
H. Ishibuchi, T. Nakashima: Multi-objective pattern and feature selection by a genetic algorithm, Proc. of Genetic
and Evolutionary Computation Conference (Las Vegas, Nevada, U.S.A.) pp.1069-1076 (July 8-12, 2000).

 Multi-objective pattern and feature selection by a genetic algorithm

Hisao Ishibuchi
Dept. of Industrial Engineering

Osaka Prefecture University
1-1 Gakuen-cho, Sakai, Osaka 599-8531, JAPAN

E-mail: hisaoi@ie.osakafu-u.ac.jp
Phone: +81-722-54-9350

Tomoharu Nakashima
Dept. of Industrial Engineering

Osaka Prefecture University
1-1 Gakuen-cho, Sakai, Osaka, 599-8531, JAPAN

E-mail: nakashi@ie.osakafu-u.ac.jp
Phone: +81-722-54-9351

Abstract

This paper discusses a genetic-algorithm-based
approach for selecting a small number of
representative instances from a given data set in
a pattern classification problem. The genetic
algorithm also selects a small number of
significant features. That is, instances and
features are simultaneously selected for finding a
compact data set. The selected instances and
features are used as a reference set in a nearest
neighbor classifier. Our goal is to improve the
classification performance (i.e., generalization
ability) of our nearest neighbor classifier by
searching for an appropriate reference set. In this
paper, we first describe the implementation of
our genetic algorithm for instance and feature
selection. Next we discuss the definition of a
fitness function in our genetic algorithm. Then
we examine the classification performance of
nearest neighbor classifiers designed by our
approach through computer simulations on
artificial data sets and real-world data sets.

1. INTRODUCTION
Genetic algorithms (Holland, 1975) have been
successfully applied to various problems (Goldberg,
1989). Genetic algorithms can be viewed as a general-
purpose optimization technique in discrete search spaces.
They are suitable for complex problems with multi-modal
objective functions. Their application to instance selection
was proposed by (Kuncheva, 1995) for designing nearest
neighbor classifiers. In her approach, the classification
performance of selected instances was maximized by a
genetic algorithm. A penalty term with respect to the
number of selected instances was added to the fitness
function of her genetic algorithm in (Kuncheva, 1997) for
maximizing the classification ability and minimizing the
size of nearest neighbor classifiers. In the design of

nearest neighbor classifiers, genetic algorithms were also
used for selecting features in (Siedlecki and Sklansky,
1989) and finding an appropriate weight of each feature in
(Kelly, Jr. and Davis, 1991, and Punch et al., 1993).

In the nearest neighbor classification (Cover and Hart,
1967), each new instance is classified by its nearest
neighbor in a reference set. Usually all the given instances
are used as the reference set for classifying new instances.
For decreasing the number of instances in the reference
set and improving its classification performance, various
approaches to instance selection have been proposed (for
example, see Hart, 1968, Dasarathy, 1994, and Chaudhuri
et al., 1994). Some of those approaches intended to find
the minimum reference set that can correctly classify all
the given instances. The main advantage of the genetic-
algorithm-based approach in (Kuncheva, 1997) is its
flexibility in the handling of the tradeoff between the
classification ability and the size of reference sets. The
tradeoff is handled by weight values with respect to these
two objectives in the fitness function. This means that the
genetic algorithm does not always search for the reference
set that can correctly classify all the given instances.
Much smaller reference sets with slightly inferior
classification ability can be found if the weight value for
the size of reference sets is large.

In our former work (Ishibuchi and Nakashima, 1999,
2000), we proposed a GA-based approach to the design of
compact reference sets with high classification ability by
instance and feature selection. Our approach used several
ideas such as instance selection (Kuncheva, 1997), feature
selection (Siedlecki and Sklansky, 1989), and biased
mutation probabilities (Ishibuchi et al., 1997). In this
paper, we examine two definitions of a fitness function in
our genetic algorithm for instance and feature selection.
Our fitness function is basically defined by the
classification performance of a reference set, the number
of selected instances, and the number of selected features.
One definition, which was used in our former work, is
based on the classification results on the given instances

by a reference set. This definition is to find compact
reference sets that can correctly classify almost all the
given instances. In the other definition, the classification
of each instance is performed by a reference set excluding
that instance (as in the leaving-one-out procedure). That is,
each instance in the reference set is not selected as its own
nearest neighbor in the calculation of the fitness function.
This definition of the fitness function is to find compact
reference sets with high generalization ability. The same
idea as the second definition has been used in some
instance selection methods (Wilson, 1972 and Kuncheva,
1995, 1997).

2. GENETIC ALGORITHMS

2.1 CODING
Let us assume that m labeled instances =px

)...,,(1 pnp xx , mp ...,,2,1= are given from c classes in
an n-dimensional pattern space where pix is the value of
the i-th feature in the p-th instance. Our task is to select a
small number of representative instances together with a
few significant features for designing a compact nearest
neighbor classifier with high classification ability. Let

ALLP be the set of the given m instances: =ALLP
},...,,{ 21 mxxx . We also denote the set of the given n

features as }...,,,{ 21ALL nfffF = where if is the label
of the i-th feature. Let F and P be the set of selected
features and the set of selected instances, respectively,
where ALLFF ⊆ and ALLPP ⊆ . We denote the
reference set as),(PFS = .

For handling our instance and feature selection problem
by genetic algorithms, every reference set),(PFS = is
coded as a binary string of the length)(mn + as

mn sssaaaS ⋅⋅⋅⋅⋅⋅= 2121 , (1)

where ia denotes the inclusion (1=ia) or the exclusion
(0=ia) of the i-th feature if , and ps denotes the
inclusion (1=ps) or the exclusion (0=ps) of the p-th
instance px . The feature set F and the instance set P are
obtained by decoding the string S as follows:

},...,2,1 ,1 | { niafF ii === , (2)
},...,2,1 ,1 | { mpsP pp === x . (3)

2.2 FITNESS FUNCTION

In our nearest neighbor classification with the reference
set),(PFS = , the nearest neighbor p̂x of a new
instance x is found from the instance set P as

} |),(min{),(ˆ Pdd ppFpF ∈= xxxxx , (4)

where),(xx pFd is the distance between px and x ,

which is defined by the feature set F as

∑
∈

−=
Fi

ipipF xxd

2)(),(xx . (5)

When the instance set P or the feature set F is empty, the
classification of new instances is always rejected.

In our instance and feature selection problem, the number
of selected instances and the number of selected features
are to be minimized, and the classification performance of
the reference set),(PFS = is to be maximized. Thus
our problem is formulated as follows:

Minimize || F , minimize || P ,
 and maximize)(SePerformanc , (6)

where || F is the number of features in F, || P is the
number of instances in P, and)(SePerformanc is a
performance measure of the reference set),(PFS = . The
performance measure is defined based on the
classification results of the given m instances.

In our former work (Ishibuchi and Nakashima, 1999,
2000), we defined the performance measure

)(SePerformanc by the number of correctly classified
instances by),(PFS = . Each instance qx
(mq ...,,2,1=) was classified by its nearest neighbor p̂x ,
which is defined as

} |),(min{),(ˆ Pdd pqpFqpF ∈= xxxxx . (7)

We denote this performance measure for the reference set
S as)(A SePerformanc . The following formulation
corresponds to the instance selection problem for finding
the minimum consistent set that can correctly classify all
the given instances (Wilson, 1972 and Dasarathy, 1994):

Minimize || P subject to mSePerformanc =)(A , (8)

where),(ALL PFS = and ALLPP ⊆ . From the
comparison between (6) and (8), we can see the difference
between our task and the instance selection problem for
the minimum consistent set.

In the definition of the performance measure in
(Kuncheva, 1995, 1997) for the instance selection, when
an instance qx was included in the reference set, qx was
not selected as its own nearest neighbor. In the context of
instance and feature selection, this means that the nearest
neighbor p̂x of qx is selected as follows:

⎩
⎨
⎧

∈−∈
∉∈

= .if}},{ |),(min{
,if}, |),(min{

),(ˆ

PPd
PPd

d

qqpqpF

qpqpF

qpF

xxxxx
xxxx

xx

 (9)

We denote the performance measure defined in this
manner as)(B SePerformanc . The instance selection
problem discussed in (Kuncheva, 1995) can be written as

Maximize)(B SePerformanc , (10)

where),(ALL PFS = and ALLPP ⊆ .

These two definitions of the performance measure are
different only in the classification of instances included in
the reference set. When a small number of instances are
selected and included in the reference set (e.g., 1/30 of the
given instances), these two definitions are almost the
same because most instances are classified in the same
manner. Thus it seems that we will obtain almost the same
results from these two definitions. This expectation is
examined by computer simulations in the next section.

The fitness value of the reference set),(PFS = is
defined by the weighted sum of our three objectives as

,|| ||

)()(

PWFW

SePerformancWSfitness

PF

ePerformanc

⋅−⋅−

⋅=
 (11)

where ePerformancW , FW , and PW are user definable
non-negative weights. Since the three objectives in our
instance and feature selection problem in (6) are
combined into the single scalar fitness function in (11), a
single-objective genetic algorithm is used for searching
for a single solution. Of course, it is possible to use multi-
objective genetic algorithms for searching for multiple
non-dominated solutions as in (Ishibuchi et al., 1997).

2.3 BASIC ALGORITHM

We use a genetic algorithm for maximizing the fitness
function in (11). In our genetic algorithm, first a number
of binary strings (say, popN strings) of the length

)(mn + are randomly generated. Next a pair of strings are
randomly selected from the current population to generate
two strings by crossover and mutation. The selection,
crossover, and mutation are iterated to generate popN
strings. The newly generated popN strings are added to
the current population to form an enlarged population of
the size pop2 N⋅ . The next population is constructed by
selecting the best popN strings from the enlarged
population. The population update is iterated until a pre-
specified stopping condition is satisfied. Our genetic
algorithm is written as follows:

Step 1 (Initialization):
Randomly generate popN strings of the length)(mn + .

Step 2 (Genetic Operations):
Iterate the following procedures 2/popN times for

generating popN strings.
 1) Randomly select a pair of strings from the current

population.
 2) Apply a crossover operation to the selected pair of

strings for generating two offspring. In computer
simulations of this paper, we use the uniform crossover.

 3) Apply a mutation operation to each bit value of the two
strings generated by the crossover operation. The
mutation operation changes the bit value from 1 to 0 or
from 0 to 1.

Step 3 (Generation Update):
Add the newly generated popN strings in Step 2 to the
current population of the popN strings to form an
enlarged population of the size pop2 N⋅ . Select the best

popN strings with the largest fitness values from the
enlarged population to form the next population.

Step 4 (Termination Test):
If a pre-specified stopping condition is not satisfied,
return to Step 2. Otherwise end the algorithm.

Our genetic algorithm is different from the standard
implementation (Goldberg, 1989) in the selection and
generation update procedures. In our algorithm, the
selection of parent strings for the crossover is performed
randomly. The selection of good strings is performed in
the generation update procedure. In this sense, the
generation update procedure of our genetic algorithm can
be viewed as a selection procedure for generating a
mating pool from which parent strings are randomly
selected. We adopted this implementation according to
the first attempt of the application of genetic algorithms to
instance selection in (Kuncheva, 1995, 1997). We also
examined a more standard implementation based on the
roulette wheel selection with the linear scaling and a
single elite string. Simulation results of these two
implementations were almost the same. So we only report
simulation results by the above implementation.

2.4 ILLUSTRATION BY SIMPLE EXAMPLE
Let us illustrate our approach to instance and feature
selection by a simple numerical example in Fig. 1 (a)
where 30 instances from each class are given. We
artificially generated this simple example with 60
instances only for illustration purpose. In Fig. 1 (a), the
classification boundary is drawn by the nearest neighbor
classification using all the given instances. We used our
genetic algorithm with the parameter specifications:

String length: 62 (2 features and 60 instances),
Population size: =popN 50,
Crossover probability: 1.0,

Mutation probability: 0.01,
Stopping condition: 1000 generations,
Weight values: =ePerformancW 10; =FW 1; =PW 1,
Performance measure:)(A SePerformanc .

Our genetic algorithm selected 11 instances and the two
features (i.e., no feature was removed). The selected
instances are shown in Fig. 1 (b) together with the
classification boundary generated by them. In Fig. 1 (b),
all the given instances are correctly classified. Since we
used the large weight value (i.e., =ePerformancW 10) for
the performance measure)(A SePerformanc , we had a
100% classification rate on the given instances by the
selected reference set. In Fig. 2 (a), we show a simulation
result by the performance measure)(B SePerformanc .
The other parameters including the weight values were
specified in the same manner as in Fig. 1 (b). In Fig. 2 (a),
a single instance is misclassified by the selected nine
instances. The classification boundary in Fig. 2 (a) was
drawn by the selected instances. In the case of the second
definition of the performance measure, each instance in
the reference set is not classified by itself when the fitness
value is evaluated. Thus the inclusion of misclassified
instances in the reference set does not always improve the
performance measure. On the contrary, the inclusion of
misclassified instances always corrects the classification
of those patterns in the case of the first definition. The
difference between these two definitions is also discussed
in the next section through computer simulations.

Our genetic algorithm with different weight values
generates different reference sets. For example, three
instances in Fig. 2 (b) were selected by our genetic
algorithm with =ePerformancW 0.5 (The other parameters
were the same as in Fig. 1 (b)). In Fig. 2 (b), three
instances are misclassified by the selected instances.
Since a larger weight value (i.e., =PW 1) is assigned to
the number of selected instances (i.e., || P) than the
number of correctly classified instances (i.e.,

)(A SePerformanc), a reference set with a 100%
classification rate on the given instances does not always
have the maximum fitness value. As a result, our genetic
algorithm selected the reference set in Fig. 2 (b), which
can not correctly classify all the given instances. In
computer simulations with small weight values for the
performance measure, the second feature 2f (i.e., 2x -
axis in Fig. 2 (b))) was often removed. Actually, it was
not selected by our genetic algorithm with

5.0=ePerformancW in 25 out of 30 independent trials.

 : Class 1 : Class 2

x

x
0.0 1.0

0.0

1.0

1

2

x

x
0.0 1.0

0.0

1.0

1

2

and : Selected instances

 (a) (b)

Figure 1: Given instances and selected instances.

x

x
0.0 1.0

0.0

1.0

1

2

and : Selected instances
1.0

1.0
0.0

0.0
x1

x2

x

x
0.0 1.0

0.0

1.0

1

2

and : Selected instances
1.0

1.0
0.0

0.0
x1

x2

 (a) (b)

Figure 2: Example of selected instances that can not
correctly classify all the given instances.

2.5 BIASED MUTATION
As we can see from the coding of each reference, our
instance and feature selection method is computationally
intensive. The string length is)(mn + where n is the
number of features and m is the number of instances.
Thus the size of the search space is mn+2 , which is
terribly large especially when the number of given
instances is large. Since the number of features is usually
much smaller than the number of instances in many real-
world pattern classification problems, we concentrate on
how to effectively decrease the number of selected
instances by our genetic algorithm in this subsection.

Let us examine the effect of the crossover and mutation
on the number of instances included in each string. Since
the crossover just exchanges bit values between two
parent strings, the total number of selected instances in
the parent strings is exactly the same as that in their
offspring. This means that the crossover does not change
the number of instances on the average. Of course, strings
with fewer instances are more likely to survive the
generation update due to the definition of the fitness
function. Thus the average number of selected instances
in each population gradually decreases by iterating the
generation update.

On the contrary, the mutation tends to increase the
average number of selected instances. We illustrate this
fact using simple numerical calculation. Let 1m be the
number of instances included in a string before the
mutation. We also denote the number of excluded
instances in the string by 0m where mmm =+ 10 (m is
the number of given instances). Among the 1m instances
included in the string, the mutation removes 1m mp ⋅
instances from the string on the average where mp is the
mutation probability. At the same time, the mutation adds
some instances to the string by changing some 0’s to 1’s.
The expected value of the number of added instances is

0m mp ⋅ . Thus the expected value of the number of
selected instances after the mutation is calculated as

0m1m11ˆ mpmpmm ⋅+⋅−= . (12)

Since a small number of instances are to be selected from
a large number of given instances in our instance and
feature selection, 1m should be much smaller than 0m
and m . For example, let us assume that we have a binary
string with 10 instances out of 1000 instances (i.e.,

=m 1000, =1m 10, and =0m 990). In this case, the
expected value 1m̂ of the number of selected instances
after the mutation is calculated as follows:

=1m̂ 108 when =mp 0.1, (13)
=1m̂ 19.8 when =mp 0.01, (14)
=1m̂ 10.98 when =mp 0.001. (15)

From these calculations, we can see that large mutation
probabilities prevent our genetic algorithm from
decreasing the number of selected instances.

For demonstrating the effect of the mutation on the
number of selected instances, we applied our genetic
algorithm to a numerical example with 500 instances from
each of two classes. In this numerical example, we
generated 500 instances from each class using the
following normal distribution),(kkN Σµ for =k 1,2.

)1,0(1 =µ ,)0,1(2 =µ , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ=Σ 2

2
21 3.00

03.0 . (16)

In our genetic algorithm, we examined three
specifications of the mutation probability for instance
selection: =mp 0.1, 0.01, 0.001. The other parameters
were specified in the same manner as in Fig. 1 (b).
Simulation results are shown in Table 1 where the CPU
time was measured by a PC with a Pentium II 400MHz
processor. From this table, we can see that the large
mutation probability prevented our genetic algorithm
from finding compact reference sets. We can also see that
the larger the size of reference sets is, the longer the
computation time is.

Table 1. Simulation results on pattern classification
problems with 1000 instances.

Mutation)(SePerformanc A || P CPU time
0.1 9657.0 341.0 317.8 (min.)
0.01 9971.0 26.0 108.3 (min.)

0.001 9978.0 16.7 82.1 (min.)

Our trick for effectively decreasing the number of
selected instances is to bias the mutation probability
(Ishibuchi and Nakashima, 1999, 2000). In the biased
mutation, a much larger probability is assigned to the
mutation from “ 1=ps ” to “ 0=ps ” than the mutation
from “ 0=ps ” to “ 1=ps ”. That is, we use two different
mutation probabilities)01(m →p and)10(m →p for
instance selection (i.e., for the last m bits of each binary
string). Since the number of features is usually much
smaller than the number of instances in many real-world
pattern classification problems, we use the standard
unbiased mutation for feature selection. That is, the
mutation probability mp is not biased for the first n bits
of each binary string.

In the same manner as in the above computer simulations
with the unbiased mutation, we applied our genetic
algorithm with the biased mutation to the pattern
classification problem with 1000 instances. The three
mutation probabilities were specified as =→)01(mp 0.1,

=→)10(mp 0.001, and =mp 0.1. The following average
results were obtained from three independent trials.

)(A SePerformanc =9967.0, =|| P 4.3, CPU time: 49 min.

From these results, we can see our genetic algorithm with
the biased mutation can efficiently search for compact
reference sets.

3. PERFORMANCE EVALUATION

3.1 DATA SETS

We used six data sets: two data sets were artificially
generated using normal distributions, and the others were
real-world data sets used in the literature. In our computer
simulations, we applied our genetic algorithm to each data
set after normalizing given attribute values to real
numbers in the unit interval [0,1]. In the nearest neighbor
classification based on the Euclidean distance, such
normalization may be essential for handling data sets
including features with different magnitudes. Each data
set is briefly described in the following.

Data Set I from Normal Distributions with Small Overlap:

We generated a two-class pattern classification problem in
the unit square]1,0[]1,0[× . For each class, we generated
50 instances using the normal distribution),(kkN Σµ
where kµ and kΣ were specified as follows:

)1,0(1 =µ ,)0,1(2 =µ , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ=Σ 2

2
21 4.00

04.0 . (17)

Data Set II from Normal Distributions with Large
Overlap: We generated a two-class pattern classification
problem in the same manner as in the above data set using
larger variances. We specified the normal distribution of
each class as follows:

)1,0(1 =µ ,)0,1(2 =µ , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ=Σ 2

2
21 6.00

06.0 . (18)

Iris Data: The iris data set is one of the most commonly
used data sets in the literature. This data set consists of
150 instances with four features from three classes (50
instances from each class). The best result reported in
(Weiss and Kulikowski, 1991) was a 2.0% error rate on
test data (i.e., unseen instances) by linear discriminants.

Appendicitis Data: The appendicitis data set consists of
106 instances with eight features from two classes. Since
one feature has some missing values, we used seven
features as in (Weiss and Kulikowski, 1991) where ten
classification methods were examined by the leaving-one-
out procedure for the appendicitis data. The best result
reported in their book was a 10.4% error rate on test data
by a machine learning technique.

Cancer Data: The cancer data set consists of 286
instances with nine features from two classes. This data
set was also used in (Weiss and Kulikowski, 1991) for
evaluating the performance of ten classification methods
by random resampling where 70% of given instances
were used as training data. The best result reported in
their book was a 22.9% error rate on test data by a
machine learning technique.

Wine Data: The wine data set consists of 178 instances
with 13 features from three classes, which is available
from the machine learning database in the University of
California, Irvine. This data set was used in (Corcoran and
Sen, 1994) for evaluating the performance of their
genetics-based machine learning algorithm.

3.2 PERFORMANCE ON TRAINING DATA

We applied our genetic algorithm to the six data sets
using the following parameter specifications:

Population size: =popN 50,
Crossover probability: 1.0,

Mutation probability: =mp 0.01 for feature selection,
 =→)01(mp 0.1, =→)10(mp 0.01
 for instance selection,
Stopping condition: 500 generations,
Weight values: =ePerformancW 5; =FW 1; =PW 1,
Performance measure:
)(A SePerformanc or)(B SePerformanc .

All the given instances were used as training data in this
subsection. The aim of computer simulations in this
subsection is to compare the two definitions of the
performance measure. Our genetic algorithm was applied
to each data set 30 times for calculating average results.
Average simulation results over 30 trials are summarized
in Table 2 and Table 3 where each figure in parentheses
denotes the number of given features or given instances in
each data set.

Table 2. Simulation results on training data using the first
performance measure.

Data set Features Instances Classification
Data Set I 1.9 (2) 14.5 (100) 96.7%
Data Set II 1.8 (2) 31.0 (100) 94.4%

Iris 2.0 (4) 6.1 (150) 99.4%
Appendicitis 3.3 (7) 16.0 (106) 97.5%

Cancer 5.1 (9) 54.3 (286) 89.2%
Wine 6.3 (13) 5.9 (178) 100%

Table 3. Simulation results on training data using the

second performance measure.

Data set Features Instances Classification
Data Set I 2.0 (2) 6.2 (100) 92.3%
Data Set II 1.8 (2) 12.3 (100) 80.9%

Iris 2.6 (4) 7.6 (150) 94.2%
Appendicitis 3.2 (7) 4.4 (106) 91.8%

Cancer 2.9 (9) 27.2 (286) 81.3%
Wine 6.6 (13) 7.3 (178) 99.9%

In Table 2 and Table 3, we used the first definition

)(A SePerformanc and the second definition
)(B SePerformanc of the performance measure,

respectively. The first definition directly evaluates the
classification ability on training data for the evolution of
reference sets. As a result, we obtained higher
classification rates on training data in Table 2 than Table
3. Such higher classification rates were realized by
selecting much more instances for constructing reference
sets in the case of data sets with large overlaps such as

Data Set II, the appendicitis data, and the cancer data. On
the other hand, in Table 3, the generalization ability of
each reference set on unseen data was estimated in our
genetic algorithm by the second definition. Thus the
classification rates on training data in Table 3 are inferior
to those in Table 2.

From the projection of the iris data into the 3x - 4x plane,
we can see that these two features are important for the
classification purpose of the iris data. These two features
were selected by our genetic algorithm in 29 out of the 30
trials in Table 2. In Table 3, },{ 43 ff were selected in 16
trials, and },,{ 432 fff were selected in the other 14
trials.

3.3 PERFORMANCE ON TEST DATA
In the previous subsection, we demonstrated that our
genetic algorithm can select a small number of instances
together with only significant features. It was also shown
that the selected reference sets can correctly classify
almost all the given instances. While we examined
classification rates on training data in the previous
subsection, the performance of classification systems
should be evaluated by classification rates on test data
(i.e., unseen instances). In this subsection, we examine the
generalization ability of selected reference sets.

Since the first two data sets were artificially generated
from the given normal distributions, we can generate
unseen instances from the same normal distributions. In
our computer simulations, 1000 instances (500 from each
class) were generated as test data. That is, a reference set
selected from 100 instances was examined on 1000
instances at each trial. This procedure was iterated 50
times for Data Set I and Data Set II. For the iris data and
the appendicitis data, we used the leaving-one-out (LV1)
procedure as in (Weiss and Kulikowski, 1991). The LV1
procedure was iterated ten times for the iris data and the
appendicitis data. For the cancer data and the wine data,
we used the 10-fold cross-validation (10CV) procedure.
In the 10CV procedure, the given instances are divided
into ten subsets of the same size. One subset is used as
test data, and the other subsets are used as training data.
This is iterated ten times so that all the subsets are used as
test data. The 10CV procedure was employed ten times
for the cancer data and the wine data.

We used the same parameter values of our genetic
algorithm as in the previous subsection. We examined the
two definitions of the performance measure (i.e.,

)(A SePerformanc and)(B SePerformanc). Simulation
results are summarized in Table 4. For comparison, we
also examined the generalization ability of the original

data sets before instance and feature selection. From
Table 4, we can see that the generalization ability was
improved by the use of)(B SePerformanc in many data
sets. The improvement of the generalization ability is
clear in the appendicitis data and the cancer data with
large overlaps between different classes. On the contrary,
we can not observe such clear improvement in the iris
data and the wine data. Those data sets, for which we
obtained high classification rates on test data by the
original nearest neighbor classifiers, do not have large
overlaps between different classes in the pattern spaces.
From the comparison between the two definitions of the
performance measure, we can see that higher
classification rates on test data were obtained by the
second definition)(B SePerformanc than the first
definition)(A SePerformanc . This is because the first
definition is based on the classification ability on training
data. That is, the evolution of reference sets guided by the
first definition tends to overfit to training data. As a result,
instance and feature selection based on the first definition
is not likely to improve the generalization ability of
nearest neighbor classifiers.

Let us briefly compare the simulation results in Table 4
with those by ten classification methods reported in
(Weiss and Kulikowski, 1991). The 96.9% classification
rate for the iris data set in Table 4 is better than six
methods (e.g., 96.7% by the back-propagation algorithm).
The 85.7% classification rate for the appendicitis data is
better than five methods. This result is almost the same as
the reported result 85.8% by the back-propagation
algorithm. The 73.6% classification rate for the cancer
data is better than eight methods (e.g., 71.5% by the back-
propagation algorithm).

Table 4. Average classification rates on test data.

Data set Original data)(A SPerf)(B SPerfe
Data Set I 81.3% 80.2% 84.7%
Data Set II 60.6% 60.2% 64.8%

Iris 95.3% 96.9% 94.2%
Appendicitis 80.2% 77.0% 85.7%

Cancer 65.3% 68.3% 73.6%
Wine 95.3% 94.8% 96.5%

4. CONCLUSIONS
In this paper, we discussed instance and feature selection
for the design of compact nearest neighbor classifiers.
Through computer simulations on artificially generated

data sets and real-world data sets, we demonstrated that a
small number of instances were selected together with
only significant features by our genetic algorithm. That is,
our genetic algorithm can simultaneously perform
instance selection and feature selection. We also
demonstrated that the generalization ability of nearest
neighbor classifiers was improved by the use of the
selected instances and features in some data sets. This
improvement was clear in the case of data sets with large
overlaps between different classes. We examined two
performance measures used for calculating the fitness
value of each reference set in our genetic algorithm. One
performance measure was defined by the classification
performance of the reference set on given instances. That
is, the classification performance was evaluated by
classifying all the given instances by the reference set.
This performance measure is suitable for finding the
minimum reference set that can correctly classify all the
given instances. In the evaluation of the other
performance measure, the classification of all the given
instances is performed in a different manner. The point is
that every instance included in the reference set is not
used as its own nearest neighbor. In this manner, the
generalization ability of each reference set is evaluated in
the execution of our genetic algorithm. As shown by our
computer simulations, this performance measure is
suitable for selecting compact reference sets with high
generalization ability from data sets with large overlaps
between different classes.

Acknowledgement

This work was partially supported by the
Telecommunications Advancement Foundation.

References

Chaudhuri, D., Murthy, C. A., and Chaudhuri, B. B. 1994.
Finding a subset of representative points in a data set.
IEEE Trans. on Systems, Man, and Cybernetics, 24: 1416-
1424.

Corcoran, A. L. and Sen, S. 1994. Using real-valued
genetic algorithms to evolve rule sets for classification.
Proc. of 1st IEEE International Conference on
Evolutionary Computation. Orlando, FL. 120-124.

Cover, T. M. and Hart, P. E. 1967. Nearest neighbor
pattern classification. IEEE Trans. on Information Theory,
13: 21-27.

Dasarathy, B. V. 1994. Minimal consistent set (MCS)
identification for optimal nearest neighbor decision
systems design. IEEE Trans. on Systems, Man, and
Cybernetics, 24: 511-517.

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading, MA,
Addison-Wesley.

Hart, P. 1968. The condensed nearest neighbor rule. IEEE
Trans. on Information Theory, 14: 515-516.

Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, MI, University of Michigan Press.

Ishibuchi, H., Murata, T., and Turksen, I. B. 1997. Single-
objective and two-objective genetic algorithms for
selecting linguistic rules for pattern classification
problems. Fuzzy Sets and Systems, 89: 135-150.

Ishibuchi, H. and Nakashima, T. 1999. Evolution of
reference sets in nearest neighbor classification, in B.
McKay et al.(eds.) Lecture Notes in Artificial Intelligence
1585: Simulated Evolution and Learning (2nd Asian-
Pacific Conference on Simulated Annealing, Canberra,
1998, Selected Papers). 82-89.

Ishibuchi, H. and Nakashima, T. 2000. Pattern and feature
selection by genetic algorithms in nearest neighbor
classification. International Journal of Advanced
Computational Intelligence (to appear).

Kelly, Jr., J. D. and Davis, L. 1991. Hybridizing the
genetic algorithm and the k nearest neighbors
classification algorithm. Proc. of 4th International
Conference on Genetic Algorithms, University of
California, San Diego, 377-383.

Kuncheva, L. I. 1995. Editing for the k-nearest neighbors
rule by a genetic algorithm. Pattern Recognition Letters,
16: 809-814.

Kuncheva, L. I. 1997. Fitness functions in editing k-NN
reference set by genetic algorithms. Pattern Recognition,
30: 1041-1049.

Punch, W. F., Goodman, E. D., Pei, M., Chia-Shun, L.,
Hovland, P., and Enbody, R. 1993. Further research on
feature selection and classification using genetic
algorithms. Proc. of 5th International Conference on
Genetic Algorithms, University of Illinois at Urbana-
Champaign, 557-564.

Rumelhart, D. E., McClelland, J. L., and the PDP
Research Group. 1986. Parallel Distributed Processing.
Cambridge, MA. MIT Press.

Siedlecki, W. and Sklansky, J. 1989. A note on genetic
algorithms for large-scale feature selection. Pattern
Recognition Letters, 10: 335-347.

Weiss, S. M. and Kulikowski, C. A. 1991. Computer
Systems That Learn. San Mateo, CA. Morgan Kaufmann.

Wilson, D. L. 1972. Asymptotic properties of nearest
neighbor rules using edited data. IEEE Trans. on Systems,
Man, and Cybernetics, 2: 408-420.

