic algorithm. That is, 
our genetic algorithm can simultaneously perform 
instance selection and feature selection. We also 
demonstrated that the generalization ability of nearest 
neighbor classifiers was improved by the use of the 
selected instances and features in some data sets. This 
improvement was clear in the case of data sets with large 
overlaps between different classes. We examined two 
performance measures used for calculating the fitness 
value of each reference set in our genetic algorithm. One 
performance measure was defined by the classification 
performance of the reference set on given instances. That 
is, the classification performance was evaluated by 
classifying all the given instances by the reference set. 
This performance measure is suitable for finding the 
minimum reference set that can correctly classify all the 
given instances. In the evaluation of the other 
performance measure, the classification of all the given 
instances is performed in a different manner. The point is 
that every instance included in the reference set is not 
used as its own nearest neighbor. In this manner, the 
generalization ability of each reference set is evaluated in 
the execution of our genetic algorithm. As shown by our 
computer simulations, this performance measure is 
suitable for selecting compact reference sets with high 
generalization ability from data sets with large overlaps 
between different classes. 
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