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ABSTRACT 
The use of Pareto dominance for fitness evaluation has been the 
mainstream in evolutionary multiobjective optimization for the 
last two decades. Recently, it has been pointed out in some studies 
that Pareto dominance-based algorithms do not always work well 
on multiobjective problems with many objectives. Scalarizing 
function-based fitness evaluation is a promising alternative to 
Pareto dominance especially for the case of many objectives. A 
representative scalarizing function-based algorithm is MOEA/D 
(multiobjective evolutionary algorithm based on decomposition) 
of Zhang & Li (2007). Its high search ability has already been 
shown for various problems. One important implementation issue 
of MOEA/D is a choice of a scalarizing function because its 
search ability strongly depends on this choice. It is, however, not 
easy to choose an appropriate scalarizing function for each 
multiobjective problem. In this paper, we propose an idea of using 
different types of scalarizing functions simultaneously. For 
example, both the weighted Tchebycheff (Chebyshev) and the 
weighted sum are used for fitness evaluation. We examine two 
methods for implementing our idea. One is to use multiple grids 
of weight vectors and the other is to assign a different scalarizing 
function alternately to each weight vector in a single grid. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic Methods. 

General Terms 
Algorithms. 

Keywords 
Evolutionary multiobjective optimization (EMO), scalarizing 
function, MOEA/D.  

1. INTRODUCTION 
Since Goldberg’s suggestion in the late-80s [10], the use of Pareto 
dominance for fitness evaluation has been the mainstream in the 

field of evolutionary multiobjective optimization (EMO) for the 
last two decades [4]-[6], [26]. Almost all well-known and 
frequently-used EMO algorithms such as NSGA-II [7] and SPEA 
[31] are based on Pareto dominance. Such a Pareto dominance-
based algorithm usually works well on multiobjective problems 
with two or three objectives. Its search ability is, however, often 
severely degraded by the increase in the number of objectives as 
pointed out in the literature [18]-[21], [25], [32]. This is because 
almost all individuals in a population become non-dominated with 
each other under many objectives [13]. When all individuals in a 
population are non-dominated, Pareto dominance-based fitness 
evaluation cannot generate any selection pressure toward the 
Pareto front.  

A theoretically well-supported alternative to Pareto dominance is 
the use of an indicator function such as the hypervolume measure 
[1], [2], [9], [27], [29], [30]. A class of EMO algorithms with 
indicator-based fitness evaluation is referred to as IBEAs 
(indicator-based evolutionary algorithms). High search ability of 
IBEAs has been demonstrated in the literature [27]. One practical 
difficulty of IBEAs in their applications to many-objective 
problems is that the computation time for the hypervolume 
calculation exponentially increases with the number of objectives. 

Another alternative to Pareto dominance-based fitness evaluation 
is the use of scalarizing functions. It has been demonstrated in the 
literature [8], [11], [12], [14], [15], [19], [20] that better results 
can be obtained by scalarizing function-based algorithms than 
Pareto dominance-based ones for combinatorial or many-objective 
problems with more than three objectives. The main advantage of 
scalarizing function-based algorithms over other EMO algorithms 
is the simplicity of fitness evaluation. Scalarizing functions can be 
easily calculated even when we have many objectives.  

A well-known representative EMO algorithm with scalarizing 
function-based fitness evaluation is MOEA/D (multiobjective 
evolutionary algorithm based on decomposition) proposed by 
Zhang & Li [28]. This is a simple but powerful EMO algorithm. It 
has been reported in the literature [3], [17], [22], [24] that 
MOEA/D works very well on a wide range of multiobjective 
problems with many objectives, discrete decision variables and/or 
complicated Pareto sets. 

One important implementation issue of MOEA/D is a choice of an 
appropriate scalarizing function for a particular multiobjective 
problem at hand. In the original version of MOEA/D [28], the 
weighted sum and the weighted Tchebycheff (Chebyshev) were 
examined. The performance of MOEA/D strongly depends on the 
choice of a scalarizing function [16]. Whereas an idea of 
automatically switching between the weighted sum and the 
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weighted Tchebycheff was proposed [16], good results were not 
reported due to the difficulty in designing an effective mechanism 
for choosing an appropriate scalarizing function between them. 

In this paper, we propose an idea of simultaneously using 
different types of scalarizing functions in MOEA/D in order to 
alleviate the difficulty in choosing an appropriate scalarizing 
function for each multiobjective problem. For example, we use 
both the weighted sum and the weighted Tchebycheff instead of 
choosing one of them. Two implementation schemes of the 
proposed idea are examined in this paper. One is to use multiple 
grids of weight vectors where each grid is used by a single 
scalarizing function. The other is to use different types of 
scalarizing functions in a single grid of weight vectors where a 
different scalarizing function is alternately assigned to each 
weight vector.  

For example, let us assume that the weighted sum and the 
weighted Tchebycheff with a set of six weight vectors (1.0, 0.0), 
(0.8, 0.2), ..., (0.0, 1.0) are used in MOEA/D. The set of these six 
weight vectors can be viewed as a grid with the six points in the 
two-dimensional weight vector space. Two grids with the six 
weight vectors are used in the multi-grid implementation scheme. 
One is for the weighted sum, and the other is for the weighted 
Tchebycheff. As a result, MOEA/D has six weighted sum 
functions and six weighted Tchebycheff functions. On the other 
hand, only a single grid is used in the single-grid implementation 
scheme. The weighted sum and the weighted Tchebycheff are 
alternately assigned to each weight vector in the grid (e.g., the 
weighted sum is assigned to (1.0, 0.0), (0.6, 0.4) and (0.2, 0.8) 
while the weighted Tchebycheff is assigned to (0.8, 0.2), (0.4, 0.6) 
and (0.0, 1.0)). As a result, MOEA/D has three weighted sum 
functions and three weighted Tchebycheff functions. 

This paper is organized as follows. First we briefly explain 
MOEA/D as a cellular EMO algorithm with a grid in the weight 
vector space in Section 2. Next we demonstrate the sensitivity of 
the performance of MOEA/D to the choice of a scalarizing 
function in Section 3. Then we explain our idea (i.e., the 
simultaneous use of different types of scalarizing functions in 
MOEA/D) and its two implementation schemes in Section 4. The 
effectiveness of our idea is examined in Section 5. Finally we 
conclude this paper in Section 6. 

2. MOEA/D ALGORITHMS 

2.1 Scalarizing Functions 
An m-objective maximization problem can be written as 

Maximize ))(...,),(),(()( 21 xxxxf mfff= ,         (1) 

where f(x) is an m-dimensional objective vector, fi (x) is the i-th 
objective to be maximized, and x is a decision vector.  

One of well-known and frequently-used scalarizing functions is 
the weighted sum. The weighted sum with a non-negative weight 
vector λ = (λ1 , λ2 , ..., λm ) is written as 
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where λ i  is a non-negative weight for the i-th objective fi (x). We 
assume that the weight vector λ satisfies λ 1 +λ 2 + ... +λ m  = 1 and 

0≥λ  for i = 1, 2, ..., m. The weighted sum in (2) is maximized. 

Another well-known and frequently-used scalarizing function is 
the weighted Tchebycheff. The weighed Tchebycheff with a 
reference point z* =(z1

*, z2
*, ..., zm

*) in the objective space and the 
weight vector λ = (λ1 , λ2 , ..., λm ) is written as  
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In the same manner as in Zhang & Li [28], we update the 
reference point z* during the execution of MOEA/D as 

mifz ii ...,,2,1},|)(max{1.1* =Ω∈⋅= xx ,        (4) 

where Ω shows all the examined solutions during the execution of 
MOEA/D. The reference point is updated when the maximum 
value of each objective in (4) is updated. The weighted 
Tchebycheff in (3) is minimized to maximize each objective. 

The weighted sum and the weighed Tchebycheff were used in 
MOEA/D of Zhang & Li [28]. In this paper, we also examine the 
following augmented weighted Tchebycheff for comparison: 
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where ρ  is usually a very small positive constant (e.g., 0.1). 

2.2 Our Cellular Implementation of MOEA/D  
MOEA/D of Zhang & Li [28] is a simple but powerful scalarizing 
function-based algorithm. MOEA/D has a number of advantages 
over Pareto dominance-based algorithms such as the scalability to 
many-objective problems, high search ability for combinatorial 
optimization, computational efficiency of fitness evaluation, and 
high compatibility with local search. 

The main characteristic feature of MOEA/D is the handling of a 
multiobjective problem as a collection of a large number of 
single-objective problems. Each single-objective problem has a 
scalarizing function with a different weight vector. Each weight 
vector has a single individual in the current population. This idea 
is similar to a cellular EMO algorithm of Murata et al. [23] where 
a different weight vector was assigned to each cell. In both 
algorithms, each individual in the current population was 
governed by a scalarizing function with a different weight vector. 

MOEA/D uses a pre-specified number of uniformly distributed 
weight vectors satisfying the following two conditions: 

1...21 =+++ mλλλ ,           (6) 

mi
H
H

HHi ...,,2,1,...,,2,1,0 =
⎭
⎬
⎫

⎩
⎨
⎧∈λ ,         (7) 

where H is a user-definable positive integer. The number of 
weight vectors is calculated as N = H+ m −1Cm −1 [28]. For example, 
we have 101 weight vectors by specifying H as H =100 for a two-
objective problem: λ = (0, 1), (0.01, 0.99), (0.02, 0.98), ..., (1, 0). 
In Fig. 1, we show 15 weight vectors for the case of m = 3 and 
H = 4. Fig. 1 shows that a set of weight vectors satisfying (6) and 
(7) can be viewed as a (m−1)-dimensional grid in the m-
dimensional weight vector space [0, 1]m.  

Let us denote the generated N weight vectors as {λ1, λ2, ..., λN}. 
Each weight vector λk has the nearest T weight vectors (including 



 

 

λk itself) as its neighbors where T is a user-definable positive 
integer. We denote the T neighbors of λk by B(λk), which can be 
viewed as the neighborhood of size T for the weight vector λk. 
The distance between two weight vectors is measured by the 
standard Euclidean distance. 
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Figure 1. Weight vectors for three-objective problems (H = 4).  

 

The same neighborhood structure is also used for individuals 
since each weight vector has a single individual. Let us denote the 
individual associated with the weight vector λk by xk. Then we 
denote the T individuals associated with the T weight vectors in 
B(λk) by B(xk), which is referred to as the neighborhood of xk. We 
also call the T individuals in B(xk) as the neighbors of xk. In 
MOEA/D, genetic operations for each individual are locally 
performed among its neighbors as in cellular algorithms. 

Let us assume that we have N weight vectors. We also have the T 
neighbors in B(λk) for each weight vector λk, k =1 ,2 , ..., N. As in 
standard evolutionary algorithms, the first step of MOEA/D is to 
generate an initial population. It should be noted that the 
population size is the same as the number of the weight vectors 
(i.e., N). We first randomly generate an initial individual for each 
weight vector. Next we generate an offspring for each weight 
vector by selection, crossover and mutation. When an offspring is 
to be generated for the weight vector λk, a couple of parents are 
randomly selected among the T neighbors of xk in B(xk). Then an 
offspring is generated by crossover and mutation. Let us denote 
the generated offspring by yk. If the offspring yk is better than the 
current individual xk, xk is replaced with yk. The two individuals 
xk and yk are compared with each other by the scalarizing function 
with the weight vector λk (i.e., the weighted sum or the weighted 
Tchebycheff in MOEA/D of Zhang & Li [28]). The newly 
generated offspring yk is also compared with all neighbors in B(xk). 
This comparison is performed using the weight vector of each 
neighbor. If yk is better than some neighbors, they are replaced 
with yk. The genetic operations (i.e., selection, crossover, 
mutation) and the comparison of the newly generated offspring 
with all the T neighbors in B(xk) are performed for each individual 
xk (i.e., k =1,2 , ..., N) in the current population. We used the total 
number of examined solutions as the stopping condition in our 
computational experiments in this paper. 

As we have already explained, MOEA/D is based on local 
selection and local replacement. Local selection means the choice 
of parents from the neighbors of the current solution while local 
replacement means the comparison of the newly generated 
offspring with its neighbors for replacement. In the original 
MOEA/D of Zhang & Li [28], the same neighborhood structure 
was used for local selection and local replacement. In this paper, 
we examine different specifications of the number of neighbors 
for local selection and local replacement. 

The original version of MOEA/D [28] has a secondary population 
for combinatorial optimization (whereas MOEA/D does not have 
it for continuous optimization). No individual in the secondary 
population is used in the genetic operations for generating new 
offspring. This means that the secondary population has no effect 
on the search behavior of MOEA/D. In MOEA/D, the “replace-if-
better” strategy is used for all individuals as in cellular algorithms. 
This replacement strategy can be viewed as a kind of elitism. Thus 
MOEA/D has high search ability without utilizing non-dominated 
solutions in the secondary population as parents in the genetic 
operations for generating new offspring. 

The size of the secondary population often becomes very large 
especially in the case of many objectives. This is because almost 
all solutions are non-dominated with each other under many 
objectives. As a result, the maintenance of the secondary 
population often needs a long computational time when we have 
many objectives. In our implementation of MOEA/D in this paper, 
we do not use any secondary population in order to avoid the 
severe increase in the computation time. 

3. EXPERIMENTAL RESULTS  
In this section, we demonstrate the sensitivity of the performance 
of MOEA/D on the choice of a scalarizing function through 
computational experiments on 500-item 0/1 knapsack problems 
with two and four objectives of Zitzler & Thiele [31]. We also 
generated a 500-item 0/1 knapsack problem with six objectives in 
the same manner as in [31]. In this paper, we denote the m-
objective n-item 0/1 knapsack problem as the m-n problem (i.e., 
2-500, 4-500 and 6-500). 

In our computational experiments, solutions of each test problem 
were coded as binary strings of length 500. We applied the same 
greedy repair method as in Zitzler & Thiele [31] to infeasible 
solutions. The following setting was used in MOEA/D: 

Population size: 200 (H = 199) for 2-500, 220 (H = 9) for 4-500,  
            252 (H = 5) for 6-500. 
Crossover probability: 0.9 (Uniform crossover). 
Mutation probability: 0.004 (Bit-flip mutation). 
Selection neighborhood size (Percentage of the population): 
              1%, 2%, 3%, 5%, 10%, 20%, 30%, 50%, 100%. 
Replacement neighborhood size (Percentage of the population): 
              1%, 2%, 3%, 5%, 10%, 20%, 30%, 50%, 100%. 
Stopping condition: 200,000 solution evaluations. 

We examined all the 9 × 9 combinations of the nine specifications 
of the neighborhood size for local selection and local replacement. 
For each combination, the average value of the hypervolume 
measure was calculated over 100 runs for each test problem. This 
computational experiment was performed using each of the three 
scalarizing functions. Experimental results on the 2-500 and 6-500 
test problems are summarized in Fig. 2 and Fig. 3, respectively. 
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                    (a) Weighted sum.                                          (b) Weighted Tchebycheff.                     (c) Augmented Tchebycheff (ρ = 0.75). 

Figure 2. Experimental results on the 2-500 knapsack problem. 
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                    (a) Weighted sum.                                          (b) Weighted Tchebycheff.                      (c) Augmented Tchebycheff (ρ = 0.75). 

Figure 3. Experimental results on the 6-500 knapsack problem. 
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               (a) 2-500 knapsack problem.                               (b) 4-500 knapsack problem.                              (c) 6-500 knapsack problem. 

Figure 4. Effect of the value of ρ  on the performance of the augmented weighted Tchebycheff. 
 

The weighted Tchebycheff works well on the 2-500 problem in 
Fig. 2 whereas the weighted sum works well on the 6-500 
problem in Fig. 3. The augmented weighted Tchebycheff works 

well on both the 2-500 and 6-500 problems. The augmented 
weighted Tchebycheff, however, has an additional parameter ρ . 
Very small value of ρ  is often used in the literature. We examined 



 

 

41 different specifications of ρ  (ρ =0.00, 0.05, ..., 2.00) in Fig. 4 
where the size of the selection neighborhood and the replacement 
neighborhood was specified as 3% and 30% of the population size. 
Fig. 4 shows average results over 100 runs. As shown in Fig. 4, an 
appropriate specification of ρ  is problem-dependent. 

We can see from Figs. 2-4 that the performance of MOEA/D 
depends on the choice of a scalarizing function. These figures also 
show that an appropriate choice is problem-dependent. 

The weighted sum and the weighted Tchebycheff are compared 
with each other in Fig. 5 where experimental results of a single 
run of MOEA/D with each function are depicted. The selection 
neighborhood and the replacement neighborhood were specified 
as 3% and 30% of the population size in Fig. 5, respectively. 

Fig. 5 shows that the weighted sum has higher convergence ability 
to drive the population toward the Pareto front whereas it does not 
have high diversity maintenance ability to widen the population 
along the Pareto front. On the other hand, the weighted 
Tchebycheff has higher diversity maintenance ability whereas its 
convergence ability seems to be inferior to the weighted sum. 
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      (a) At the 50th generation. 
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      (b) At the 5000th generation. 

Figure 5. Experimental results of a single run of MOEA/D 
with the weighted sum and the weighted Tchebycheff on the 2-
500 problem. 

4. THE PROPOSED IDEA 
As shown in Figs. 2-5, each scalarizing function has its own 
advantages and disadvantages. The choice of an appropriate 
scalarizing function is problem-dependent. Moreover, the choice 
of an appropriate parameter value for ρ  in the augmented 
weighted Tchebycheff is also problem-dependent. Our idea is to 
utilize the advantages of each scalarizing function in a single 
MOEA/D algorithm. That is, our idea is to simultaneously use 
multiple scalarizing functions in a single MOEA/D algorithm. In 
particular, we examine the simultaneous use of the weighted sum 
and the weighted Tchebycheff in this paper. Our idea, however, is 
applicable to other scalarizing functions (i.e., the simultaneous use 
of the three scalarizing functions in Section 2).  

We propose the following two implementation schemes of our 
idea. One is a multi-grid scheme where each scalarizing function 
has its own complete grid of weight vectors. This implementation 
is illustrated in Fig. 6 where the weighted sum and the weighted 
Tchebycheff are used in a single MOEA/D algorithm. In Fig. 6, 
each scalarizing function has its own complete grid with 15 
weight vectors (Such as small grid is used only for illustration 
purposes). The two grids with the same 15 weight vectors are 
simultaneously used in MOEA/D. These two grids can be viewed 
as overlapping with each other as shown in Fig. 6. As a result, the 
population size becomes 30. When we use two grids of weight 
vectors as in Fig. 6, the number of neighbors also becomes twice 
from the case of a single-grid. For example, let us assume that the 
number of neighbors is three (i.e., T = 3) in Fig. 6 in the original 
MOEA/D algorithm. In this case, the three neighbors of the 
weight vector (1, 0, 0) are (1, 0, 0), (0.75, 0.25, 0) and (0.75, 0, 
0.25). When we use two grids as in Fig. 6, the same three weight 
vectors are the neighbors of (1, 0, 0). However, there exist two 
overlapping weight vectors at each location of weight vectors. So 
the number of neighbors is actually six in Fig. 6 when T = 3. 

 

Weighted Sum Weighted Tchebycheff

 
Figure 6. Multi-grid implementation scheme. 

 
The other implementation is to assign a different scalarizing 
function alternately to each weight vector in a single grid. This 
implementation scheme is illustrated in Fig. 7 where the weighted 
sum and the weighted Tchebycheff are used. As shown in Fig. 7, 
each scalarizing function can be viewed as having an incomplete 



 

 

grid of weight vectors. MOEA/D with this implementation has a 
single complete grid with 15 weight vectors as in the original 
MOEA/D algorithm [28]. However, each weight vector has a 
different scalarizing function in our single-grid implementation 
scheme with multiple scalarizing functions. It is easy to generalize 
the single-grid implementation in Fig. 7 with two scalarizing 
functions to the case with more than two functions.  

 

Weighted Sum Weighted Tchebycheff

 
Figure 7. Single-grid implementation scheme. 

5. EFFECTS OF THE PROPOSED IDEA 
In this section, we examine how the simultaneous use of multiple 
scalarizing functions can improve the performance of MOEA/D 
with a single scalarizing function. We also compare the two 
implementation schemes of the proposed idea with each other. 

In our computational experiments in the section, we used the 
following five variants of MOEA/D: 

Weighted Sum: MOEA/D with the weighted sum in (2) 
Tchebycheff: MOEA/D with the weighted Tchebycheff in (3) 
Multi-Grid: MOEA/D with the multi-grid scheme in Fig. 6 
Single-Grid: MOEA/D with the single-grid scheme in Fig. 7 
Augmented: MOEA/D with the augmented Tchebycheff in (5) 

Each variant was applied to the 2-500, 4-500 and 6-500 problems 
using the same conditions as in Section 3. The neighborhood size 
was specified as follows: the selection neighborhood and the 
replacement neighborhood was 3% and 30% of the population, 
respectively. These specifications of the neighborhood size are 
based on the experimental results in Figs. 2-4 (i.e., since good 
results were obtained in Figs. 2-4 from these specifications). 

Experimental results are summarized in Figs. 8-10 where the 
distribution of the hypervolume values over 100 runs of each 
algorithm on each test problem is depicted as a histogram. In Fig. 
8, the best results were obtained by the weighted Tchebycheff, 
and the multi-grid and single-grid schemes for the 2-500 problem. 
On the other hand, it is clear that the simultaneous use of the 
weighted sum and the weighted Tchebycheff (i.e., the multi-grid 
and single-grid schemes) outperformed their individual use in Fig. 
9 for the 4-500 test problem and Fig. 10 for the 6-500 test problem. 
This observation shows the effectiveness of the proposed idea. 
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Figure. 8. Experimental results on the 2-500 problem. 
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Figure. 9. Experimental results on the 4-500 problem. 
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Figure. 10. Experimental results on the 6-500 problem. 

 
In Fig. 10, the best results on the 6-500 problem were obtained 
from the multi-grid scheme. Since the population size in this 
variant of MOEA/D was twice as large as that of the other 
variants (due to the use of two complete grids of weight vectors), 
we further examined the performance of each variant of MOEA/D 
on the 6-500 problem using larger grids of weight vectors. For fair 
comparison of experimental results with different settings of the 
population size, we always used the total number of examined 
solutions (i.e., 200,000 solution evaluations) as the stopping 
condition throughout all computational experiments in this paper 
as shown in Section 3. Experimental results are summarized in 
Fig. 11. Independent of the size of grids of weight vectors, the 



 

 

best results were obtained from the multi-grid scheme in Fig. 11. 
We can also observe that much better results were obtained by the 
simultaneous use of the two scalarizing functions than their 
individual use in Fig. 11. The proposed idea also outperformed the 
augmented weighted Tchebycheff. It should be noted that the two 
implementation schemes of the proposed idea introduce no 
additional parameter whereas ρ was used as an additional 
parameter in the augmented weighted Tchebycheff. 
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Figure. 11. Experimental results on the 6-500 problem for 
three grids of different size: 252 (H = 5), 462 (H = 6) and 792 
(H = 7). 

6. CONCLUDING REMARKS 
In this paper, we proposed an idea of simultaneously using 
different types of scalarizing functions in MOEA/D. We also 
examined two implementation schemes of the proposed idea. One 
is to use multiple grids of weight vectors where each grid is used 

by a single scalarizing function. The other is to alternately assign 
a different scalarizing function to each weight vector in a single 
grid. The effectiveness of these implementation schemes was 
examined through computational experiments on multiobjective 
0/1 knapsack problems with two, four and six objectives. 
Experimental results showed that the simultaneous use of the 
weighted sum and the weighted Tchebycheff outperformed their 
individual use in MOEA/D. Especially in the case of the six-
objective 0/1 knapsack problem, much better results were 
obtained from our approach than the use of a single scalarizing 
function. These observations suggest the existence of the synergy 
effect by the use of different scalarizing functions.  
One interesting observation, which is somewhat counter-intuitive, 
is that the increase in the population size did not always lead to 
the performance improvement of MOEA/D on the six-objective 
0/1 knapsack problem except for the case with the weighted 
Tchebycheff function (see Fig. 11). It may be true that EMO 
algorithms need a large population when they are applied to 
many-objective problems. However, this statement does not mean 
that the performance of EMO algorithms can be always improved 
by increasing the population size when they are executed under 
the limited computation load. 
Whereas we only examined the use of the weighted sum and the 
weighted Tchebycheff, our idea is applicable to the case with 
more than two scalarizing functions. It would be interesting to 
examine the performance of MOEA/D with more than two types 
of scalarizing functions. It would be also interesting to examine 
the use of multiple augmented weighted Tchebycheff functions 
with different parameter values of ρ . These interesting issues are 
left for future research topics.  
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