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ABSTRACT 

Objective functions in combinatorial optimization are discrete. 

The number of possible values of each discrete objective function 

is totally different from problem to problem. Optimization of a 

discrete objective function is often very difficult. In the case of 

multiobjective optimization, a different objective function has a 

different number of possible values. This means that each axis of 

the objective space has a different granularity. Some axes may 

have fine granularities while others are coarse. In this paper, we 

examine the effect of discrete objective functions with different 

granularities on the search behavior of EMO (evolutionary 

multiobjective optimization) algorithms through computational 

experiments. Experimental results show that a discrete objective 

function with a coarse granularity slows down the search of EMO 

algorithms along that objective. An interesting observation is that 

such a slow-down along one objective often leads to the speed-up 

of the search along other objectives. We also show that the 

search of some EMO algorithms on test problems is often 

improved by adding a small random noise to each discrete 

objective. 

Categories and Subject Descriptors 

I.2.8 [Artificial Intelligence]: Problem Solving, Control 

Methods, and Search – Heuristic Methods. 

General Terms 

Algorithms. 

Keywords 

Evolutionary multiobjective optimization (EMO), combinatorial 

optimization, discrete objective functions, genetic algorithms. 

1. INTRODUCTION 
In the implementation of evolutionary multiobjective 

optimization (EMO) algorithms [4]-[6], objective values are often 

normalized so that each objective function has the same range of 

objective values. The normalization is important in many EMO 

algorithms when the ranges of objective functions are totally 

different from each other. This is because fitness evaluation in 

EMO algorithms often includes distance calculations in the 

objective space. For example, Pareto dominance-based EMO 

algorithms such as NSGA-II [7] and SPEA2 [21] have a distance-

based secondary criterion in addition to a Pareto dominance-

based main criterion. Scalarizing function-based EMO 

algorithms such as MOEA/D [18] more directly depends on 

distance calculations. Whereas the necessity of the normalization 

seems to have been well-known in the EMO community (e.g., 

NSGA-II [7] has a normalization mechanism, and the 

normalization was mentioned in [18]), much attention has not 

been given to the handling of the difference in granularities of 

discrete objective functions. The goal of this paper is to clearly 

demonstrate how the difference in the granularities affects the 

search behavior of EMO algorithms. 

Objective functions in combinatorial optimization are discrete 

(see [1], [3], [16] for various combinatorial optimization 

problems, their difficulties, and their optimization algorithms). 

The number of possible values is totally different from problem 

to problem. Some objectives such as the tour length in travelling 

salesman problems and the profit in knapsack problems have a 

large number of possible values. However, other objectives have 

only a small number of possible values. For example, the number 

of selected features in feature selection with 30 features has only 

31 possible values including 0 to 30 whereas there exist more 

than one billion (i.e., 230) combinations of feature selection.  

Optimization of a discrete objective function with a small 

number of possible values is often very difficult for search 

algorithms. This is because many different solutions have the 

same objective value (i.e., because the landscape of the objective 

function is like a stairway with a small number of large flat 

stairs). For example, local search will not work well when all 

neighbors of the current solution have the same objective value. 

When all solutions in the current population have the same 

fitness, it is difficult for genetic algorithms to efficiently generate 

promising solutions from the current population. Thus the ability 

of search algorithms is likely to be deteriorated when they are 

applied to a discrete objective function with a small number of 

possible values.  
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When combinatorial optimization involves multiple objectives, 

each discrete objective function has a different number of 

possible values. Let us assume that the above-mentioned feature 

selection problem with 30 features has the following two 

objectives: to minimize the error rate and the number of selected 

features. We also assume that 10,000 training patterns are given 

to calculate the error rate. In this case, the error rate has 10,001 

possible values (from 0% to 100%) whereas the number of 

selected features has only 31 possible values (from 0 to 30). This 

means that each axis of the objective space has a totally different 

granularity: One axis has a fine granularity with 10,001 possible 

values while the other has a coarse granularity with only 31 

possible values.  

The existence of an axis with a coarse granularity (i.e., a discrete 

objective function with a small number of possible values) will 

deteriorate the search ability of EMO algorithms along that axis 

for the above-mentioned reason (i.e., because many different 

solutions have the same objective value). Such an axis with a 

coarse granularity may also have a negative effect on the overall 

search ability of EMO algorithms since it decreases the number 

of different non-dominated objective vectors in the objective 

space. In this paper, we examine these effects of discrete 

objective functions with different granularities on the search 

behavior of EMO algorithms. Computational experiments are 

performed using discrete objective functions with a wide range of 

granularities.  

This paper is organized as follows. In Section 2, we explain our 

test problems with a wide range of granularities. In Section 3, we 

report experimental results on each test problem. We use the 

following four EMO algorithms in computational experiments: 

NSGA-II [7], SPEA2 [21], MOEA/D [18] and SMS-EMOA [2]. 

NSGA-II and SPEA2 are well-known frequently-used Pareto 

dominance-based EMO algorithms. MOEA/D can be viewed as a 

representative of scalarizing function-based EMO algorithms. 

SMS-EMOA can be a representative of indicator-based EMO 

algorithms [19], [20]. Its high search ability was demonstrated in 

[17]. Finally, this paper is concluded in Section 4.  

2. TEST PROBLEMS  
We generate six test problems with different granularities from a 

two-objective 500-item 0/1 knapsack problem in Zitzler and 

Thiele [22]. Multi-objective 0/1 knapsack problems in [22] have 

been frequently used in the literature to evaluate the search 

ability of EMO algorithms for combinatorial multiobjective 

optimization (e.g., Jaszkiewicz [12], [13]). In Fig. 1, we show the 

Pareto front of the two-objective 500-item 0/1 knapsack problem 

together with an initial population of randomly generated 200 

solutions. Since the initial population is not close to the Pareto 

front, a high convergence ability is needed to efficiently search 

for Pareto optimal solutions. At the same time, a diversity 

improvement ability is also needed since the width of the initial 

solution is smaller than that of the Pareto front. That is, both the 

convergence and the diversity are important for EMO algorithms 

to efficiently search for a good solution set that well 

approximates the entire Pareto front of the two-objective 500-

item 0/1 knapsack problem.  

As shown in Fig. 1, let f1(x) and f2(x) be the objective functions 

of the two-objective 500-item 0/1 knapsack problem. In [22], 

f1(x) and f2(x) were explained as being the total profit for each of 

the two knapsacks. The minimum possible difference in 

objective values of each objective function is 1 because the profit 

of each item is given as an integer in [22]. Thus each objective 

function can be viewed as having the discretization interval of 

size 1 (i.e., width 1). We use the size of the discretization 

interval as an index of the granularity of each objective function. 

Using this index, we refer to the two-objective 500-item 0/1 

knapsack problem in [22] as the G1-G1 2-500 knapsack problem 

where G1 means the granularity with the discretization interval 

of size 1.  

We generate six test problems by rounding up the first or second 

digit of objective values of f1(x) and/or f2(x). For example, let us 

assume that the first digit of objective values of f1(x) is rounded 

up (e.g., all objective values in the interval [19321, 19330] are 

changed to 19330). In this case, the minimum possible difference 

in objective values of f1(x) is 10 while that of f2(x) is 1 (because 

we do not round up objective values of f2(x)). We refer to the 

generated test problem as the G10-G1 knapsack problem using 

the granularity G10 of f1(x) and G1 of f2(x). In another test 

problem, the first and second digits of objective values of f1(x) 

are rounded up (e.g., all objective values in the interval [19301, 

19400] are changed to 19400). Since the minimum possible 

difference in objective values of f1(x) is 100, the generated test 

problem is referred to as the G100-G1 knapsack problem. In this 

manner, we generate the following six test problems from the 

original G1-G1 knapsack problem: the G10-G1, G100-G1, G1-

G10, G1-G100, G10-G10 and G100-G100 knapsack problems.  
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Figure 1. Pareto front and randomly generated 200 solutions. 
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For visually illustrating the difference between the original G1-

G1 problem and the generated ones, we show the Pareto optimal 

solutions of the G100-G1 and G1-G100 problems together with 

those of the G1-G1 problem in Fig. 2 and Fig. 3, respectively. 

From these figures, we can see that the number of different 

Pareto optimal solutions in the objective space (i.e., different 

Pareto optimal objective vectors) is decreased by the use of a 

coarse granularity for one objective. In Fig. 2, our G100-G1 

problem has no Pareto optimal solutions around the bottom-right 

edge of the Pareto front of the original G1-G1 problem. The 

distribution of different Pareto optimal objective vectors of the 

G100-G1 problem is sparse in the bottom-right area of Fig. 2 

(i.e., this problem does not have many different Pareto optimal 

objective vectors around the best solution of f1(x) with the very 

coarse granularity). From this observation, one may expect 

difficulties in searching for good solutions in the bottom-right 

area of the objective space (i.e., good solutions with large values 

of f1(x)).  

On the other hand, in Fig. 3, the distribution of different Pareto 

optimal objective vectors of our G1-G100 test problem is sparse 

around the top-left edge of the Pareto front of the original G1-G1 

problem. From this observation, one may expect difficulties in 

searching for good solutions in the top-left area of the objective 

space (i.e., good solutions with large values of f2(x)). 
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Figure 2. Pareto optimal solutions of the G1-G1 and G100-

G1. 
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Figure 3. Pareto optimal solutions of the G1-G1 and G1-

G100. 

 

The biased distribution of the Pareto optimal objective vectors of 

each test problem in Fig. 2 and Fig. 3 is due to the convex shape 

of the Pareto front of the original G1-G1 knapsack problem. For 

examining test problems with a different shape of the Pareto 

front, we use a 500-bit one-max zero-max problem. This problem 

has two objectives to be maximized: the number of "1" and the 

number of "0" in a binary string of length 500. That is, f1(x) is 

the number of "1" while f2(x) is the number of "0". All binary 

strings of length 500 are Pareto optimal. In the objective space, 

this problem has 501 different Pareto optimal objective vectors 

uniformly distributed on the line between (0, 500) and (500, 0). 

The shape of the Pareto front of the one-max zero-max problem 

is a straight line. We refer to this problem as the linear G1-G1 

one-max zero-max problem where "linear" means the linear 

Pareto front. In the same manner as our six knapsack problems 

(i.e., by rounding up the first or second digit of objective values), 

we generate the following six problems from the linear G1-G1 

one-max zero-max problem: the linear G10-G1, G100-G1, G1-

G10, G1-G100, G10-G10 and G100-G100 one-max zero-max 

problems. 

For examining convex and concave Pareto fronts, we generate the 

following two test problems from the original 500-bit one-max 

zero-max problem with f1(x) and f2(x): 

Convex Problem: 2,1,500/)(500)(  ifg ii xx ,       (1) 

Concave Problem: 2,1,)500/)((500)( 2  ifh ii xx .       (2) 

We refer to the generated two test problems as the convex and 

concave G1-G1 one-max zero-max problems, respectively. From 

each test problem, we generate six problems in the same manner 

as our six knapsack problems and six linear one-max zero-max 

problems (e.g., the convex G10-G1, G100-G1, G1-G10, G1-

G100, G10-G10 and G100-G100 one-max zero-max problems 

are generated by rounding up g1(x) and/or g2(x) of the convex 

G1-G1 one-max zero-max problem in (1)). 

In Fig. 4, we show the Pareto optimal objective vectors of the 

convex G1-G1 and G10-G1 one-max zero-max problems. We can 

observe similar distributions of the Pareto optimal objective 



 

 

vectors in Fig. 2 and Fig. 4. For comparison, we show the Pareto 

optimal objective vectors of the concave G1-G1 and G10-G1 one-

max zero-max problems in Fig. 5. Since the shape of the Pareto 

front is different between Fig. 4 and Fig. 5, the distribution of 

their Pareto optimal objective vectors are different.  

 

0 100 200 300 400

0

100

200

300

400

g1(x)

Convex G1-G1

Convex G10-G1

g2(x)

 

Figure 4. Pareto optimal solutions of the convex G1-G1 and 

G10-G1 one-max zero-max problems. 
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Figure 5. Pareto optimal solutions of the concave G1-G1 and 

G10-G1 one-max zero-max problems. 

3. EXPERIMENTAL RESULTS 

3.1 Setting of Computational Experiments 
We apply NSGA-II, SPEA2, MOEA/D and SMS-EMOA to our 

test problems using the following parameter specifications: 

Coding: Binary string of length 500 (i.e., 500-bit string), 

Population size: 200, 

Termination condition: 2000 generations, 

Parent selection: Binary tournament selection with replacement, 

Crossover: Uniform crossover (Probability: 0.8), 

Mutation: Bit-flip mutation (Probability: 1/500), 

Number of runs for each test problem: 100 runs. 

The 50% attainment surface is calculated over 100 runs of each 

algorithm for each test problem. In SMS-EMOA, (0, 0) is used as 

a reference point for hypervolume calculation. In MOEA/D, the 

weighted Tchebycheff function with the following reference point 

z* is used as a scalarizing function: 

Knapsack: 2,1)},(|)(max{1.1*  itfz ii xx ,      (3) 

One-Max Zero-Max: 2,1)},(|)(max{*  itfz ii xx ,       (4) 

where (t) shows the population at the t-th generation. The same 

scalarizing function was used in Zhang and Li [18]. 

3.2 Results on Knapsack Problems 
In Fig. 6, we show experimental results of a single run of NSGA-

II on the G1-G1 and G100-G1 knapsack problems. All solutions 

at the 20th, 50th and 2000th generations are shown in Fig. 6. We 

can see from Fig. 6 that the use of the very coarse granularity 

G100 for f1(x) in the G100-G1 problem biases the search towards 

the top-left area of the objective space as expected from Fig. 2. 

In Fig. 7, we show the 50% attainment surface over 100 runs of 

each EMO algorithm for the G1-G1, G10-G1 and G100-G1 

problems using the "rounded-up" objective functions of each test 

problem. The effect of the coarse granularity G10 (i.e., the G10-

G1 problem) on each EMO algorithm is very small. However, the 

use of the much coarser granularity G100 (i.e., the G100-G1 

problem) clearly biases the search by all the four EMO 

algorithms towards the top-left area of the objective space in Fig. 

7.  
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Figure 6. Experimental results of a single run of NSGA-II on 

the G1-G1 and G100-G1 knapsack problems. 
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Figure 7. 50% attainment surface of each algorithm for the 

G1-G1, G10-G1 and G100-G1 knapsack problems.  

For comparison, we show experimental results of a single run of 

NSGA-II on the G1-G100 knapsack problem with the very coarse 

granularity G100 for the second objective f2(x) in Fig. 8. We can 

see from Fig. 8 that the use of the very coarse granularity G100 

in f2(x) biases the search by NSGA-II towards the bottom-right 

area of the objective space as expected from Fig. 3. 

In Fig. 9, we show experimental results of NSGA-II on the G100-

G100 problem with the very coarse granularity G100 for both 

f1(x) and f2(x). As shown in Fig. 9, the use of the very coarse 

granularity G100 in both of the two objectives clearly degrades 

the performance of NSGA-II. This is because many different 

solutions have the same objective value, which makes it very 

difficult to efficiently search for good solutions (as we have 

already mentioned in this paper). Another possible reason is the 

decrease in the number of different Pareto optimal objective 

vectors. To examine this issue, we perform computational 

experiments on the G100-G100 problem and its noisy version 

where a small noise (a real random number in the interval [0, 1]) 

is added to each of the calculated values of f1(x) and f2(x). 

Experimental results are summarized in Fig. 10 where the 50% 

attainment surface over 100 runs of each algorithm is shown.  

 

15000 16000 17000 18000 19000 20000

16000

17000

18000

19000

20000

20th
Generation

50th
Generation

2000th
Generation

Pareto Front

G1-G1 Knapsack

G1-G100 Knapsack

f1(x)

f2(x)

 

Figure 8. Experimental results of a single run of NSGA-II on 

the G1-G1 and G1-G100 knapsack problems. 
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Figure 9. Experimental results of a single run of NSGA-II on 

the G1-G1 and G100-G100 knapsack problems. 
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Figure 10. 50% attainment surface of each algorithm for the 

G1-G1, G100-G100 and noisy G100-G100 knapsack 

problems.  

In Fig. 9 and Fig. 10, the use of the very coarse granularity G100 

in f1(x) and f2(x) deteriorates the performance of all the four 

EMO algorithms (i.e., from results on G1-G1 to those on G100-

G100). 

In Fig. 10, the addition of a small random noise to f1(x) and f2(x) 

improves the performance of all the four EMO algorithms. A 

small random noise is not likely to make the search easier 

because it includes no information on the search direction. 

However, it actually improves the performance of the EMO 

algorithms in Fig. 10. This improvement may be due to the 

increase in the number of different non-dominated objective 

vectors.  

3.3 Results on One-Max Zero-Max Problems 
First, we show all solutions at the 2000th generation of a single 

run of NSGA-II on the linear G1-G1 and G10-G1 one-max zero-

max problems in Fig. 11. The search by NSGA-II on the linear 

G10-G1 problem with the coarse granularity G10 in f1(x) is 

biased towards the top-left area in Fig. 11. For comparison, we 

show all solutions at the 2000th generation of a single run of 

NSGA-II on the concave G1-G1 and G10-G1 one-max zero-max 

problems in Fig. 12. This figure shows that the use of the coarse 

granularity G10 for the first objective of the concave G10-G1 

problem biases the search of NSGA-II towards the top-left area 

(whereas the distribution of the different Pareto optimal 



 

 

objective vectors is sparse around the top-left area as shown in 

Fig. 5). 

 

0 100 200 300 400

0

100

200

300

400

f1(x)

G1-G1
G10-G1

f2(x)

 

Figure 11. Solutions at the 2000th generation of NSGA-II on 

the linear G1-G1 and G10-G1 one-max zero-max problems.  
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Figure 12. Solutions at the 2000th generation of NSGA-II on 

the concave G1-G1 and G10-G1 one-max zero-max problems.  

In Figs. 13-15 in the next page, the 50% attainment surface over 

100 runs of each EMO algorithm is shown for each test problem. 

As in Fig. 11, the search by each EMO algorithm in Fig. 13 is 

biased towards the top-left area by the use of the coarse 

granularity G10 in the first objective of the G10-G1 problem. In 

this case, we observe a clear improvement of the search towards 

the best solution of the second objective in the experimental 

results by SPEA2 and MOEA/D in Fig. 13. When we use the 

coarse granularity G10 in both objectives, the performance of all 

the four EMO algorithms is degraded in Figs. 13-15  (i.e., from 

results on G1-G1 to those on G10-G10).  

In all experimental results in Figs. 13-15, we have the following 

two observations in common: 

(i) The coarse granularity G10 in the first objective of the G10-

G1 problem biases the search towards the top-left area.  

(ii) The coarse granularity G10 in both objectives of the G10-

G10 problem degrades the performance of the EMO 

algorithms. 

That is, we have these two observations by all the four EMO 

algorithms for the three types of the one-max zero-max problems 

independently of the shape of their Pareto fronts (i.e., linear, 

convex and concave). This is interesting because the distribution 

of the Pareto optimal objective vectors is totally different 

between the convex and concave G10-G1 problems (see Fig. 4 

and Fig. 5). 

We also examine the performance of each EMO algorithm on the 

noisy versions of the three types of the G10-G10 problems. The 

addition of a small noise to each of the two objective functions 

improves the performances on the following cases: 

NSGA-II on the concave G10-G10 problems, 

SPEA2 on the convex and concave G10-G10 problems, 

SMS-EMOA on all the three G10-G10 problems. 

In the other cases (e.g., NSGA-II on the linear and convex G10-

G10 problems), the addition of a small noise shows almost no 

effects on the performance of each EMO algorithm.  

In Fig. 16, we show the experimental results of SMS-EMOA on 

the concave G1-G1, G10-G10 and noisy G10-G10 problems. This 

figure clearly shows that the addition of a small noise to each of 

the two objective functions improves the performance of SMS-

EMOA on the concave G10-G10 one-max zero-max problem.  
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Figure 16. 50% attainment surface of SMS-EMOA for the 

concave G1-G1, G10-G10 and noisy G10-G10 one-max zero 

max problems. 
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Figure 13. 50% attainment surface for 

the linear G1-G1, G10-G1, G10-G10.  
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Figure 14. 50% attainment surface for 

the convex G1-G1, G10-G1, G10-G10.  
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Figure 15. 50% attainment surface for 

the concave G1-G1, G10-G1, G10-G10.  



 

 

4. CONCLUSIONS 
In this paper, we examined the search behavior of the four well-

known and frequently-used EMO algorithms (NSGA-II, SPEA2, 

MOEA/D and SMS-EMOA) on the two-objective combinatorial 

optimization problems with different granularities in their 

discrete objective functions. Through computational experiments, 

we clearly demonstrated that the difference in the granularities of 

discrete objective functions biased the search by those EMO 

algorithms towards a certain area of the objective space. To the 

best of our knowledge, the effect of the difference in the 

granularities of discrete objective functions has not been clearly 

demonstrated in the literature in the EMO community. We also 

demonstrated that the addition of a small noise to each discrete 

objective function with a coarse granularity (e.g., a random 

number in the interval [0, 1] to an objective function with the 

discretization interval of the width 100) improved the search 

ability of some EMO algorithms. 

While these interesting observations were clearly demonstrated 

through computational experiments in this paper, the reason for 

such an interesting behavior of EMO algorithms was not clearly 

explained. A lot of empirical and theoretical studies may be 

needed to analyze and explain the behavior of EMO algorithms 

on multiobjective combinatorial optimization problems with 

different granularities in their discrete objective functions. While 

the effect of granularity difference in discrete objective functions 

on the behavior of EMO algorithms had not been discussed in the 

literature, a number of studies seem to be potentially related to 

our work in this paper. Among them are studies on the use of 

epsilon dominance [8], [10], the handling of overlapping 

solutions in the objective space [15], the evolutionary search with 

plateaus of constant fitness [11] and the landscape analysis based 

on neutral networks [9], [14]. 
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