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 Abstract - This paper shows how the performance of evolutionary multiobjective 

optimization (EMO) algorithms can be improved by the hybridization with local search. The main 

positive effect of the hybridization is the improvement in the convergence speed to the Pareto-

front. On the other hand, the main negative effect is the increase in the computation time per 

generation. Thus the number of generations is decreased when the available computation time is 

limited. As a result, the global search ability of EMO algorithms is not fully utilized. These 

positive and negative effects are examined by computational experiments on multiobjective 

permutation flowshop scheduling problems. Results of our computational experiments clearly 

show the importance of striking a balance between genetic search and local search. In this paper, 

we first modify our former multiobjective genetic local search (MOGLS) algorithm by choosing 

only good individuals as initial solutions for local search and assigning an appropriate local 

search direction to each initial solution. Next we demonstrate the importance of striking a balance 

between genetic search and local search through computational experiments. Then we compare 

the modified MOGLS with recently developed EMO algorithms: SPEA and NSGA-II. Finally, 

we demonstrate that local search can be easily combined with those EMO algorithms for 

designing multiobjective memetic algorithms. 

 Index Terms - Multiobjective optimization, evolutionary multiobjective optimization, 

memetic algorithms, genetic local search, permutation flowshop scheduling. 

 

I. INTRODUCTION 

 Since Schaffer’s study [1], evolutionary algorithms have been applied to various 
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multiobjective optimization problems for finding their Pareto-optimal solutions. Evolutionary 

algorithms for multiobjective optimization are often referred to as EMO (evolutionary 

multiobjective optimization) algorithms. For review of this field, see [2]-[5]. The task of EMO 

algorithms is to find Pareto-optimal solutions as many as possible. In early studies on EMO 

algorithms (e.g., [6]-[8]), emphasis was mainly placed on the diversity of solutions in order to 

find uniformly distributed Pareto-optimal solutions. Thus several concepts such as niching, 

fitness sharing, and mating restriction were introduced into EMO algorithms. In recent studies 

(e.g., [9]-[13]), emphasis was placed on the convergence speed to the Pareto-front as well as the 

diversity of solutions. In those studies, some form of elitism was used as an important ingredient 

of EMO algorithms. It was shown that the use of elitism improved the convergence speed to the 

Pareto-front [12].  

 One promising approach for improving the convergence speed to the Pareto-front is the use 

of local search in EMO algorithms. Hybridization of evolutionary algorithms with local search 

has already been investigated for single-objective optimization problems in many studies (e.g., 

[14], [15]). Such a hybrid algorithm is often referred to as a memetic algorithm. See Moscato [16] 

for an introduction to this field and [17]-[19] for recent developments. The hybridization with 

local search for multiobjective optimization was first implemented in [20], [21] as a 

multiobjective genetic local search (MOGLS) algorithm where a scalar fitness function with 

random weights was used for the selection of parents and the local search for their offspring. 

Jaszkiewicz [22] improved the performance of the MOGLS by modifying its selection 

mechanism of parents. While his MOGLS still used the scalar fitness function with random 

weights in selection and local search, it did not use the roulette wheel selection over the entire 

population. A pair of parents was randomly selected from a pre-specified number of the best 

solutions with respect to the scalar fitness function with the current weights. This selection 

scheme can be viewed as a kind of mating restriction in EMO algorithms. Knowles & Corne [23] 

combined their Pareto archived evolution strategy (PAES [9], [11]) with a crossover operation for 

designing a memetic PAES (M-PAES). In their M-PAES, the Pareto-dominance relation and the 

grid-type partition of the objective space were used for determining the acceptance (or rejection) 

of new solutions generated in genetic search and local search. The M-PAES had a special form of 

elitism inherent in the PAES. The performance of the M-PAES was examined in [24] for 

multiobjective knapsack problems and [25] for degree-constrained multiobjective MST 

(minimum-weight spanning tree) problems. In those studies, the M-PAES was compared with the 

PAES, the MOGLS of Jaszkiewicz [22], and an EMO algorithm. In the above-mentioned hybrid 

EMO algorithms (i.e., multiobjective memetic algorithms [20]-[25]), local search was applied to 
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individuals in every generation. In some studies [26], [27], local search was applied to individuals 

only in the final generation. While Deb and Goel [26] used local search for decreasing the 

number of non-dominated solutions (i.e., for decreasing the diversity of final solutions), Talbi et 

al. [27] intended to increase the diversity of final solutions by the application of local search. In 

this paper, we apply local search to solutions in every T generations. While T is implicitly 

assumed as T 1 in many computational experiments of this paper as in [20]-[25], other values 

of T (e.g., 10T , 100) are also examined in some computational experiments. 

 In many combinatorial optimization problems, local search can be much more efficiently 

executed than genetic search. Jaszkiewicz [22] mentioned that local search performed almost 300 

times more function evaluations per second than genetic search in the application of his MOGLS 

to multiobjective traveling salesperson problems (TSPs). This is mainly because local search only 

needs the difference in the objective values (i.e., )'()( xx fff  ) between the current solution 

x and its neighbor 'x  instead of the objective value )'(xf  of 'x . In the case of TSPs, the 

complexity of the calculation of f  is )1(O  while that of )'(xf  is )(nO  where n is the number 

of cities (for details, see [28], [29]). For example, let us consider Fig. 1 where a new tour is 

generated by removing the edges (1, 2) and (6, 7) and adding the edges (1, 6) and (2, 7). The 

difference in the objective values between the two tours can be calculated from only those four 

edges. On the other hand, when a new tour is generated by genetic operations, we usually have to 

consider much more edges for evaluating the new tour. In addition to the efficient evaluation of 

new solutions (i.e., neighbors), they can be much more efficiently generated in local search than 

genetic search. This is because genetic search uses three steps (i.e., selection, crossover and 

mutation) for generating new solutions while local search uses a single step. 
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Fig. 1  An example of a new tour generated by a local search operation. 
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 We use some variants of the MOGLS in [20], [21] for multiobjective permutation flowshop 

scheduling. Flowshop is one of the most frequently studied scheduling problems in the literature 

(see [30] for an introduction to this field). Permutation flowshop scheduling is to find an optimal 

permutation of n jobs processed on m machines. Thus the size of the search space is n!. Many 

objectives have been studied in the literature such as the makespan, total flow time, maximum 

tardiness, and total tardiness. Except for some special cases (e.g., two-machine flowshop 

scheduling for minimizing the makespan), m-machine n-job permutation flowshop scheduling 

problems are NP-hard (see Brucker [31] for the complexity of scheduling problems). In flowshop 

scheduling, new solutions can be much more efficiently generated in local search than genetic 

search as in the case of TSPs. The evaluation of new solutions in local search for flowshop 

scheduling, however, is not much faster than genetic search. This is because the calculation of the 

difference in the objective values cannot be efficiently performed for commonly used 

neighborhood structures. For example, let us consider a schedule in Fig. 2 for a three-machine 

ten-job problem. From the schedule in Fig. 2, we generate a new schedule in Fig. 3 by the same 

local search operation as Fig. 1 for TSPs. We can see that the completion time of each job is 

different between Fig. 2 and Fig. 3 except for the first job. This means that the recalculation of 

the completion time of each job is necessary for evaluating a new schedule generated by the local 

search operation. Thus the computation time for evaluating a new schedule in local search is the 

same order of magnitude as that in genetic search. For the use of approximate evaluation of 

solutions in scheduling problems in order to speed up the search, see Watson et al. [32] where fast 

low-resolution and slow high-resolution simulations were compared with each other. 
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Fig. 2  An example of a schedule for a three-machine ten-job problem. 
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Fig. 3  An example of a new schedule generated by the same local search operation as Fig. 1. 
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 In the former MOGLS [20], [21], we used an early termination strategy for decreasing the 

computation time spent by local search. In this strategy, neighbors of the current solution are 

examined in a random order. Then the current solution is replaced with the first neighbor that is 

better than the current solution (i.e., not the best improvement but the first improvement). The 

execution of local search was terminated when no better solution is found among k neighbors 

randomly generated from the current solution where k is a user-definable parameter. The same 

early termination strategy was used in the M-PAES [23]. On the other hand, all neighbors were 

examined in the MOGLS of Jaszkiewicz [22]. In Knowles and Corne [24], the early termination 

strategy was used in Jaszkiewicz’s MOGLS as well as the M-PAES in their computational 

experiments on multiobjective knapsack problems. 

 In this paper, we introduce a local search probability LSp  to the former MOGLS [20], [21] 

for decreasing the computation time spent by local search. In the modified MOGLS, local search 

is not applied to all solutions in the current population but probabilistically applied to selected 

solutions with the probability LSp . We used a different parameter LSN  (i.e., the number of 

solutions selected for local search) in our previous study [33]. While these two parameters have 

the same effect on the computation time spent by local search, we use the local search probability 

LSp  in this paper because the specification of LSN  depends on the population size (e.g., 

LSN 50 for the population size 50 has a totally different meaning from LSN 50 for the case of 

the population size 100). We try to strike a balance between genetic search and local search using 

the two parameters k and LSp  in local search. We also use another parameter T in some 

computational experiments where local search is applied to solutions in every T generations. 

 This paper is organized as follows. In Section II, we briefly describe the former MOGLS [20], 

[21] where local search was applied to all solutions in every generation. We show that the 

performance of the former MOGLS can be improved by applying local search to not all solutions 

but only good ones. We also discuss other implementation issues such as the specification of an 

objective function used in local search and the choice of a neighborhood structure. In Section III, 

we demonstrate the importance of striking a balance between genetic search and local search. 

Through computational experiments with various specifications of the three parameters in local 

search (i.e., k, LSp  and T), we show positive and negative effects of the hybridization with local 

search on the performance of EMO algorithms. We also examine the necessity of genetic 

operations in our MOGLS through computational experiments with various specifications of the 

crossover and mutation probabilities. In Section IV, we compare our MOGLS with the strength 

Pareto evolutionary algorithm (SPEA [10]) and the revised non-dominated sorting genetic 
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algorithm (NSGA-II [13]). Then we show that local search is easily combined with those EMO 

algorithms for designing multiobjective memetic algorithms. We conclude this paper in Section V 

where some topics for future research are also suggested. 

 

II. MOGLS ALGORITHMS 

 The outline of our MOGLS can be written in a generic form as Fig. 4. This figure shows a 

basic structure of simple memetic algorithms. For other types of memetic algorithms, see 

Krasnogor [34] where taxonomy of memetic algorithms was given using an index number D. Our 

MOGLS is a 4D  memetic algorithm in his taxonomy (for details, see [34]). 
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Fig. 4  Generic form of our MOGLS. 

 

 

A. Former MOGLS 

 We explain the former MOGLS [20], [21] using the following N-objective minimization 

problem: 

   Minimize ))(...,),(),(( 21 xxxz Nfff ,                (1) 

   subject to Xx ,                        (2) 

where z is the objective vector, x is the decision vector, and X is the feasible region in the 

decision space. 

 One issue to be considered in the hybridization of EMO algorithms with local search is the 
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specification of an objective function to be optimized by local search. In the former MOGLS, the 

following scalar fitness function to be minimized was used in both the selection of parents and the 

local search for their offspring.  

   )()()()( 2211 xxxx NN fwfwfwf  .              (3) 

The weight iw  ( 0iw , Ni ,...,2,1  and  i iw 1) was randomly specified whenever a pair of 

parents was to be selected. That is, each selection was governed by a different weight vector. A 

local search procedure was applied to each offspring using the same scalar fitness function (i.e., 

the same weight vector) as in the selection of its parents. 

 Another issue is the balance between genetic search and local search. For decreasing the 

computation time spent by local search, only a small number of neighbors of the current solution 

were examined. It was shown in [21] that the performance of the former MOGLS was 

deteriorated when all neighbors were examined. The former MOGLS used a simple form of 

elitism where all non-dominated solutions obtained during its execution were stored in a 

secondary population separately from the current population. A few non-dominated solutions 

were randomly selected from the secondary population and their copies were added to the current 

population. The former MOGLS is written as follows: 

Step 0) Initialization: Randomly generate an initial population of popN  solutions. 

Step 1) Evaluation: Calculate the N objectives for each solution in the current population. Then 

update the secondary population where non-dominated solutions are stored separately 

from the current population. 

Step 2) Selection: Repeat the following procedures to select ( elitepop NN  ) pairs of parents. 

(a) Randomly specify the weights Nwww ...,,, 21  where 0iw  for Ni ,...,2,1  and 

 i iw 1 . 

(b) Select a pair of parents based on the scalar fitness function in (3). The selection 

probability )(S xp  of each solution x in the current population   is specified by the 

following roulette wheel selection scheme with the linear scaling: 

    ,
))()((

)()(
)(

max

max
S 







y
y

x
x

ff

ff
p                 (4) 

 where )(max f  is the maximum (i.e., worst) fitness value among the current 

population  . 
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Step 3) Crossover and mutation: Apply a crossover operation to each of the selected 

( elitepop NN  ) pairs of parents with the crossover probability Cp . A new solution is 

generated from each pair. When the crossover operation is not applied, one parent is 

randomly chosen and handled as a new solution. Then apply a mutation operation to each 

new solution with the mutation probability Mp . 

Step 4) Elitist strategy: Randomly select eliteN  solutions from the secondary population. Then 

add their copies to the ( elitepop NN  ) solutions generated in Step 3 to construct a 

population of popN  solutions. 

Step 5) Local search: Apply a local search procedure to each of the popN  solutions in the current 

population using the scalar fitness function in (3). For each solution, the weight vector 

used in the selection of its parents is also used in local search. Only for a solution with no 

parents (i.e., solution generated in the initial generation in Step 0), we use a random 

weight vector. Local search is terminated when no better solution is found among k 

neighbors that are randomly selected from the neighborhood of the current solution. After 

local search is applied to all solutions in the current population, the current population is 

replaced with the improved solutions (i.e., this algorithm is a Lamarckian multiobjective 

memetic algorithm). 

Step 6) Return to Step 1. 

This algorithm is terminated when a pre-specified number of solutions are examined during its 

execution. In the local search part (i.e., Step 5), a neighbor is randomly generated from the 

neighborhood of the current solution. If the neighbor is better than the current solution, the 

current solution is replaced. That is, the first improvement strategy is used in the local search part 

instead of the best improvement strategy. When the current solution is updated, local search 

continues for the new current solution in the same manner. 

 In this algorithm, all non-dominated solutions are stored in the secondary population with no 

restriction (i.e., no upper bound) on its size. In general, the restriction is necessary from the 

viewpoint of memory storage and computation time (e.g., see the SPEA [10]). We use, however, 

no restriction because we did not encounter any difficulties related to the maintenance of the 

secondary population in our computational experiments on permutation flowshop scheduling 

problems reported in this paper. Of course, there may be many application fields where the 

restriction on the size of the secondary population is necessary.  

 Randomly selected eliteN  solutions from the secondary population in Step 4 work as elite 
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solutions. It was shown in [21] that the performance of this algorithm was deteriorated by 

specifying the value of eliteN  as eliteN 0 (i.e., no elitism). It was also shown that the 

performance was not sensitive to the value of eliteN  when 2elite N . In this paper, the value of 

eliteN  is specified based on preliminary computational experiments as eliteN 10 (see Subsection 

II.C).  

B. Modified MOGLS 

 In the above-mentioned MOGLS, the scalar fitness function in local search for each solution 

was specified by the weight vector used in the selection of its parents. This specification of the 

scalar fitness function in local search is not always appropriate. Using Fig. 5, we illustrate the 

drawback of this specification method. Let us assume that two solutions a and b denoted by 

closed circles are selected as parents based on the scalar fitness function with the weight vector 

w (0.1, 0.9) for a two-objective minimization problem. This scalar fitness function is also used 

in local search. Since the two objectives in Fig. 5 should be minimized, )9.0,1.0(  w  can 

be viewed as the local search direction for a new solution generated from the selected parents. In 

this paper, the local search direction means the direction with the steepest improvement of the 

objective function in the objective space, which is )...,,( 1 Nww  w  for the scalar fitness 

function in (3). When an offspring is generated around the parents (e.g., solution A in Fig. 5), 

)9.0,1.0(  w  is appropriate as the local search direction for the offspring. On the contrary, 

when an offspring is far from its parents (e.g., solution B in Fig. 5), )9.0,1.0(  w  is not 

appropriate as its local search direction. As we can see from Fig. 5, an appropriate local search 

direction for each offspring depends on its location in the objective space. For example, 

)1.0,9.0(   seems to be much more appropriate for the solution B than )9.0,1.0(   as its 

local search direction. These discussions suggest the importance of the specification of an 

appropriate local search direction for each offspring according to its location in the objective 

space. 
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Fig. 5  Specification of a local search direction for an offspring. 

 

 When the quality of an offspring is very poor (e.g., solution C in Fig. 5), the application of 

local search seems to be waste of the computation time. Thus local search should be applied to 

only good offspring. That is, the choice of offspring, to which local search is applied, is also 

important in the MOGLS.  

 When two parents are similar to each other (e.g., a and b in Fig. 5), their offspring are usually 

similar to the parents. Thus appropriate initial solutions (e.g., A) are likely to be generated from 

good parents that are similar to each other. On the other hand, when two parents are not similar to 

each other (e.g., c and d), inappropriate solutions are much more likely to be generated than the 

case of similar parents with high fitness values (e.g., a and b). These discussions suggest that the 

use of parent selection schemes with high selection pressure may improve the performance of the 

former MOGLS with the roulette wheel selection. Such an approach to the modification of the 

former MOGLS will be further discussed in later through computational experiments.  

 In this subsection, we modify the former MOGLS by introducing a probabilistic selection 

scheme of initial solutions for local search. For choosing only good offspring and specifying an 

appropriate local search direction for each offspring, we modify Step 5 of the former MOGLS as 

follows: 
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Step 5) Local search: Iterate the following three steps popN  times. Then replace the current 

population with popN  solutions obtained by the following steps. 

(a) Randomly specify the weights Nwww ...,,, 21  where 0iw  for Ni ,...,2,1  and 

 i iw 1 . 

(b) Select a solution from the current population using tournament selection with 

replacement based on the scalar fitness function with the current weights specified in 

(a). A copy of the selected solution is used in (c). Thus no solution is removed from 

the current population. In our computational experiments, the tournament size for the 

selection of an initial solution for local search is specified as five (See Subsection 

II.C). 

(c) Apply local search to a copy of the selected solution using the current weights with 

the local search probability LSp . The local search procedure is the same as in the 

former MOGLS. When local search is applied to a copy of the selected solution, the 

final solution where local search is terminated is included in the next population. On 

the other hand, when local search is not applied, a copy of the selected solution is 

included in the next population. 

 The basic idea is not to try to specify an appropriate local search direction to each solution 

but to choose an appropriate solution for a randomly specified local search direction. Moreover 

local search is not applied to all the selected solutions. We use the local search probability LSp  

for decreasing the number of solutions to which local search is applied. Our idea is illustrated in 

Fig. 6 where local search is applied to only three solutions. As shown in this figure, the proposed 

algorithm chooses a good initial solution in Step 5 (b) with respect to the current local search 

direction specified in Step 5 (a). While the local search direction is randomly specified, the search 

is not a random walk because different solutions are chosen as initial solutions for different local 

search directions (see Fig. 6). It should be noted that the current solution does not move to any 

dominated neighbors because the weights are specified as 0iw  for Ni ,...,2,1  in the scalar 

fitness function. That is, local search does not degrade the current solution in the sense of the 

Pareto-dominance relation. This issue will be further discussed later. 
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Fig. 6  Illustration of the selection of initial solutions for local search. 

 

C. Test Problems and Performance Measures 

 Before demonstrating how the performance of the former MOGLS can be improved by the 

modification in its local search part, we explain test problems and performance measures used in 

this paper. In the same manner as in [21], we generated eight m-machine n-job permutation 

flowshop scheduling problems. The processing time of each job on each machine was specified 

as a random integer in the interval [1, 99]. The due date of each job was specified by adding a 

random integer in the interval [-100, 100] to its actual completion time in a randomly generated 

schedule. All the eight test problems have 20 machines (i.e., m 20). Using the number of 

objectives (N) and the number of jobs (n), we denote each test problem as N/n where N 2, 3 

and n 20, 40, 60, 80. Four test problems have two objectives (i.e., N 2): to minimize the 

makespan and the maximum tardiness. The other four test problems are three-objective problems 

(i.e., N 3) with an additional objective: to minimize the total flow time. Details of each test 

problem are available from the first author’s homepage (http://www.ie.osakafu-u.ac.jp/~hisaoi/ 

ci_lab_e/index.html). 

 Our three-objective test problems can be written in the format of Ausiello et al. [35] as 

follows (two-objective test problems can be also written in the same manner):  

INSTANCE: n jobs { 1J , 2J , ..., nJ }, m machines { 1M , 2M , ..., mM }, an mn  matrix whose (i, 

j) element is the processing time of the i-th job on the j-th machine, and an n-dimensional vector 

whose i-th element id  is the due date of the i-th job. 

SOLUTION: A set of non-dominated solutions with respect to the given objectives. Each solution 
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is a permutation of { 1J , 2J , ..., nJ }. 

OBJECTIVES: },...,2,1|max{ niCi  , },...,2,1|}0),max{max{( nidC ii  , and  
n
i iC1  where iC  

is the completion time of the i-th job, which is calculated from the mn  matrix. All the three-

objectives are to be minimized. 

 As in [21], we used the two-point crossover in Fig. 7 and the insertion mutation in Fig. 8. 

The insertion mutation is often referred to as the shift mutation in the literature. We also used the 

insertion mutation as a local search operation for generating a neighbor of the current solution. 

The choice of a local search operation will be discussed later through computational experiments. 

Good results were reported in [36] where the insertion mutation was used in tabu search for 

minimizing the makespan. Good results were also reported by simulated annealing with the 

insertion mutation [37], [38]. Several crossover and mutation operations were examined in 

genetic algorithms for flowshop scheduling problems in [39] where good results were obtained 

from the combination of the two-point crossover and the insertion mutation. Moreover, the 

simultaneous use of different mutation operations with adaptive mutation probabilities was 

examined for two-objective flowshop scheduling problems in the framework of multiobjective 

memetic algorithms in Basseur et al. [40]. See Bagchi [41] for applications of multiobjective 

genetic algorithms to shop scheduling problems including flowshop, jobshop and openshop.  
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Fig. 7  Two-point crossover. 
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Fig. 8  Insertion mutation. 
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 Next we briefly describe performance measures used in this paper for comparing many 

solution sets obtained from different algorithms or different parameter specifications. We use 

performance measures that are applicable to simultaneous comparison of many solution sets. Let 

jS  be a solution set ( Jj ,...,2,1 ). For comparing J solution sets ( 1S , 2S , ..., JS ), we use several 

performance measures because it is impossible to evaluate all aspects of each solution set using a 

single performance measure (see [4], [5], [42] for a number of performance measures).  

 We mainly use a performance measure based on the distance from a reference solution set 

(i.e., the Pareto-optimal solution set or a near Pareto-optimal solution set) for evaluating the 

solution set jS . More specifically, we use the average distance from each reference solution to its 

nearest solution in jS . This measure was used in Czyzak and Jaszkiewicz [43] and referred to as 

RD1  in Knowles and Corne [42]. Let *S  be the reference solution set. The RD1  measure can be 

written as 

    



*

}|min{
||
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S

jj Sd
S

S
y

xy x ,              (5) 

where xyd  is the distance between a solution x and a reference solution y in the N-dimensional 

normalized objective space: 

    2**2*
1

*
1 ))()(())()(( xyxyxy NN ffffd  ,           (6) 

where )(* if  is the i-th objective that is normalized using the reference solution set *S . We will 

explain the normalization of the objective space later. The smaller the value of )(D1R jS  is, the 

better the solution set jS  is. 

 It should be noted that the RD1  measure in (5) is not the average distance from each solution 

in jS  to its nearest reference solution in *S , which is referred to as the generation distance (GD) 

in the literature [4], [5], [42]. While the GD can only evaluate the proximity of the solution set 

jS  to *S , )(D1R jS  can evaluate the distribution of jS  as well as the proximity of jS  to *S . 

See Czyzak and Jaszkiewicz [43] for characteristic features of the RD1  measure. 

 In any multiobjective optimization problem, it is reasonable for the decision maker (DM) to 

choose a final single solution *x  from the Pareto-optimal solution set. The final solution *x  is 

the best solution with respect to the DM’s preference. When the true Pareto-optimal solution set 
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is not given, the DM will choose a final solution x  from an available solution set jS . When jS  

is a good approximation of the true Pareto-optimal solution set, the chosen solution x  may be 

close to the best solution *x . In this case, the loss due to the choice of x  instead of *x  can be 

approximately measured by the distance between x  and *x  in the objective space. Since x  and 

*x  are unknown, we cannot directly measure the distance between x  and *x . The expected 

value of the distance, however, can be roughly estimated by the average value of the distance 

from each Pareto-optimal solution to its nearest available solution. The RD1  measure 

corresponds to this approximation. In addition to the RD1  measure, we also use the following 

performance measures for evaluating the solution set jS . 

  Let S  be the union of the J solution sets (i.e., JSSS  1 ). A straightforward 

performance measure of the solution set jS  with respect to the J solution sets is the ratio of 

solutions in jS  that are not dominated by any other solutions in S. This measure is written as 

follows: 

    
||

|}:|{|
)(NDS

j

jj
j S

SSS
SR

xyyx 
 ,               (7) 

where xy   means that the solution x is dominated by the solution y. In the numerator of (7), 

dominated solutions x by other solutions y in S are removed from the solution set jS . The higher 

the ratio )(NDS jSR  is, the better the solution set jS  is. In some computation experiments of this 

paper, we also use the number of obtained solutions (i.e., || jS ) as a performance measure. 

 The reference solution set *S  of each test problem was found using the SPEA [10], the 

NSGA-II [13], and our MOGLS (i.e., the modified MOGLS in Subsection II.B). Each algorithm 

was applied to each test problem with much longer computation time and larger memory storage 

than the other computational experiments in this paper. More specifically, we used the following 

parameter specifications in all the three algorithms for finding the reference solution set of each 

test problem: 

   Population size ( popN ): 200, 

   Crossover probability: 0.9, 

   Mutation probability per string: 0.6, 

   Stopping conditions: Evaluation of 5 000 000 solutions. 
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In the SPEA, the size of the secondary population was specified as 200. In our MOGLS, we used 

the following parameter specifications:  

   Number of elite solutions ( eliteN ): 10, 

   Number of neighbors to be examined ( k ): 2, 

   Tournament size in the selection of initial solutions: 5, 

   Local search probability ( LSp ): 0.8. 

The computation load in the search for reference solutions was 50 times as much as the other 

computational experiments in this paper where the stopping condition was the evaluation of 100 

000 solutions. We used the two-point crossover and the insertion mutation in all the three 

algorithms. The insertion mutation was also used in local search of our MOGLS. The above 

parameter values were specified from preliminary computational experiments on the two-

objective 40-job test problem (i.e., 2/40 problem). One may think that the value of k is too small. 

The effect of k and LSp  on the performance of our MOGLS will be discussed in Section III 

where k 2 and LSp 0.8 are shown to be one of their good combinations. In computational 

experiments on multiobjective knapsack problems by Knowles and Corne [24], the value of k (i.e., 

l_fails in their notation) was specified as 5 for the M-PAES [23] and the MOGLS of Jaszkiewicz 

[22]. The effect of the other parameters on the performance of each algorithm will be discussed 

later in this paper. 

 We chose only non-dominated solutions as reference solutions from 30 solution sets obtained 

by 10 runs of the three algorithms for each test problem. We show the obtained reference solution 

sets for the two-objective 40-job and 80-job test problems in Fig. 9 (a) and Fig. 9 (b), respectively. 

We can observe the existence of a clear tradeoff between the two objectives in each figure. We 

can also see that the obtained reference solution set for each test problem has a good distribution 

(i.e., somewhat similar to a uniform distribution) on the tradeoff front in the objective space.  
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(a) Two-objective 40-job test problem. 
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(b) Two-objective 80-job test problem.  

Fig. 9  Reference solutions obtained from the three EMO algorithms. 

 

 The number of the obtained reference solutions for each test problem is summarized in Table 

1 for the two-objective problems and Table 2 for the three-objective problems. In these tables, we 

also show the width of the range of each objective where )(1 xf , )(2 xf  and )(3 xf  are the 

makespan, the maximum tardiness and the total flow time, respectively. The width of the range of 

the i-th objective )(if  over the reference solution set *S  is defined as 
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From the comparison between Table 1 and Table 2, we can see that much more reference 

solutions were obtained for the three-objective problems than the two-objective problems. We 

can also see that the reference solutions of each test problem locate over the wide range of each 

objective except for the case of the two-objective 80-job test problem (i.e., 2/80 in Table 1). In 

this case, it seems that the three algorithms did not find extreme solutions with very good values 

of one objective and poor values of the other objective. As we have already mentioned, we 

applied the three algorithms to each test problem 10 times (i.e., 10 runs). In each run, five million 

solutions were examined. This means that 150 million solutions were examined for each test 

problem in total. Thus we did not further perform the search for reference solutions. 

 

Table 1  The number of obtained reference solutions for the two-objective test problems and the 

width of their range for each objective. 

Test 
problem

# of 
solutions

Width of the range
)(1 xf )(2 xf

2/20 38 284 834 
2/40 44 381 978 
2/60 54 473 2632 
2/80 28 245 478 

 

 

Table 2  The number of obtained reference solutions for the three-objective test problems and the 

width of their range for each objective. 

Test 
problem 

# of 
solutions

Width of the range 
)(1 xf )(2 xf )(3 xf

3/20 548 351 1032 4115
3/40 580 446 1916 10663
3/60 381 507 3298 19309
3/80 508 463 4262 32105

 

 

 The objective space of each test problem was normalized so that the minimum and maximum 

values of each objective among the reference solutions were 0 and 100, respectively. For example, 

the rectangle [3315, 3696] [97, 1075] specified by the reference solutions in Fig. 9 (a) was 
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normalized into the square [0, 100] [0, 100]. Using the normalized objective space, the RD1  

measure is calculated. 

D. Effect of Modification of the Local Search Part 

 For examining the effect of the modification of the local search part in Subsection II.B, we 

applied the former MOGLS [20], [21] and the modified MOGLS to the eight test problems using 

the following parameter specifications: 

   Population size ( popN ): 60, 

   Stopping conditions: Evaluation of 100 000 solutions. 

The other parameter values were the same as those in Subsection II.C for finding the reference 

solution set of each test problem. 

 Each algorithm was applied to each test problem 20 times (i.e., 20 runs) using different initial 

populations. Multiple solutions were simultaneously obtained from a single run of each algorithm. 

In Fig. 10, we show 20 solution sets obtained from each algorithm for the two-objective 40-job 

test problem. We can see from Fig. 10 that all solutions obtained from the former algorithm (i.e., 

open circles) are dominated by many solutions from the modified one (i.e., closed circles). We 

can also see that no solutions from the modified algorithm are dominated by any solutions from 

the former one.  

 For each of 20 runs of the two algorithms for each test problem, we calculated the ratio of 

non-dominated solutions (i.e., )(NDS R ) for the solution set FS  from the former algorithm and 

the solution set MS  from the modified one by specifying S in (7) as MF SSS  . Then we 

calculated the average value of )(NDS R  over 20 runs. For all the eight test problems, we obtained 

the following average results: )( FNDS SR 0 and )( MNDS SR 1. These results show that all 

solutions obtained from the former algorithm were dominated by solutions from the modified one. 

Moreover no solutions from the modified algorithm were dominated by any solutions from the 

former one. That is, the modified algorithm clearly outperformed the former one for all the eight 

test problems as visually shown in Fig. 10 for the two-objective 40-job test problem. 
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Fig. 10  Comparison between the former MOGLS and its modified version. All solutions 

obtained by 20 runs of each algorithm for the two-objective 40-job test problem are shown.  

 In Subsection II.B, we explained the motivation for modifying the former MOGLS using Fig. 

5. More specifically, we pointed out the possibility that the genetic operations generate an 

inappropriate initial solution for the current weight vector (e.g., B and C in Fig. 5). For examining 

the validity of this motivation, we measured the distance between two parents of each solution in 

the normalized objective space during each of 20 runs of the former MOGLS for each test 

problem. We also measured the distance between each solution and its nearest parent. As we have 

already mentioned, we used the roulette wheel selection in (4) for parent selection in the former 

MOGLS. For comparison, we also examined the use of the tournament selection of the 

tournament size 2, 5 and 10 instead of the roulette wheel selection. Moreover, the use of the 

random selection from the best 10%, 20% and 50% solutions of the current population was also 

examined. Jaszkiewicz [22] used the latter selection scheme for parent selection. 

 Average results with respect to the distance between two parents are summarized in Table 3. 

From this table, we can see that the distance between two parents was much larger in the case of 

the roulette wheel selection than the other selection schemes. This observation means that 

dissimilar parents (e.g., c and d in Fig. 5) were often selected in the execution of the former 

MOGLS with the roulette wheel selection. The dissimilarity of parents may be the main cause of 

the poor performance of the former MOGLS. When we used the other selection schemes with 

higher selection pressure for parent selection, similar parents were selected more frequently as 

shown in Table 3.  
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Table 3  Average distance between two parents of each solution in the normalized objective space 

of each test problem. 

Test 
problem 

Roulette
wheel

Tournament Best solutions
2 5 10 10% 20% 50%

2/20 49.6 15.5 11.1 3.0 6.9 11.8 20.4
2/40 47.8 18.0 8.8 2.0 5.3 11.5 20.1
2/60 31.5 9.2 5.3 1.8 3.2 5.7 11.5
2/80 109.4 22.6 12.2 3.9 9.8 13.9 31.0
3/20 56.8 13.4 10.3 4.2 8.8 7.2 23.7
3/40 43.2 8.4 6.6 3.0 5.3 5.3 17.4
3/60 39.3 6.4 5.0 2.4 4.1 4.2 14.1
3/80 40.4 5.8 3.8 2.0 3.6 3.4 14.3

 

 

 Average results with respect to the distance between each solution and its nearest parent are 

summarized in Table 4. From the comparison between Table 4 and the second column of Table 3, 

we can see that each solution was similar to its nearest parent in all the seven MOGLS variants 

for all the eight test problems. This observation together with the above-mentioned observation 

on Table 3 suggests that good initial solutions (e.g., A in Fig. 5) were often generated from good 

parents with high similarity (e.g., a and b in Fig. 5) in the six variants with the tournament 

selection and the random selection from the best solutions. Thus we expect that the improvement 

of the former MOGLS would be achieved by the use of those selection schemes for parent 

selection. 

 

Table 4  Average distance between each solution and its nearest parent in the normalized 

objective space of each test problem. 

Test 
problem 

Roulette
wheel

Tournament Best solutions
2 5 10 10% 20% 50%

2/20 16.2 23.4 23.3 21.8 22.7 23.6 22.1
2/40 13.5 22.4 21.3 20.2 20.6 21.3 21.0
2/60 9.9 12.5 12.6 12.2 12.4 12.6 12.4
2/80 27.5 52.1 54.3 52.6 52.6 52.7 52.2
3/20 18.7 21.8 21.8 20.2 21.1 21.3 22.0
3/40 14.4 13.5 13.4 12.9 13.4 13.2 14.9
3/60 12.9 9.7 9.8 9.4 9.6 9.6 11.8
3/80 13.7 9.6 9.6 9.1 9.7 9.8 11.9
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 Average values of the RD1  measure are summarized in Table 5 where smaller values mean 

better solution sets. As expected from Table 3 and Table 4, the six variants with the tournament 

selection and the random selection from the best solutions outperformed its original version with 

the roulette wheel selection. More specifically, all results by the six variants for the eight test 

problems in Table 5 are significantly better (i.e., smaller) than the corresponding results by their 

original version with the 99% confidence level (the Mann-Whitney U test). 

 

Table 5  Performance evaluation of each variant of the former MOGLS using the RD1  measure. 

Smaller values mean better solution sets. 

Test 
problem 

Roulette
wheel

Tournament Best solutions
2 5 10 10% 20% 50%

2/20 21.4 6.8 6.2 6.9 6.8 7.3 8.0
2/40 48.5 17.6 20.5 22.4 20.9 19.6 20.4
2/60 45.7 21.7 21.1 21.6 21.3 23.7 24.6
2/80 267.9 72.7 69.8 72.5 70.8 72.2 76.9
3/20 17.4 10.8 9.5 9.6 9.4 11.1 9.6
3/40 41.3 23.6 24.3 22.8 23.4 26.0 21.5
3/60 58.5 32.1 33.7 28.1 32.8 32.3 30.1
3/80 70.2 39.5 41.3 40.6 40.2 42.4 34.9

Average 71.4 28.4 28.9 29.3 28.2 29.4 28.3
 

 

 In the same manner as Table 5, we performed computational experiments using the modified 

MOGLS. The tournament selection with the tournament size five was used for selecting initial 

solutions for local search in the modified MOGLS. Average values of the RD1  measure are 

summarized in Table 6 where the seven variants with different selection schemes for parent 

selection are compared. It is interesting to note that the best results were obtained from the 

roulette wheel selection in Table 6 on the average (especially for the three-objective test 

problems) while it was the worst in Table 5. When the roulette wheel was used for parent 

selection, the improvement by the modification of the local search part from Table 5 to Table 6 is 

significant for all the eight test problems with the 99% confidence level (the Mann-Whitney U 

test). On the other hand, the same modification significantly degraded the performance of the 

other six variants for all the four three-objective test problems with the 99% confidence level. The 

deterioration in the performance may be due to the negative effect of the selection of initial 

solutions for local search. When our MOGLS has a parent selection scheme with high selection 
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pressure, the selection of initial solutions for local search makes the overall selection pressure too 

strong. Too strong selection pressure leads to the decrease in the diversity of solutions (i.e., 

undesired convergence to a small number of solutions). As a result, the performance of our 

MOGLS with high selection pressure in the parent selection was deteriorated by the combination 

with high selection pressure in the selection of initial solutions for local search in computational 

experiments on the three-objective test problems with many reference solutions. 

 

Table 6  Performance evaluation of each variant of the modified MOGLS using the RD1  measure. 

Test 
problem 

Roulette
wheel

Tournament Best solutions
2 5 10 10% 20% 50%

2/20 6.0 7.5 8.3 7.4 7.1 7.5 8.9
2/40 17.8 19.7 20.6 22.0 18.7 19.4 20.3
2/60 22.9 22.8 22.8 22.7 23.1 23.5 25.2
2/80 77.3 77.4 72.1 67.2 72.1 76.3 82.3
3/20 9.3 14.4 14.1 13.5 13.7 15.2 15.8
3/40 21.6 33.9 33.1 30.5 29.3 32.8 34.6
3/60 29.5 37.5 39.1 38.5 38.9 39.9 40.8
3/80 35.7 48.1 48.6 48.9 48.0 51.2 50.7

Average 27.5 32.9 33.0 32.6 31.4 33.3 34.9
 

 

 Among the 14 variants of the MOGLS in Table 5 and Table 6, good results were obtained by 

seven variants (i.e., the six variants of the former MOGLS with the tournament selection and the 

random selection from the best solutions in Table 5 and the modified MOGLS with the roulette 

wheel selection in Table 6). Hereafter we mainly use the modified MOGLS with the roulette 

wheel for parent selection (i.e., the second column of Table 6) for examining the balance between 

genetic search and local search through computational experiments using the local search 

probability LSp . Multiobjective memetic algorithms with no selection scheme of initial solutions 

for local search will be examined again in Section IV in the context of the hybridization of 

popular EMO algorithms. 

 

E. Choice of a Neighborhood Structure 

 In the above computational experiments, we used the insertion mutation as a local search 

operation. In this subsection, we examine other local search operations (i.e., other neighborhood 

structures): exchange of adjacent two jobs, exchange of arbitrary two jobs, and exchange of 
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arbitrary three jobs. The number of neighbors of the current solution (i.e., the size of the 

neighborhood structure) is )1( n  when we exchange adjacent two jobs for an n-job permutation 

flowshop scheduling problem. It is 2/)1(2  nnCn  and 3/)2)(1(2 3  nnnCn  when we 

exchange arbitrary two and three jobs, respectively. The number of neighbors is 2)1( n  in the 

case of the insertion operation. It should be noted that these four neighborhood structures are not 

mutually exclusive. For example, the adjacent two-job exchange neighbors are included in the 

arbitrary two-job exchange and insertion neighbors. The insertion neighbors partially overlap 

with the arbitrary two-job and three-job exchange neighbors. Many neighborhood structures were 

explained in a more general manner in Krasnogor [34]. 

 The performance of the four local search operations was compared using the RD1  measure. 

For evaluating each local search operation, the modified MOGLS with the roulette wheel 

selection was applied to each test problem 20 times in the same manner as the previous 

computational experiments. The average value of the RD1  measure over 20 runs is shown 

together with the standard deviation (in parentheses) in Table 7. We can see from this table that 

the best (i.e., smallest) results were obtained from the insertion operation for all the eight test 

problems. 

Table 7  Performance evaluation of each algorithm using the RD1  measure. Standard deviations 

are shown in parentheses. 

Test 
problem 

Local Search Operation 
Adjacent Two-job Three-job Insertion

2/20 6.9 (1.6) 6.1 (1.0) 6.9 (1.4) 6.0 (1.7)
2/40 26.9 (4.7) 22.4 (4.4) 28.0 (4.5) 17.8 (3.3)
2/60 28.9 (4.4) 24.7 (2.9) 27.1 (2.9) 22.9 (2.7)
2/80 156.9(24.5) 101.1(21.1) 125.1(14.8) 77.3(13.8)
3/20 11.5 (1.8) 10.0 (1.1) 10.1 (1.0) 9.3 (1.4)
3/40 26.3 (2.6) 22.6 (2.5) 25.4 (3.3) 21.6 (2.7)
3/60 37.8 (3.2) 34.1 (4.0) 35.0 (3.0) 29.5 (3.2)
3/80 44.5 (6.8) 38.4 (4.3) 41.2 (6.1) 35.7 (4.1)

Average 42.5 (6.2) 32.4 (5.2) 37.3 (4.6) 27.5 (4.1)
 

 

 

F. Choice of an Acceptance Rule in Local Search  

 In the local search part of the modified MOGLS, the scalar fitness function in (3) was used 
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for making the decision on the replacement of the current solution with its neighbor. That is, the 

neighbor was accepted only when it had a better (i.e., smaller) value of the scalar fitness function 

than the current solution. It is possible to use other acceptance rules in the local search part. In 

this subsection, we examine three acceptance rules in addition to the scalar fitness function in (3).  

 One rule is to accept neighbors that are not dominated by the current solution. Let us 

consider Fig. 11 where the current solution and its neighbors are denoted by a closed circle (i.e., 

A) and open circles (i.e., B, C, D, E, F and G), respectively. The current solution A can move to 

the five neighbors except for G because only G is dominated by A. A drawback of this acceptance 

rule is that the current solution can be degraded by multiple moves. For example, the current 

solution A can move to the neighbor B, from which the current solution can further move to G. 

Another acceptance rule is to accept only better neighbors that dominate the current solution. In 

this case, the current solution A can move only to the neighbor D in Fig. 11. A drawback of this 

acceptance rule is that the movable area is very small especially when the number of objectives is 

large.  
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Fig. 11  Illustration of each acceptance rule. 

 

 

 The other acceptance rule is the use of the pseudo-weight vector [4]. The pseudo-weight iw  

for the i-th objective is defined for the current solution x as  

    
 







N

j jj

jj

ii

ii
i

ff

ff

ff

ff
w

1
minmax

max

minmax

max )()( xx
, Ni ,...,2,1 ,           (9) 



 -26-

where max
if  and min

if  are the maximum and minimum values of the i-th objective in the current 

population, respectively. The scalar fitness function with the pseudo-weight vector 

)...,,( 1 Nwww  determined by (9) is used in the third acceptance rule. Let us assume in Fig. 11 

that the arrow shows the weight vector w  and the inclined line is orthogonal with this arrow. In 

this case, the current solution A can move to the three neighbors C, D and E. The determination 

of the weight vector by (9) is illustrated in Fig. 12 where all solutions in the current population 

are shown by open circles. The arrow attached to each open circle shows the weight vector w  

for the corresponding solution. From this figure, we can see that an appropriate weight vector is 

assigned to each solution by (9). Note that each arrow in Fig. 12 is not the exact direction of the 

move by local search. Since we use the first improvement strategy for combinatorial optimization 

problems with discrete search spaces, the move by local search is not the same as the direction of 

the weight vector w . For example, A in Fig. 11 will move to the first examined neighbor 

among C, D and E. It should be noted that the local search direction specified by the weight 

vector w  in the objective space is a totally different concept from the local search direction in 

the continuous decision space (e.g., see Salomon [44]).  
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Fig. 12  Pseudo-weight vector. 

 

 In the calculation of the pseudo-weight vector for each solution, we need the maximum and 

minimum values of each objective over the current population. Thus this approach has some 

computational overhead. The overhead, however, is not large because the maximum and 
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minimum values are calculated just once for the current population in each generation. The 

calculated values are used for all solutions in the current population. Moreover, the pseudo-

weight vector is calculated only for each initial solution of local search (i.e., the pseudo-weight 

vector is not updated unless local search restarts from a new initial solution). A possible 

drawback of this approach is that the distribution of weight vectors directly depends on the 

distribution of solutions in the objective space. Thus the distribution of weight vectors is not 

uniform when the distribution of solutions in the current population is not uniform. For example, 

similar weight vectors are assigned to many solutions when they are closely located in the 

objective space. 

 We compared the three acceptance rules using the modified MOGLS with the insertion 

neighborhood. The same parameter values as in Subsection II.D were used. Since the three 

acceptance rules do not have any selection mechanism of initial solutions, we chose an initial 

solution in the same manner as the modified MOGLS. Then local search with each acceptance 

rule was applied to the selected initial solution with the local search probability. Average results 

over 20 runs with each acceptance rule are summarized in Table 8. We also show average results 

by the modified MOGLS in the same table. From this table, we can see that almost the same 

results were obtained from the modified MOGLS and the pseudo-weight approach. This is 

because these two approaches are based on the scalar fitness function. We can also see that the 

performance of the first two approaches based on the dominance relation were not bad for many 

cases while they were outperformed by the other approaches based on the scalar fitness function 

for all the eight test problems (small values in Table 8 mean better solution sets). That is, the 

above-mentioned drawbacks of the acceptance rules based on the dominance relation were not 

clear in Table 8. This is because the value of k (i.e., the maximum number of examined neighbors 

of the current solution) was very small (i.e., k 2). We also performed the same computational 

experiments by specifying the value of k and LSp  as k 100 and LSp 0.02. Average results 

over 20 runs are summarized in Table 9. While good results were still obtained from the two 

approaches based on the scalar fitness function in the last two columns of Table 9, the 

performance of the first acceptance rule based on the dominance relation was severely 

deteriorated for all the eight test problems as shown in the second column of Table 9. The 

drawback of this acceptance rule (i.e., possible deterioration of the current solution by multiple 

moves) became clear by increasing the value of k in Table 9. The performance of the second 

acceptance rule based on the dominance relation (i.e., move to better solutions) was slightly 

deteriorated by increasing the value of k from Table 8 to Table 9 (see the third column of these 

tables).  



 -28-

Table 8  Comparison among the four acceptance rules using the RD1  measure for the case of 

k 2 and LSp 0.8. 

Test 
problem 

Acceptance Rule 
Non-D  Better  Pseudo MOGLS

2/20 6.7 (1.1) 7.2 (2.1) 6.4 (1.5) 6.0 (1.7)
2/40 23.5 (2.0) 21.4 (3.4) 18.3 (2.8) 17.8 (3.3)
2/60 28.6 (4.1) 26.0 (3.6) 23.9 (2.9) 22.9 (2.7)
2/80 116.0(21.0) 91.6(16.5) 82.9(21.3) 77.3(13.8)
3/20 9.6 (1.1) 11.1 (1.6) 9.8 (1.2) 9.3 (1.4)
3/40 30.2 (4.0) 23.3 (3.5) 23.0 (2.3) 21.6 (2.7)
3/60 42.9 (4.2) 32.4 (4.5) 30.1 (4.1) 29.5 (3.2)
3/80 50.4 (6.0) 38.4 (4.2) 36.6 (3.5) 35.7 (4.1)

Average 38.5 (5.5) 31.4 (4.9) 28.9 (5.0) 27.5 (4.1)
 

 

Table 9  Comparison among the four acceptance rules using the RD1  measure for the case of 

k 100 and LSp 0.02. 

Test 
problem 

Acceptance Rule 
Non-D   Better  Pseudo MOGLS

2/20 92.1(13.4) 6.8 (1.3) 7.3 (1.9) 4.4 (0.7)
2/40 163.9(15.0) 20.3 (3.1) 16.6 (3.9) 19.2 (3.1)
2/60 137.8(13.1) 25.8 (3.3) 21.9 (3.4) 20.1 (1.6)
2/80 699.6(75.6) 101.7(24.3) 67.2(12.6) 69.5 (8.8)
3/20 108.7(12.0) 11.5 (1.8) 10.9 (1.9) 7.8 (1.0)
3/40 142.2(16.3) 24.6 (2.6) 24.4 (2.4) 20.3 (1.9)
3/60 145.3(15.6) 33.4 (4.3) 32.3 (3.5) 26.8 (2.7)
3/80 175.0(21.0) 39.5 (3.9) 38.5 (3.4) 31.2 (3.2)

Average 208.1(22.8) 33.0 (5.6) 27.4 (4.1) 24.9 (2.9)
 

III. BALANCE BETWEEN GENETIC AND LOCAL SEARCH 

 In this section, we examine the effect of the balance between genetic search and local search 

on the search ability of our MOGLS (i.e., the modified MOGLS in Subsection II.B). The problem 

is how to allocate the available computation time wisely between genetic search and local search. 

This problem has been studied in the field of single-objective hybrid (i.e., memetic) algorithms 

[45]. For example, Orvosh and David [46] reported that the best results in their computational 

experiments were obtained from their memetic algorithm when individuals were improved by 
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local search with a probability 0.05 (i.e., when the local search probability LSp  was specified as 

LSp 0.05). Goldberg and Voessner [45] presented a theoretical framework for discussing the 

balance between genetic search and local search. Hart [47] investigated the following four 

questions for designing efficient memetic algorithms for continuous optimization: 

(a) How often should local search be applied? 

(b) On which solutions should local search be used? 

(c) How long should local search be run? 

(d) How efficient does local search need to be? 

The first and second questions are related to the local search probability LSp  and the local search 

application interval T while the third question is related to the parameter k (i.e., the maximum 

number of examined neighbors of the current solution) in our MOGLS. Hart’s study was 

extended to the case of combinatorial optimization by Land [48] where the balance between 

genetic search and local search was referred to as the local/global ratio. The balance can be also 

adjusted by the use of different neighborhood structures. Krasnogor [34] investigated how to 

change the size and the type of neighborhood structures dynamically in the framework of 

multimeme memetic algorithms where each meme had a different neighborhood structure, a 

different acceptance rule and a different number of iterations of local search.  

 All the above-mentioned studies investigated the balance between local search and genetic 

search for single-objective optimization. Since the aim of EMO algorithms is not to find a single 

final solution but to simultaneously find a variety of Pareto-optimal (or near Pareto-optimal) 

solutions, an appropriate balance for multiobjective optimization may be different from the case 

of single-objective optimization. For example, the diversity of solutions in the final generation is 

very important in multiobjective optimization while it is usually not important in single-objective 

optimization. Thus more emphasis should be placed on the maintenance of the diversity of 

solutions in each generation in the case of multiobjective optimization than single-objective 

optimization. In this section, we examine the balance between local search and genetic search 

using the three parameters (i.e., k, LSp  and T) in the local search part of our MOGLS. We also 

examine the necessity of genetic search using the crossover probability Cp  and the mutation 

probability Mp . 

 

A. Effect of Local Search 

 For examining the effect of local search on the search ability of our MOGLS, we performed 

computational experiments using various specifications of k and LSp . More specifically, we 
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examined 132 combinations of 11 values of k (i.e., k 1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100) and 

12 values of LSp  (i.e., LSp 0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0). Using 

each combination of k and LSp , our MOGLS was applied to each test problem 20 times in the 

same manner as Subsection II.D under the same stopping condition (i.e., evaluation of 100 000 

solutions). The average value of the RD1  measure obtained from each combination of k and LSp  

is shown in Fig. 13 for the two-objective 80-job test problem where shorter bars mean better 

solution sets. In this figure, we can observe a valley from the left-bottom corner to the right-top 

corner in the LS- pk  plane. That is, good results were obtained from combinations of k and LSp  

that approximately satisfy the relation 10~1LS  pk . When the value of LSpk   was too small 

(i.e., the left-top corner), the search in our MOGLS was mainly driven by genetic operations. 

Thus the search ability of local search was not utilized well in our MOGLS. On the other hand, 

when the value of LSpk   was too large (i.e., the right-bottom corner), almost all computation 

time was spent by local search. Thus the search ability of genetic algorithms was not utilized well. 
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Fig. 13  Average value of the RD1  measure for the two-objective 80-job problem. Shorter bars 
mean better solution sets. 
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 The best (i.e., smallest) average value of the RD1  measure was obtained from the 

combination of k 80 and LSp 0.02 as 67.2. The worst average value was obtained from the 

combination of k 100 and LSp 1 as 125.7. When LSp 0, local search was applied to no 

solutions. Thus the value of k has no effect on the performance of our MOGLS as shown by the 

flat region corresponding to LSp 0 in Fig. 13 (i.e., the top-most row). In this case, the average 

value of the RD1  measure was 97.8. We further examined solution sets obtained from these three 

specifications: ),( LSpk (80, 0.02), (100, 1) and LSp 0. In addition to the RD1  measure, we 

also calculated the ratio of non-dominated solutions (i.e., )(NDS jSR ) and the number of obtained 

solutions (i.e., || jS ) for each run of our MOGLS using the three parameter specifications. 

Average results over 20 runs for each parameter specification are summarized in Table 10 

together with standard deviations (in parentheses). In Table 10, we also show the average number 

of generations updated by the EMO part. When k 80 and LSp 0.02, the average number of 

obtained solutions was 12.7. Among those solutions, 90% were not dominated by any other 

solutions in each run. The EMO part of our MOGLS was iterated for 358 generations on the 

average. On the other hand, the EMO part was iterated for only a few generations when k 100 

and LSp 1. In this case, the average number of obtained solutions was small (i.e., 9.0) and the 

quality of each solution was not good. Actually all the obtained solutions from this combination 

of k and LSp  were dominated by other solutions (i.e., the average ratio of non-dominated 

solutions was 0 in Table 10). That is, both the diversity of solutions and the convergence speed to 

the Pareto-front were degraded by the use of large values of k and LSp  in Table 10. When the 

local search probability LSp  was specified as LSp 0, local search was not applied to any 

solutions. In this case, the quality of each solution was not high while the average number of 

obtained solutions was large. Actually only 23% of obtained solutions were not dominated by any 

other solutions in each run. 
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Table 10  Comparison of the three cases of ),( LSpk  for the two-objective 80-job problem. 

Average values over 20 runs are shown together with standard deviations in parentheses. Larger 

values of )(NDS jSR  and || jS  mean better solution sets while smaller values of RD1  mean 

better solution sets. 

Measure Specification of ),( LSpk  

(80, 0.02) (100, 1) LSp 0 

RD1  67.2 (12.1) 125.7 (9.3) 97.8 (21.1)

)(NDS jSR  0.90 (0.22) 0.00 (0.00) 0.23 (0.33)

|| jS  12.7 (3.3) 9.0 (2.0) 14.4 (4.7)

Generations 358 (38.0) 3.9 (0.3) 1667 (0.0)
 

 

 

 For all the eight test problems, we observed the improvement in the RD1  measure by the 

hybridization with local search when the values of k  and LSp  were appropriate. We also 

observed the negative effect of the hybridization with local search for all the eight test problems 

when both k  and LSp  were large (i.e., the right-bottom corner of Fig. 13). The negative effect, 

however, was small for small-size test problems. For example, we show the average value of the 

RD1  measure for the two-objective 20-job test problem in Fig. 14 where the deterioration in the 

RD1  measure at the right-bottom corner is not clear. The best result in Fig. 14 was obtained from 

the combination of k 100 and LSp 0.02. In the same manner as Table 10, we compare the 

three specifications: ),( LSpk (100, 0.02), (100, 1) and LSp 0 in Table 11. From this table, we 

can see that the performance deterioration by the use of large values of k and LSp  was small for 

the two-objective 20-job test problem (i.e., the negative effect of the hybridization with local 

search was small). This may be because the number of examined solutions (i.e., 100 000 

solutions) during the execution of our MOGLS was large relative to the problem size in the case 

of the two-objective 20-job test problem. On the other hand, the positive effect of the 

hybridization with local search was still clear for small-size test problems as shown in Table 11.   
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Fig. 14  Average value of the RD1  measure for the two-objective 20-job problem. 
 

 

Table 11  Comparison of the three specifications of ),( LSpk  for the two-objective 20-job 

problem.  

Measure Specification of ),( LSpk  

(100, 0.02) (100, 1) LSp 0 

RD1  4.4 (0.65) 5.4 (0.92) 5.8 (1.34)

)(NDS jSR  0.68 (0.13) 0.50 (0.17) 0.44 (0.15)

|| jS  22.3 (3.2) 19.7 (2.4) 21.1 (3.4)

Generations 358 (16.5) 9.3 (0.4) 1667 (0.0)
 

 

 

 We further examined the positive and negative effects of the hybridization with local search 

for the other test problems using the RD1  measure. Average results over 20 runs are summarized 

in Table 12 where standard deviations are shown in parentheses. In this table, the second column 

labeled as “Tuned” shows the results obtained from the best combination of k and LSp  for each 

test problem (e.g., k 80 and LSp 0.02 for the 2/80 problem). In this table, we can observe 
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both the positive and negative effects in all the eight test problems while their strength depends 

on the problem. 

 

 

Table 12  Effect of the parameter values in the local search part on the RD1  measure.  

Test 
problem 

Specification of ),( LSpk  

Tuned (100, 1) LSp 0

2/20 4.4 (0.7) 5.4 (0.9) 5.8 (1.3)

2/40 17.3 (3.1) 26.7 (1.7) 22.9 (5.3)

2/60 19.3 (1.8) 27.3 (2.5) 23.8 (2.6)

2/80 67.2(12.1) 125.7 (9.3) 97.8(21.1)

3/20 7.7 (1.1) 9.7 (1.2) 8.7 (0.9)

3/40 19.6 (2.4) 26.2 (3.0) 21.5 (2.1)

3/60 25.4 (2.9) 35.5 (3.1) 31.5 (4.6)

3/80 31.2 (3.2) 47.1 (5.5) 35.8 (4.4)
 

 

 From the above experimental results, one may think that the negative effect of the 

hybridization with local search can be reduced by the increase in computation load. This may be 

the case for all test problems. We need, however, much more computation load for large test 

problems because the size of the search space exponentially increases with the number of jobs 

(i.e., n! for n-job problems). We performed computational experiments with more computation 

load (i.e., evaluation of 500 000 solutions) for the two-objective 80-job test problem in the same 

manner as Fig. 13. In experimental results, we still observed a clear negative effect of the 

hybridization with local search when both k and LSp  were large as in Fig. 13. 

 In the above computational experiments, we adjusted the balance between genetic search and 

local search using the two parameters k  and LSp . We can also adjust the balance by invoking the 

local search part every T generations (not every generation). When the local search part is 

invoked, we still use the local search probability LSp . Thus the overall local search probability 

can be viewed as Tp /LS  over the whole execution of the MOGLS. The local search application 

interval T was implicitly assumed as T 1 in all the above computational experiments.  

 In the same manner as Fig. 13, we examined 132 combinations of LSp  and T (i.e., LSp 0, 

0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 and T 1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 

100) for the two-objective 80-job problem. The value of k was fixed as k 80, which was the 
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value of k in the best combination of k and LSp  in Fig. 13. While we examined various values of 

T, we did not observe any improvement in the RD1  measure by the specification of T as 1T . 

That is, we obtained the best result from T 1. We also examined the effect of T for the other test 

problems in the same manner. The best results were obtained from T 1 for all the eight test 

problems. This may be because the selection of initial solutions for local search plays a very 

important role in our MOGLS as shown in Table 5 and Table 6. We will further examine the 

effect of T in the context of the hybridization of other EMO algorithms with local search in 

Section IV.  

 

Ｂ. Effect of Genetic Search 

 For examining the effect of the crossover probability Cp  and the mutation probability Mp  

on the performance of our MOGLS, we performed computational experiments using 121 

combinations of 11 values of Cp  and Mp  (i.e., Cp 0.0, 0.1, ..., 1.0 and Mp 0.0, 0.1, ..., 1.0). 

When Cp 0.0 and Mp 0.0, the evolution is driven by local search and selection. In this case, 

our MOGLS can be viewed as a population-based multiobjective local search algorithm. Using 

the best parameter values in Fig. 13 for the local search part (i.e., k 80, LSp 0.02 and T 1), 

we applied our MOGLS with each combination of Cp  and Mp  to the two-objective 80-job test 

problem 20 times. The other parameter values were the same as the above-mentioned 

computational experiments. Average results over 20 runs are summarized in Fig. 15 where the 

performance of the MOGLS is evaluated using the RD1  measure as in Fig. 13. From Fig. 15, we 

can see that the performance of the MOGLS was less sensitive to Cp  and Mp  than k and LSp  

(compare Fig. 15 with Fig. 13). 

 

 



 -36-

0 0.20.4 0.6 0.8 1
1
0.8
0.6
0.4
0.2
0

60

70

80

90

D1R

p M

p C

Fig. 15  Average value of the RD1  measure for the two-objective 80-job problem by our 

MOGLS with various specifications of the crossover probability Cp  and the mutation probability 

Mp . 
 

 

 In Fig. 15, the best (i.e., smallest) average result 61.6 was obtained from Cp 0.9 and 

Mp 0.1 among the 121 combinations of Cp  and Mp . When the crossover probability Cp  was 

specified as Cp 0 (i.e., no crossover: the left-most row of Fig. 15), the best average result 68.6 

was obtained from Mp 0.2. On the other hand, the best average result 63.8 was obtained from 

Cp 1.0 when the mutation probability Mp  was specified as Mp 0 (i.e., no mutation: the top-

most row). Furthermore, the average result was 72.3 in the case of Cp 0 and Mp 0 (no 

genetic search: the left-top corner). These four cases are compared in Table 13. From this table, 

we can see that the crossover and the mutation improved the search ability of our MOGLS. When 

we did not use the genetic operations, the average number of obtained solutions was small (i.e., 

8.2). Moreover, only 26% of them were not dominated by other solutions in each run on the 

average. In Table 13, the crossover seems to be more important than the mutation because better 

results were obtained from our MOGLS with only the crossover operation than that with only the 

mutation operation. 

 



 -37-

Table 13  Comparison of the four cases with respect to the parameter specifications in genetic 

search for the two-objective 80-job test problem. Larger values of )(NDS jSR  and || jS  mean 

better solution sets while smaller values of RD1  mean better solution sets. 

Measure Specification of ( Cp , Mp ) 

(0.9, 0.1) (0, 0.2) (1.0, 0) (0, 0) 

RD1  61.6(10.5) 68.6 (9.6) 63.8(12.0) 72.3(14.9)

)(NDS jSR  0.53(0.36) 0.28(0.23) 0.52(0.31) 0.26(0.23)

|| jS  10.2 (3.5) 11.0 (3.4) 11.1 (5.3) 8.2 (2.6)

Generations 410(68.4) 461(44.9) 443(45.5) 518(40.2)
 

 

 In the same manner as Table 13, we further examined the effect of genetic search for the 

other test problems. Experimental results are summarized in Table 14 using the RD1  measure 

where we used the tuned parameter values of k, LSp  and T for each test problem. In this table, the 

column labeled as ( Cp , Mp ) shows the best result among the 121 combinations of Cp  and Mp  

for each test problem. On the other hand, (0, Mp ) and ( Cp , 0) mean the best specification of 

Mp  when Cp 0 (i.e., no crossover) and the best specification of Cp  when Mp 0 (i.e., no 

mutation), respectively. For the results in Table 14, we examined the statistical significance using 

the Mann-Whitney U test for three confidence levels 95%, 97.5% and 99%. More specifically, we 

compared each result in the four columns in Table 14 obtained from the four variants of our 

MOGLS: LS (the population-based multiobjective local search algorithm with no genetic 

operations where Cp 0 and Mp 0), C (MOGLS with no mutation where 0C p  and Mp 0), 

M (MOGLS with no crossover where Cp 0 and 0M p ) and CM (MOGLS with both genetic 

operations where 0C p  and 0M p ). We examined the confidence level with which one 

algorithm can be viewed as being better than another algorithm for each test problem based on the 

RD1  measure. Results are summarized in Table 15 where BA   means that the algorithm A 

outperforms the algorithm B. In this table, “-” means that the confidence level is less than 95%. 

From the fourth column of Table 15, we can see that our MOGLS with both genetic operations 

(i.e., CM) significantly outperformed its variant with no genetic operations (i.e., LS) for all the 

eight test problems. We can also see from the last two columns of Table 15 that the use of at least 

one genetic operation (i.e., C or M) significantly improved the performance of our MOGLS with 

no genetic operations (i.e., LS) for many test problems. These results suggest that at least one 



 -38-

genetic operation is necessary in our MOGLS. The necessity of both genetic operations was 

clearly shown in the second and third columns of Table 15 for some test problems (e.g., 2/40 and 

3/60) while it was not clear for other test problems (e.g., 2/60 and 3/40). Moreover the best result 

for the 3/80 test problem was obtained from the case of 0C p  and Mp 0 (see Table 14). 

 

 

Table 14  Comparison of the four cases with respect to the parameter specifications in genetic 

search for each of the eight test problems. The average value of the RD1  measure and the 

corresponding standard deviation are shown for each case. 

Test 
problem 

Specification of ( Cp , Mp ) 

( Cp , Mp ) (0, Mp ) ( Cp , 0) (0, 0) 

2/20 4.4 (0.7) 4.6 (0.7) 5.9 (1.1) 8.5 (1.7)

2/40 17.3 (3.1) 21.8 (3.0) 22.2 (4.7) 28.5 (5.3)

2/60 19.2 (2.4) 19.7 (1.6) 20.4 (2.4) 22.5 (2.9)

2/80 61.6(10.5) 68.6 (9.6) 63.8(12.0) 72.3(14.9)

3/20 7.4 (0.6) 7.7 (1.0) 8.3 (1.0) 11.6 (1.7)

3/40 18.9 (2.5) 19.5 (2.1) 19.5 (2.6) 21.3 (2.8)

3/60 29.5 (3.6) 39.6 (3.6) 42.7 (3.9) 53.4 (4.7)

3/80 28.2 (3.3) 29.6 (4.3) 28.2 (3.3) 31.5 (3.3)
 

 

Table 15  Comparison of the four algorithms based on the results in Table 14. In the first row, 

BA   means that the algorithm A outperforms the algorithm B. 

Test 
Problem 

 CM 
M

 CM 
C

 CM 
LS

M 
LS

C 
LS

2/20 - 99 99 99 99 

2/40 99 99 99 99 99 

2/60 - - 99 99 97.5

2/80 95 - 99 - 95 

3/20 - 99 99 99 99 

3/40 - - 99 95 - 

3/60 99 99 99 99 99 

3/80 - - 99 - 99 
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IV. COMPARISON WITH OTHER EMO ALGORITHMS 

A. Comparison with SPEA and NSGA-II 

 We compare our MOGLS with the SPEA [10] and the NSGA-II [13] through computational 

experiments on the eight test problems under the same stopping condition (i.e., evaluation of 100 

000 solutions). Fair comparison among different algorithms is not easy especially when they 

involve many parameters. Since different parameter values may be appropriate for each of the 

three algorithms (i.e., MOGLS, SPEA and NSGA-II), we examined 27 combinations of the 

following parameter values: 

   Population size ( popN ): 30, 60, 120, 

   Crossover probability ( Cp ): 0.6, 0.8, 1.0, 

   Mutation probability per string ( Mp ): 0.4, 0.6, 0.8. 

In the SPEA, the size of the secondary population was specified as 60 independent of the size of 

the primary population. The values of k, LSp  and T tuned in Section III were used for each test 

problem in our MOGLS. We used the two-point crossover in Fig. 7 and the insertion mutation in 

Fig. 8 for all the three algorithms. The insertion mutation was also used for local search in our 

MOGLS. 

 Each algorithm was applied to each test problem 20 times for each of the 27 combinations of 

the parameter values. Thus 540 solution sets were obtained by each algorithm for each test 

problem. Table 16 summarizes the best, average and worst values of the RD1  measure over those 

540 solution sets. From this table, we can see that the performance of the NSGA-II strongly 

depends on the parameter specifications. While there are no large differences in the best results 

among the three algorithms except for the results on the 2/80 and 3/20 test problems, the worst 

results by the NSGA-II are much inferior to those by the other algorithms for all the eight test 

problems. The worst results by the MOGLS are better than those by the SPEA for six test 

problems except for 3/60 and 3/80. This means that the performance of our MOGLS is less 

sensitive to the parameter specifications of popN , Cp  and Mp  in the EMO part than the SPEA 

and the NSGA-II. The best results for the two-objective test problems in Table 16 were obtained 

by our MOGLS on the average while the SPEA was the best for the three-objective test problems. 

 

 



 -40-

Table 16  The best, average and worst values of the RD1  measure over 540 solution sets obtained 

by each algorithm for each test problem. 

Test 
problem 

SPEA NSGA-II MOGLS 
Best Ave. Worst Best Ave. Worst Best Ave. Worst 

2/20 2.9 6.0 12.5 3.3 12.1 40.8 2.0 5.3 9.4 
2/40 7.9 18.3 33.4 9.1 28.4 76.8 10.7 20.0 31.5 
2/60 12.4 22.6 34.1 13.1 28.1 72.5 13.1 21.3 31.4 
2/80 40.6 84.9 145.4 38.0 99.9 220.8 26.4 72.2 116.7 
3/20 4.2 7.7 15.4 9.0 24.0 54.1 5.9 8.1 12.3 
3/40 11.7 17.8 31.5 13.2 45.0 89.6 14.2 20.8 29.0 
3/60 15.1 24.8 38.4 15.6 46.8 80.0 18.2 27.2 38.8 
3/80 19.9 28.8 42.4 21.2 49.8 90.5 20.1 32.2 49.3 

 

 

 We further examined the performance of each algorithm using the best values of the three 

parameters popN , Cp  and Mp  for each test problem. That is, we chose the parameter values 

from which the best solution set was obtained by each algorithm for each test problem in Table 

16. Using those parameter values, we applied each algorithm to each test problem 20 times. 

Experimental results were summarized in Table 17 for the RD1  measure, Table 18 for the ratio of 

non-dominated solutions, and Table 19 for the number of obtained solutions. We can see from 

Table 18 that our MOGLS outperformed the other algorithms for six test problems in terms of the 

ratio of non-dominated solutions. On the other hand, our MOGLS was inferior to the other 

algorithms in terms of the number of obtained solutions for the two-objective test problems in 

Table 19. These results suggest that our MOGLS tends to find fewer solutions with higher quality 

than the SPEA and the NSGA-II (we have similar results by the hybridization of the SPEA and 

the NSGA-II with local search in the next subsection). As a result, our MOGLS is comparable to 

the other algorithms for many test problems with respect to the RD1  measure in Table 17. 

 In Table 20, we compare the three algorithms in terms of the computation time. All the three 

algorithms were coded in C and executed on a PC with a Pentium 4 CPU (2.2 GHz). We used the 

same code in the three algorithms for calculating the objective functions of each solution. Since 

the number of evaluated solutions was used as the stopping condition, the three algorithms spent 

the same computation time for solution evaluations. Thus the difference in the total computation 

time among the three algorithms stemmed from the difference in their fitness calculation 

mechanisms and the generation update mechanisms. While the SPEA and NSGA-II used 

sophisticated fitness calculation mechanisms based on the Pareto-dominance relation and the 

concept of crowding, our MOGLS used a simple scalar fitness function. Moreover, the local 
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search operation for generating new solutions is simpler than the genetic operations with selection, 

crossover and mutation. From Table 20, we can expect that experimental results may favor our 

MOGLS when the three algorithms are compared under the same computation time instead of the 

same number of examined solutions. In Table 21, we show the average values of the RD1  

measure obtained by each algorithm when the same computation time was used as the stopping 

condition. In computational experiments in Table 21, the execution of each algorithm was iterated 

for 10 seconds. From this table, we can see that better results were obtained from our MOGLS 

than the SPEA and the NSGA-II for seven test problems in Table 21 (except for the 2/40 

problem).  

 

 

Table 17  Comparison of the three algorithms using the RD1  measure (smaller values mean 

better solution sets). 

Test 
problem SPEA NSGA-II MOGLS

2/20 5.1 (1.3) 5.8 (1.5) 4.6 (1.1)
2/40 21.7 (3.7) 15.2 (3.2) 21.3 (4.2)
2/60 19.1 (3.0) 17.8 (1.8) 20.2 (2.7)
2/80 97.3(19.2) 71.3(14.7) 60.4(12.2)
3/20 10.8 (1.1) 10.6 (0.9) 8.2 (0.8)
3/40 16.2 (1.9) 20.2 (2.7) 19.2 (2.2)
3/60 24.9 (3.9) 35.9 (6.7) 24.5 (3.3)
3/80 25.9 (2.8) 27.8 (3.4) 29.8 (3.4)

 

 

Table 18  Comparison of the three algorithms using the ratio of non-dominated solutions (larger 

values mean better solution sets). 

Test 
problem SPEA NSGA-II MOGLS

2/20 0.60 (.14) 0.57 (.15) 0.64 (.11)
2/40 0.18 (.23) 0.70 (.29) 0.35 (.24)
2/60 0.37 (.25) 0.42 (.22) 0.56 (.27)
2/80 0.14 (.20) 0.38 (.36) 0.73 (.27)
3/20 0.33 (.14) 0.41 (.14) 0.85 (.10)
3/40 0.60 (.18) 0.48 (.26) 0.64 (.19)
3/60 0.61 (.25) 0.21 (.12) 0.78 (.22)
3/80 0.58 (.36) 0.53 (.30) 0.54 (.28)
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Table 19  Comparison of the three algorithms using the number of obtained solutions (larger 

values mean better solution sets). 

Test 
problem SPEA NSGA-II MOGLS 

2/20 23.5 (3.0) 19.6 (2.1) 22.7 (3.0)
2/40 21.8 (3.8) 23.1 (2.6) 20.1 (5.4)
2/60 21.5 (5.2) 19.9 (4.0) 13.7 (3.7)
2/80 12.0 (4.6) 16.0 (3.7) 11.9 (3.6)
3/20 30.5 (0.8) 48.9 (4.8) 104.9(11.9)
3/40 60.3 (2.1) 59.2 (3.6) 73.8 (14.2)
3/60 61.0 (1.1) 41.5 (5.7) 71.4 (14.6)
3/80 60.6 (1.3) 53.6 (7.8) 53.2 (11.1)

 

 

Table 20  Comparison of the three algorithms using the computation time (seconds). 

Test 
problem SPEA NSGA-II MOGLS

2/20 4.6 (0.12) 8.1 (0.02) 3.3 (0.04)
2/40 6.3 (0.05) 10.6 (0.03) 7.5 (0.03)
2/60 9.6 (0.23) 13.2 (0.05) 7.0 (0.05)
2/80 11.1 (0.10) 15.7 (0.04) 9.8 (0.11)
3/20 7.5 (0.19) 8.9 (0.06) 4.0 (0.10)
3/40 10.9 (0.78) 11.2 (0.02) 5.1 (0.04)
3/60 16.0 (0.97) 11.4 (0.04) 8.7 (0.17)
3/80 15.5 (1.11) 16.4 (0.04) 9.8 (0.14)

 

 

Table 21  Comparison of the three algorithms using the RD1  measure under the same 

computation time: 10 seconds. 

Test 
problem SPEA NSGA-II MOGLS

2/20 4.4 (1.1) 5.7 (1.3) 3.3 (1.0)
2/40 17.4 (2.9) 15.6 (3.1) 19.3 (4.0)
2/60 18.8 (2.9) 19.8 (2.3) 18.4 (3.0)
2/80 101.2(19.1) 91.2(16.8) 59.9(12.1)
3/20 11.1 (1.2) 10.7 (1.1) 6.3 (1.0)
3/40 16.4 (1.8) 20.6 (2.7) 16.0 (2.1)
3/60 30.2 (4.9) 35.3 (5.1) 23.5 (3.5)
3/80 30.1 (3.8) 31.9 (3.5) 29.4 (3.4)
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B. Hybridization of EMO Algorithms 

 In our MOGLS, the local search direction (i.e., the weight vector in the scalar fitness 

function) for each solution is not inherited from the EMO part. This means that the local search 

part is independent of the EMO part. Thus the local search part can be combined with other EMO 

algorithms such as the SPEA and the NSGA-II. We implemented a hybrid SPEA by combining 

the SPEA with the local search part of our MOGLS. A hybrid NSGA-II was also implemented in 

the same manner. In those hybrid algorithms, the SPEA and the NSGA-II are used as the EMO 

part of Fig. 4 with no modifications. The local search part is applied to the new population 

generated by the EMO part. The improved population is returned to the EMO part as the current 

population. In the hybrid SPEA, local search is not applied to the secondary population as in our 

MOGLS. The secondary population is updated using the primary population improved by local 

search. We also implemented another version (say Ver.2) of hybrid algorithms where the scalar 

fitness function was not used for selecting initial solutions for local search. In the Ver.2 hybrid 

algorithms, local search is applied to each solution with the local search probability LSp  

independent of its quality as an initial solution. The local search direction of each solution is 

specified by the pseudo-weight vector in (9). A similar idea to the Ver.2 hybrid algorithms has 

already been used in Table 5 for avoiding too much selection pressure. 

 These two versions of the hybrid SPEA and the hybrid NSGA-II were compared with their 

non-hybrid versions (i.e., pure EMO algorithms). Each algorithm was applied to each test 

problem 20 times using the same stopping condition: evaluation of 100 000 solutions. In the 

EMO part of each hybrid algorithm, we used the same parameter values as its non-hybrid version 

in Tables 17-20. That is, the parameter values in the EMO part were tuned not for each hybrid 

algorithm but for its original pure EMO algorithm. In the local search part of each hybrid 

algorithm, the best combination of k , LSp  and T  was chosen for each test problem from their 

18 combinations (i.e., k 1, 10, 100, LSp 0.01, 0.1 and T 1, 10, 100). The average value of 

the RD1  measure, the average ratio of non-dominated solutions, the average number of obtained 

solutions and the average computation time are summarized in Tables 22, 23, 24 and 25, 

respectively. We examined whether each hybrid algorithm outperformed its original pure EMO 

algorithm for each test problem. When we can confirm that a hybrid algorithm outperformed its 

non-hybrid version with the 95% confidence level by the Mann-Whitney U test, the 

corresponding result by the hybrid algorithm is highlighted by boldface in each table. From Table 

22, we can see that the performance of the SPEA and the NSGA-II was significantly improved 

for some test problems by the hybridization with local search. Such improvement is also observed 
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in Table 23. The difference between the two versions of the hybridization was not large for many 

test problems in Table 22. On the other hand, the hybridization with local search severely 

decreased the number of obtained solutions for some test problems (i.e., 2/80 and 3/60) while 

there exist some counter-examples in Table 24. Moreover, the hybridization with local search 

significantly decreased the computation time for many test problems as shown in Table 25. Thus 

the experimental results in Table 22 and Table 23 will more favor the hybrid algorithms if 

computational experiments are performed under the same computation time as in Table 21.   

 

 

Table 22  Average value of the RD1  measure. Each boldface result by a hybrid algorithm can be 

viewed as being better than the corresponding result by its non-hybrid version with the 95% 

confidence level. 

Test 
problem 

Pure
SPEA

Hybrid 
SPEA 

Pure
NSGA-

II 

Hybrid 
NSGA-II 

Ver.1 Ver.2 Ver.1 Ver.2
2/20 5.1 4.7 5.0 5.8 5.1 5.1
2/40 21.7 15.7 19.6 15.2 14.6 14.4
2/60 19.1 18.4 18.5 17.8 18.0 17.5 
2/80 97.3 50.5 71.7 71.3 60.5 64.7
3/20 10.8 9.6 9.3 10.6 9.7 8.8
3/40 16.2 15.9 15.9 20.2 18.2 18.2
3/60 24.9 23.6 23.6 35.9 28.8 28.2
3/80 25.9 26.0 25.4 27.8 27.2 27.1

 

 

Table 23  Average ratio of non-dominated solutions. Each boldface result by a hybrid algorithm 

can be viewed as being better than the corresponding result by its non-hybrid version with the 

95% confidence level. 

Test 
problem 

Pure
SPEA

Hybrid 
SPEA 

Pure
NSGA-

II 

Hybrid 
NSGA-II 

Ver.1 Ver.2 Ver.1 Ver.2
2/20 0.48 0.61 0.50 0.50 0.53 0.53
2/40 0.05 0.34 0.02 0.31 0.39 0.32
2/60 0.24 0.29 0.22 0.25 0.19 0.24 
2/80 0.04 0.53 0.11 0.11 0.32 0.26
3/20 0.23 0.58 0.47 0.26 0.36 0.54
3/40 0.29 0.39 0.36 0.24 0.31 0.28
3/60 0.42 0.44 0.47 0.18 0.28 0.15
3/80 0.26 0.32 0.34 0.35 0.23 0.22
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Table 24  Average number of obtained solutions. Each boldface result by a hybrid algorithm can 

be viewed as being better than the corresponding result by its non-hybrid version with the 95% 

confidence level. 

Test 
problem 

Pure
SPEA

Hybrid 
SPEA 

Pure
NSGA-

II 

Hybrid 
NSGA-II 

Ver.1 Ver.2 Ver.1 Ver.2
2/20 23.5 22.3 23.2 19.6 20.3 21.0
2/40 21.8 23.7 22.5 23.1 21.5 24.2
2/60 21.5 20.7 23.4 19.9 20.8 22.0
2/80 12.0 9.7 10.1 16.0 16.5 16.0
3/20 30.5 30.6 30.8 48.9 47.0 53.6
3/40 60.3 60.3 60.8 59.2 56.7 58.7
3/60 61.0 30.8 30.8 41.5 31.2 37.4
3/80 60.6 60.6 59.5 53.6 51.1 53.3

 

 

Table 25  Average computation time (seconds). Each boldface result by a hybrid algorithm can be 

viewed as being better than the corresponding result by its non-hybrid version with the 95% 

confidence level. 

Test 
problem 

Pure
SPEA

Hybrid 
SPEA 

Pure
NSGA-

II 

Hybrid 
NSGA-II 

Ver.1 Ver.2 Ver.1 Ver.2
2/20 4.6 3.1 4.3 8.1 6.9 4.0
2/40 6.3 7.3 6.4 10.6 10.7 10.6
2/60 9.6 9.0 9.6 13.24 13.21 13.19
2/80 11.1 9.7 11.0 15.7 14.0 13.6
3/20 7.5 2.7 2.6 8.9 4.3 2.7
3/40 10.9 9.5 10.4 11.2 11.4 11.3
3/60 16.0 13.1 12.4 11.4 6.8 7.4
3/80 15.5 15.3 15.5 16.4 16.3 16.3

 

 

 In Table 22, the largest improvement was achieved for the 2/80 test problem by the hybrid 

SPEA Ver.1 algorithm. Using this algorithm, we examined the effect of the parameters k and LSp  

on the performance in the same manner as Fig. 13 in Section III. Experimental results are 

summarized in Fig. 16. In this figure, we can observe the negative effect of the hybridization with 

local search when both k and LSp  were large (i.e., the right-bottom corner). We can also observe 

the positive effect of the hybridization when k and LSp  were appropriately specified. That is, 
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smaller values of the RD1  measure were obtained by the hybrid algorithm than the case of 

LSp 0 with no local search (i.e., the top-most row of Fig. 16). In Fig. 16, the best result 43.8 

was obtained when k 60 and LSp 0.02. Using k 60, we examined the effect of LSp  and T 

on the performance of the hybrid SPEA Ver.1 algorithm in the same manner as Fig. 16. 

Experimental results are summarized in Fig. 17. As in Fig. 16, we can observe the negative effect 

of the hybridization with local search in Fig. 17 when LSp  was large and T was small (i.e., the 

right-bottom corner). Moreover, we can observe a valley from the left-bottom corner to the right-

top corner in Fig. 16 and Fig. 17 as in Fig. 13 by our MOGLS in Section III.  
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Fig. 16  Average value of the RD1  measure obtained by the hybrid SPEA Ver.1 algorithm using 

various values of k and LSp  for the 2/80 test problem. 
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Fig. 17  Average value of the RD1  measure obtained by the hybrid SPEA Ver.1 algorithm using 

various values of LSp  and T for the 2/80 test problem. 

 

 

 While better results were obtained from the Ver.2 hybrid algorithms than their original pure 

EMO versions for all the eight test problems in Table 22, the Ver.1 hybrid algorithms did not 

always outperform their original versions (i.e., 3/80 for SPEA and 2/60 for NSGA-II). One 

possible reason is the use of the tuned parameter values for the SPEA and the NSGA-II. In 

Subsection IV.A, the best combination was chosen for the SPEA and the NSGA-II among 27 

combinations of the population size popN  (30, 60, 120), the crossover probability Cp  (0.6, 0.8, 

1.0) and the mutation probability Mp  (0.4, 0.6, 0.8). The chosen combination for each EMO 

algorithm was also used for its hybrid versions in Tables 22-25. When the best combination 

among those 27 combinations was used for each hybrid algorithm, experimental results were 

improved for some test problems as shown in Table 26 (compare Table 26 with Table 22). Even 

in Table 26, the Ver.1 hybrid algorithms slightly deteriorated the performance of their original 

pure EMO algorithms (i.e., 3/80 for SPEA and 2/60 for NSGA-II). This may be due to the 

negative effect of the selection of initial solutions for local search. As we have already shown in 

Table 3 and Table 4, the proposed selection scheme of initial solutions for local search can 

degrade EMO algorithms. It should be noted, however, that much larger improvement was 
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achieved in Table 26 for some test problems (e.g., 2/80) by the Ver.1 hybridization with the 

proposed selection scheme than the Ver.2 hybridization with no selection of initial solutions. The 

Ver.1 hybridization significantly improved the convergence speed to the Pareto-front of the 

SPEA in Table 23 for much more test problems than the Ver.2 hybridization. On the other hand, 

the number of obtained solutions by the Ver.1 hybrid NSGA-II was smaller than that by the Ver.2 

hybrid NSGA-II for seven test problems in Table 24 (except for 2/80). These observations 

suggest that the proposed selection scheme of initial solutions for local search used in the Ver.1 

hybridization tends to improve the convergence speed to the Pareto-front while it tends to degrade 

the diversity of solutions. 

 

Table 26  Average value of the RD1  measure obtained from the tuned parameter values of the 

population size, the crossover probability and the mutation probability. Each boldface result by a 

hybrid algorithm can be viewed as being better than the corresponding result by its non-hybrid 

version with the 95% confidence level. 

Test 
problem 

Pure
SPEA

Hybrid 
SPEA 

Pure
NSGA-

II 

Hybrid 
NSGA-II 

Ver.1 Ver.2 Ver.1 Ver.2
2/20 5.1 4.5 5.0 5.8 5.1 5.1
2/40 21.7 14.9 15.2 15.2 14.6 14.4
2/60 19.1 18.3 18.5 17.8 18.0 17.5 
2/80 97.3 46.0 71.7 71.3 54.9 61.8
3/20 10.8 8.2 7.8 10.6 9.3 8.8
3/40 16.2 15.6 15.8 20.2 18.2 18.2
3/60 24.9 21.7 22.0 35.9 27.3 27.1
3/80 25.9 26.0 25.4 27.8 27.2 27.1

 

 

 

V. CONCLUSION AND FUTURE RESEARCH 

 In this paper, first we improved the performance of the former MOGLS [20], [21] by 

modifying its local search part for choosing only good individuals from the current population as 

initial solutions of local search and for appropriately specifying a local search direction of each 

initial solution. Next we examined positive and negative effects of the hybridization with local 

search on the performance of our MOGLS. Then we demonstrated the importance of striking a 
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balance between genetic search and local search. We also examined the role of genetic search in 

our MOGLS. Moreover our MOGLS was compared with the SPEA and the NSGA-II. Finally we 

demonstrated that the local search part of our MOGLS could be easily combined with other EMO 

algorithms such as the SPEA and the NSGA-II. It was shown through computational experiments 

that the performance of the SPEA and the NSGA-II was significantly improved for some test 

problems by the hybridization with local search. It was also shown that the hybridization 

significantly decreased the computation time of those EMO algorithms for many test problems. 

 The main contribution of this paper is that the importance of striking a balance between 

genetic search and local search was clearly demonstrated through computational experiments on 

multiobjective permutation flowshop scheduling problems. For adjusting the balance, we used 

three parameters that can decrease the number of solutions examined by local search. The values 

of those three parameters were constant during the execution of our computational experiments. 

Dynamic control of those parameters is a future research topic. Tan et al. [49] proposed an idea of 

adjusting the number of solutions examined in local search in their multiobjective memetic 

algorithm. Many issues related to dynamic parameter control have already been studied for 

single-objective memetic algorithms [34], [47], [48], [50], [51]. Those studies can be extended to 

the case of multiobjective memetic algorithms where more emphasis should be placed on the 

diversity of solutions than the case of single-objective optimization.  

 The performance evaluation of our MOGLS in this paper is not complete. We compared our 

MOGLS with a population-based multiobjective local search (MOLS) algorithm, which was 

implemented by specifying the crossover probability Cp  and the mutation probability Mp  as 

Cp 0 and Mp 0. As summarized in Jaszkiewicz [52], a number of MOLS algorithms have 

been proposed in the field of multicriteria decision making such as multiobjective simulated 

annealing (MOSA [43], [53]) and multiobjective tabu search (MOTS [54]). Comparison of our 

MOGLS with those MOLS algorithms is a future research topic. It is also left for future research 

to compare our MOGLS with other multiobjective memetic algorithms such as the MOGLS of 

Jaszkiewicz [22] and the M-PAES of Knowles & Corne [23]. Jaszkiewicz [55] compared these 

two algorithms with three MOSA algorithms through computational experiments on 

multiobjective knapsack problems. He obtained the best results from his MOGLS [22] and an 

MOSA of Czyzak and Jaszkiewicz [43]. Jaszkiewicz’s MOGLS and the M-PAES were also 

compared with each other on multiobjective knapsack problems by Knowles and Corne [24] 

where better results were obtained from the M-PAES than Jaszkiewicz’s MOGLS. 

 In our MOGLS, simple hill climbing was used as local search. It is worth examining the use 

of other local search algorithms (e.g., simulated annealing and tabu search) in multiobjective 



 -50-

memetic algorithms. Such a future study will motivate us to design adaptive multiobjective 

memetic algorithms that can dynamically control the balance between genetic search and local 

search through the choice of local search algorithms and neighborhood structures in addition to 

the adaptation of parameter values in a similar manner to multimeme memetic algorithms [34]. 
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