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Abstract. We implement a cellular genetic algorithm with two neighborhood 
structures following the concept of structured demes: One is for interaction 
among individuals and the other is for mating. The effect of using these two 
neighborhood structures on the search ability of cellular genetic algorithms is 
examined through computational experiments on function optimization prob-
lems. Experimental results show that good results are obtained from the combi-
nation of a small interaction neighborhood and a large mating neighborhood. 
This relation in the size of the two neighborhood structures coincides with 
many cases of biological evolution in nature such as plants and territorial ani-
mals. It is also shown that the search ability of cellular genetic algorithms is de-
teriorated by the opposite combination of the two neighborhood structures. 

1   Introduction 

Cellular algorithms are one of the most popular models of spatially structured evolu-
tionary algorithms [2], [3]. Since early studies in the late 1980s [6], [12] and the early 
1990s [16], [17], cellular algorithms have been an active research area in the field of 
evolutionary computation (i.e., see [1]-[3], [5]). In cellular algorithms, each individ-
ual is spatially fixed in a cell of a lattice (typically a two-dimensional grid-world). A 
new offspring in a cell is generated from individuals in its neighboring cells. The 
main feature of cellular algorithms is the use of local selection based on a neighbor-
hood structure. It was shown in the literature [7], [13], [14] that the size of the 
neighborhood structure has a large effect on the behavior of cellular algorithms. 

A single neighborhood structure has been usually used in cellular algorithms in the 
literature. There are, however, many cases where biological evolution is based on two 
different neighborhood structures. For example, most plants have two neighborhood 
structures. Neighboring plants fight with each other for water and sunlight in an inter-
action neighborhood, which is much smaller than a mating neighborhood where they 
can disperse their pollen. Another example is territorial animals. The interaction 
neighborhood (i.e., territory) of a territorial animal is much smaller than its mating 
neighborhood. Evolution of altruism in the two neighborhood structures was actively 
studied under the name of structured demes in the late 1970s [4], [15], [18], [19]. 



 

 

The effect of the two neighborhood structures on the evolution of cooperative be-
havior was examined in spatial Iterated Prisoner’s Dilemma (IPD) games [8]-[11]. In 
[9]-[11], an individual in each cell played against only its neighbors in the interaction 
neighborhood. A new individual in each cell was generated from its neighbors in the 
mating neighborhood. It was shown under random pairing that cooperative behavior 
was evolved only when the interaction neighborhood was very small and the mating 
neighborhood was small. 

In this paper, we examine the effect of using the two neighborhood structures on 
the search ability of cellular genetic algorithms through computational experiments 
on function optimization problems. In Section 2, we implement a cellular genetic 
algorithm following the concept of structured demes. In our cellular genetic algorithm, 
a rank is assigned to each individual according to the ranking of its fitness among its 
neighbors in the interaction neighborhood. The selection of parents for generating a 
new individual in each cell is performed in the mating neighborhood. In Section 3, we 
examine the effect of using the two neighborhood structures through computational 
experiments using two-dimensional grid-worlds of various sizes. Experimental results 
show that good results are obtained when the mating neighborhood is larger than the 
interaction neighborhood. Finally we conclude this paper in Section 4. 

2   Cellular Genetic Algorithms with Two Neighborhood Structures 

In this section, we implement a cellular genetic algorithm with two neighborhood 
structures following the concept of structured demes [4], [15], [18], [19]. Our cellular 
genetic algorithm is similar to the spatial IPD model in [8]-[11]. 

2.1   Two-Dimensional Grid World with Two Neighborhood Structures  

We use a two-dimensional grid-world where a single individual is spatially fixed in 
each cell. Thus the number of cells is the same as the number of individuals as in 
other studies on cellular genetic algorithms. We assume the torus structure of the two-
dimensional grid-world. In computational experiments, we examine three specifica-
tions of the size of the two-dimensional grid-world: 1111× , 2121×  and 3131× . 

As we have already explained, we use two neighborhood structures in our cellular 
genetic algorithm. One is for interaction among individuals. This neighborhood struc-
ture determines the neighbors against which each individual competes. We denote the 
interaction neighborhood of the ith cell as NCompete(i) in order to clearly show that the 
individual in the ith cell competes against its neighbors in NCompete(i). The other 
neighborhood structure is for mating. This neighborhood structure determines the 
neighbors from which an offspring is generated for each cell. We denote the mating 
neighborhood of the ith cell as NSelect(i) in order to clearly show that parents are 
selected from the neighbors in NSelect(i) to generate an offspring for the ith cell.  

We show three neighborhood structures in Fig. 1. In each plot, open circles show 
the neighbors of the closed circle individual. In computational experiments, we exam-
ine five specifications of the neighborhood size for each of the interaction and mating 



 

 

neighborhood structures: 5, 9, 25, 49 and the unstructured case. The neighborhood 
with 49 neighbors is defined by the 77×  square as in Fig. 1 (b) and Fig. 1 (c). All 
individuals are included in the neighborhood in the unstructured case. A neighbor-
hood structure with three neighbors is not used in this paper due to its single-
dimensional property (see [9], [11] for the use of such a neighborhood structure).  

 

                                   
                    (a) 5 neighbors.            (b) 9 neighbors.                 (c) 25 neighbors. 

Fig. 1. Three neighborhood structures. In each plot, open circles show the neighbors of the 
closed circle individual. The number of the neighbors includes the closed circle individual. 

2.2   Competition in the Interaction Neighborhood 

In our cellular genetic algorithm, each individual competes against its neighbors in 
the interaction neighborhood. We assign a rank to each individual according to the 
ranking of its fitness among its neighbors in the interaction neighborhood. 

Let us assume that our task is to find an optimal or near optimal solution of the 
minimization problem with the objective function f(x). We denote the individual in 
the ith cell by xi. In order to assign a rank to xi, we sort the objective values of its 
neighbors (including xi itself) in NCompete(i) in ascending order. When multiple 
neighbors have the same objective value, we tentatively use random tiebreak to give 
them tentative rankings. Then a rank is assigned to xi according to the ranking of its 
objective value. If xi has the best objective value, rank 1 is assigned. If xi has the 
second best objective value, rank 2 is assigned. When multiple neighbors including xi 
have the same objective value, the average value of their rankings is assigned to xi. 
For example, when four neighbors including xi have the second best objective value, 
rank 3.5 is assigned to xi because their rankings are 2nd, 3rd, 4th, and 5th. In this 
manner, a rank is assigned to each individual according to the ranking of its objective 
value among its neighbors in the interaction neighborhood. 

It should be noted that we do not have to sort all neighbors in NCompete(i). The 
sorting of all neighbors in the above-mentioned procedure is just for the simplicity of 
explanation. We only need the ranking of the objective value of xi and the number of 
its neighbors with the same objective value as xi in NCompete(i). 

We handle all individuals with rank 1 as elites, which survive in their current cells 
to the next generation with no modifications. Such an elite is the best individual 
among its neighbors in the interaction neighborhood. If we use a small interaction 
neighborhood such as Fig. 1 (a) with five neighbors, the total number of elites is large. 
The number of elites decreases as the size of the interaction neighborhood increases. 



 

 

2.3   Selection in the Mating Neighborhood 

When the individual in the ith cell is an elite, it survives in the same cell. That is, the 
next generation has the same individual in the ith cell as the current generation. When 
the individual in the ith cell is not an elite, a new individual for the ith cell is gener-
ated from its neighbors in the mating neighborhood NSelect(i). The standard binary 
tournament selection procedure is applied to the neighbors in NSelect(i) to choose a 
pair of parents. A new individual for the ith cell is generated by crossover and muta-
tion from the selected pair of parents. The point of our local selection scheme is that 
each individual is not evaluated by its raw objective value but its rank. 

In computational experiments, we examine two versions of our local selection 
scheme. In the first version (Version I), two parents are selected from the neighbors 
as we have just explained. In the second version (Version II), the current individual in 
each cell is always used as one parent. Its mate is selected from its neighbors by the 
binary tournament selection procedure based on their ranks. 

2.4  Cellular Genetic Algorithm 

The outline of our cellular genetic algorithm can be written as follows: 

Step 1: Randomly generate an initial population. A single individual is located in each 
cell of the two-dimensional grid-world. 

Step 2: Assign a rank to each individual according to the ranking of its objective 
value among its neighbors in the interaction neighborhood. Individuals with 
rank 1 are handled as elite individuals. 

Step 3: Replace the non-elite individual in each cell with an offspring generated by 
selection, crossover and mutation from its neighbors in the mating neighbor-
hood. Elite individuals stay in their current cells with no modifications. 

Step 4: Return to Step 2 if the prespecified stopping condition is not satisfied. 

In computational experiments, the total number of generations is used as the stopping 
condition. The execution of our cellular genetic algorithm on each test problem is 
terminated at the 500th generation. 

3   Computational Experiments 

In this section, we examine the effect of using the two neighborhood structures on the 
search ability of our cellular genetic algorithm through computational experiments. 

3.1   Conditions of Computational Experiments 

As test problems, we use the following five minimization problems. The number of 
decision variables (i.e., n) is always specified as 10 in all the five test problems. That 
is, our test problems are 10-dimensional minimization problems. 
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Using a gray code, each decision variable xj is coded as a binary string of length 10 
(F1, F2, F3 and F4) or 12 (F5). We examine three specifications of the grid-world: 

1111× , 2121×  and 3131× . In each grid-world, we examine five specifications of 
the neighborhood structure: 5, 9, 25 neighbors in Fig. 1, 49 neighbors in the 77×  
square, and the unstructured case. These five specifications are used for interaction 
and mating. That is, we examine 25 combinations of the two neighborhood structures.  

Our cellular genetic algorithm is applied to each test problem using the following 
parameter specifications: 

Population size: 121 ( 1111× ), 441 ( 2121× ), 961 ( 3131× ), 
Crossover probability (One-point crossover): 1.00, 
Mutation probability (Bit-flip mutation): 0.05, 
Termination condition: 500 generations. 

3.2   Experimental Results: Version I 

In this subsection, we report experimental results using our Version I algorithm where 
two parents are selected from the mating neighborhood to generate an offspring for 
each cell by crossover and mutation. In the next subsection, we report experimental 
results by our Version II algorithm where the current individual in each cell is used as 
one parent and its mate is selected from the mating neighborhood. 



 

 

We examine the 25 combinations of the two neighborhood structures for the three 
grid-worlds. That is, we examine 75 different settings. Using each setting, we apply 
our Version I algorithm to each test problem 100 times. In each run, we record the 
best (i.e., smallest) objective value over all the examined individuals. Then the aver-
age of the best objective values is calculated over 100 runs.  

Experimental results are shown in Figs. 2-6. In each figure, the left, center and 
right plots are results with the 1111× , 2121×  and 3131×  grid-worlds, respectively. 
In each plot, 121, 441 and 961 denotes the unstructured case (i.e., the total number of 
cells). The diagonal five bars from the bottom-left to the top-right corner of each plot 
correspond to the cases where the two neighborhood structures are the same (e.g., 
|NCompete(i)| = |NSelect(i)| = 5 at the bottom-left corner). On the other hand, the other 
20 off-diagonal bars correspond to the cases with two different neighborhood struc-
tures. In Figs. 2-5, we can observe the improvement in the search ability of our cellu-
lar genetic algorithm by the use of a small interaction neighborhood NCompete(i) and a 
large mating neighborhood NSelect(i). On the contrary, the search ability of our cellu-
lar genetic algorithm is degraded by the opposite combination: a large interaction 
neighborhood NCompete(i) and a small mating neighborhood NSelect(i). In Fig. 6, the 
effect of using the two neighborhood structures is not clear. The search ability is 
somewhat degraded around the bottom-right corner in Fig. 6 (especially Fig. 6 (c)). 
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        (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 

Fig. 2. Experimental results by our Version I algorithm on F1 (Sphere Function). 
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        (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 

Fig. 3. Experimental results by our Version I algorithm on F2 (Rastrigin Function). 
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         (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 

Fig. 4. Experimental results by our Version I algorithm on F3 (Schwefel Function). 
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        (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 
Fig. 5. Experimental results by our Version I algorithm on F4 (Griewangk Function). 
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        (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 

Fig. 6. Experimental results by our Version I algorithm on F5 (Rosenbrock Function). 

3.3   Experimental Results: Version II 

In this subsection, we report experimental results using our Version II algorithm. In 
the same manner as Figs. 2-6, average results over 100 runs are shown in Figs. 7-11. 
From the comparison between Figs. 2-6 and Figs. 7-11, we can see that our Version II 
algorithm is inferior to our Version I algorithm (the scale of the vertical axis is not the 



 

 

same between the corresponding figures, e.g., see Fig. 2 and Fig. 7). Nevertheless, we 
can obtain almost the same observation from Figs. 7-11 as Figs. 2-6. That is, the 
search ability of our cellular genetic algorithm is improved around the bottom-right 
corner in Figs. 7-11 by the use of a small interaction neighborhood NCompete(i) and a 
large mating neighborhood NSelect(i), and degraded by the opposite combination: a 
large interaction neighborhood and a small mating neighborhood.  
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        (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 

Fig. 7. Experimental results by our Version II algorithm on F1 (Sphere Function). 
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        (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 

Fig. 8. Experimental results by our Version II algorithm on F2 (Rastrigin Function). 
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        (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 
Fig. 9. Experimental results by our Version II algorithm on F3 (Schwefel Function). 
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        (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 

Fig. 10. Experimental results by our Version II algorithm on F4 (Griewangk Function). 
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        (a) 1111×  grid-world.             (b) 2121×  grid-world.               (c) 3131×  grid-world. 

Fig. 11. Experimental results by our Version II algorithm on F5 (Rosenbrock Function). 

4   Conclusions 

In this paper, we examined the effect of using two neighborhood structures on the 
search ability of cellular genetic algorithms: One is for interaction among individuals 
and the other is for mating. We first implemented a cellular genetic algorithm with the 
two neighborhood structures following the concept of structured demes. Then we 
examined the effect of the two neighborhood structures through computational ex-
periments on function optimization problems. Experimental results showed that the 
search ability of our cellular genetic algorithm was improved by using a small inter-
action neighborhood and a large mating neighborhood. Such a combination of the 
two neighborhood structures coincides with many cases in nature such as plants and 
territorial animals. It was also shown that the opposite combination degraded the 
search ability of our cellular genetic algorithm. In our current implementation, the 
number of elite individuals depends on the size of the interaction neighborhood. In 
future work, we will compare different specifications of the neighborhood size under 
the same condition with respect to the number of elite individuals. 

This work was partially supported by Japan Society for the Promotion of Science 
(JSPS) through Grand-in-Aid for Scientific Research (B): KAKENHI (17300075). 
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