
H. Ishibuchi, T. Doi, and Y. Nojima, “Effects of using two neighborhood structures in cellular
genetic algorithms for function optimization,” Lecture Notes in Computer Science 4193: Parallel
Problem Solving from Nature - PPSN IX, pp. 949-958, Springer, Berlin, September 2006.

Effects of Using Two Neighborhood Structures in
Cellular Genetic Algorithms for Function Optimization

Hisao Ishibuchi, Tsutomu Doi, and Yusuke Nojima

Department of Computer Science and Intelligent Systems, Graduate School of Engineering,
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

hisaoi@cs.osakafu-u.ac.jp, doi@ci.cs.osakafu-u.ac.jp
nojima@cs.osakafu-u.ac.jp

http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e

Abstract. We implement a cellular genetic algorithm with two neighborhood
structures following the concept of structured demes: One is for interaction
among individuals and the other is for mating. The effect of using these two
neighborhood structures on the search ability of cellular genetic algorithms is
examined through computational experiments on function optimization prob-
lems. Experimental results show that good results are obtained from the combi-
nation of a small interaction neighborhood and a large mating neighborhood.
This relation in the size of the two neighborhood structures coincides with
many cases of biological evolution in nature such as plants and territorial ani-
mals. It is also shown that the search ability of cellular genetic algorithms is de-
teriorated by the opposite combination of the two neighborhood structures.

1 Introduction

Cellular algorithms are one of the most popular models of spatially structured evolu-
tionary algorithms [2], [3]. Since early studies in the late 1980s [6], [12] and the early
1990s [16], [17], cellular algorithms have been an active research area in the field of
evolutionary computation (i.e., see [1]-[3], [5]). In cellular algorithms, each individ-
ual is spatially fixed in a cell of a lattice (typically a two-dimensional grid-world). A
new offspring in a cell is generated from individuals in its neighboring cells. The
main feature of cellular algorithms is the use of local selection based on a neighbor-
hood structure. It was shown in the literature [7], [13], [14] that the size of the
neighborhood structure has a large effect on the behavior of cellular algorithms.

A single neighborhood structure has been usually used in cellular algorithms in the
literature. There are, however, many cases where biological evolution is based on two
different neighborhood structures. For example, most plants have two neighborhood
structures. Neighboring plants fight with each other for water and sunlight in an inter-
action neighborhood, which is much smaller than a mating neighborhood where they
can disperse their pollen. Another example is territorial animals. The interaction
neighborhood (i.e., territory) of a territorial animal is much smaller than its mating
neighborhood. Evolution of altruism in the two neighborhood structures was actively
studied under the name of structured demes in the late 1970s [4], [15], [18], [19].

The effect of the two neighborhood structures on the evolution of cooperative be-
havior was examined in spatial Iterated Prisoner’s Dilemma (IPD) games [8]-[11]. In
[9]-[11], an individual in each cell played against only its neighbors in the interaction
neighborhood. A new individual in each cell was generated from its neighbors in the
mating neighborhood. It was shown under random pairing that cooperative behavior
was evolved only when the interaction neighborhood was very small and the mating
neighborhood was small.

In this paper, we examine the effect of using the two neighborhood structures on
the search ability of cellular genetic algorithms through computational experiments
on function optimization problems. In Section 2, we implement a cellular genetic
algorithm following the concept of structured demes. In our cellular genetic algorithm,
a rank is assigned to each individual according to the ranking of its fitness among its
neighbors in the interaction neighborhood. The selection of parents for generating a
new individual in each cell is performed in the mating neighborhood. In Section 3, we
examine the effect of using the two neighborhood structures through computational
experiments using two-dimensional grid-worlds of various sizes. Experimental results
show that good results are obtained when the mating neighborhood is larger than the
interaction neighborhood. Finally we conclude this paper in Section 4.

2 Cellular Genetic Algorithms with Two Neighborhood Structures

In this section, we implement a cellular genetic algorithm with two neighborhood
structures following the concept of structured demes [4], [15], [18], [19]. Our cellular
genetic algorithm is similar to the spatial IPD model in [8]-[11].

2.1 Two-Dimensional Grid World with Two Neighborhood Structures

We use a two-dimensional grid-world where a single individual is spatially fixed in
each cell. Thus the number of cells is the same as the number of individuals as in
other studies on cellular genetic algorithms. We assume the torus structure of the two-
dimensional grid-world. In computational experiments, we examine three specifica-
tions of the size of the two-dimensional grid-world: 1111× , 2121× and 3131× .

As we have already explained, we use two neighborhood structures in our cellular
genetic algorithm. One is for interaction among individuals. This neighborhood struc-
ture determines the neighbors against which each individual competes. We denote the
interaction neighborhood of the ith cell as NCompete(i) in order to clearly show that the
individual in the ith cell competes against its neighbors in NCompete(i). The other
neighborhood structure is for mating. This neighborhood structure determines the
neighbors from which an offspring is generated for each cell. We denote the mating
neighborhood of the ith cell as NSelect(i) in order to clearly show that parents are
selected from the neighbors in NSelect(i) to generate an offspring for the ith cell.

We show three neighborhood structures in Fig. 1. In each plot, open circles show
the neighbors of the closed circle individual. In computational experiments, we exam-
ine five specifications of the neighborhood size for each of the interaction and mating

neighborhood structures: 5, 9, 25, 49 and the unstructured case. The neighborhood
with 49 neighbors is defined by the 77× square as in Fig. 1 (b) and Fig. 1 (c). All
individuals are included in the neighborhood in the unstructured case. A neighbor-
hood structure with three neighbors is not used in this paper due to its single-
dimensional property (see [9], [11] for the use of such a neighborhood structure).

 (a) 5 neighbors. (b) 9 neighbors. (c) 25 neighbors.

Fig. 1. Three neighborhood structures. In each plot, open circles show the neighbors of the
closed circle individual. The number of the neighbors includes the closed circle individual.

2.2 Competition in the Interaction Neighborhood

In our cellular genetic algorithm, each individual competes against its neighbors in
the interaction neighborhood. We assign a rank to each individual according to the
ranking of its fitness among its neighbors in the interaction neighborhood.

Let us assume that our task is to find an optimal or near optimal solution of the
minimization problem with the objective function f(x). We denote the individual in
the ith cell by xi. In order to assign a rank to xi, we sort the objective values of its
neighbors (including xi itself) in NCompete(i) in ascending order. When multiple
neighbors have the same objective value, we tentatively use random tiebreak to give
them tentative rankings. Then a rank is assigned to xi according to the ranking of its
objective value. If xi has the best objective value, rank 1 is assigned. If xi has the
second best objective value, rank 2 is assigned. When multiple neighbors including xi
have the same objective value, the average value of their rankings is assigned to xi.
For example, when four neighbors including xi have the second best objective value,
rank 3.5 is assigned to xi because their rankings are 2nd, 3rd, 4th, and 5th. In this
manner, a rank is assigned to each individual according to the ranking of its objective
value among its neighbors in the interaction neighborhood.

It should be noted that we do not have to sort all neighbors in NCompete(i). The
sorting of all neighbors in the above-mentioned procedure is just for the simplicity of
explanation. We only need the ranking of the objective value of xi and the number of
its neighbors with the same objective value as xi in NCompete(i).

We handle all individuals with rank 1 as elites, which survive in their current cells
to the next generation with no modifications. Such an elite is the best individual
among its neighbors in the interaction neighborhood. If we use a small interaction
neighborhood such as Fig. 1 (a) with five neighbors, the total number of elites is large.
The number of elites decreases as the size of the interaction neighborhood increases.

2.3 Selection in the Mating Neighborhood

When the individual in the ith cell is an elite, it survives in the same cell. That is, the
next generation has the same individual in the ith cell as the current generation. When
the individual in the ith cell is not an elite, a new individual for the ith cell is gener-
ated from its neighbors in the mating neighborhood NSelect(i). The standard binary
tournament selection procedure is applied to the neighbors in NSelect(i) to choose a
pair of parents. A new individual for the ith cell is generated by crossover and muta-
tion from the selected pair of parents. The point of our local selection scheme is that
each individual is not evaluated by its raw objective value but its rank.

In computational experiments, we examine two versions of our local selection
scheme. In the first version (Version I), two parents are selected from the neighbors
as we have just explained. In the second version (Version II), the current individual in
each cell is always used as one parent. Its mate is selected from its neighbors by the
binary tournament selection procedure based on their ranks.

2.4 Cellular Genetic Algorithm

The outline of our cellular genetic algorithm can be written as follows:

Step 1: Randomly generate an initial population. A single individual is located in each
cell of the two-dimensional grid-world.

Step 2: Assign a rank to each individual according to the ranking of its objective
value among its neighbors in the interaction neighborhood. Individuals with
rank 1 are handled as elite individuals.

Step 3: Replace the non-elite individual in each cell with an offspring generated by
selection, crossover and mutation from its neighbors in the mating neighbor-
hood. Elite individuals stay in their current cells with no modifications.

Step 4: Return to Step 2 if the prespecified stopping condition is not satisfied.

In computational experiments, the total number of generations is used as the stopping
condition. The execution of our cellular genetic algorithm on each test problem is
terminated at the 500th generation.

3 Computational Experiments

In this section, we examine the effect of using the two neighborhood structures on the
search ability of our cellular genetic algorithm through computational experiments.

3.1 Conditions of Computational Experiments

As test problems, we use the following five minimization problems. The number of
decision variables (i.e., n) is always specified as 10 in all the five test problems. That
is, our test problems are 10-dimensional minimization problems.

F1 (Sphere Function):

 ∑
=

=≤≤
n

j
jj xnjxf

1

2
1)1|(,]11.5,12.5[−∈jx . (1)

F2 (Rastrigin Function):

 []∑
=

−+=≤≤
n

j
jjj xxnnjxf

1

22)2cos(1010)1|(π ,]11.5,12.5[−∈jx . (2)

F3 (Schwefel Function):

 ()()⎥
⎦

⎤
⎢
⎣

⎡
−+=≤≤ ∑

=

n

j
jjj xxnnjxf

1
3 ||sin9829.418)1|(,]511,512[−∈jx . (3)

F4 (Griewangk Function):

 1cos
4000

)1|(
11

2

4 +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=≤≤ ∏∑

==

n

j

jn

j

j
j j

xx
njxf ,]511,512[−∈jx . (4)

F5 (Rosenbrock Function):

 ∑
−

=
+ ⎥⎦

⎤
⎢⎣
⎡ −+−=≤≤

1

1

215
22)1()(100)1|(

n

j
jjjj xxxnjxf ,]047.2,048.2[−∈jx . (5)

Using a gray code, each decision variable xj is coded as a binary string of length 10
(F1, F2, F3 and F4) or 12 (F5). We examine three specifications of the grid-world:

1111× , 2121× and 3131× . In each grid-world, we examine five specifications of
the neighborhood structure: 5, 9, 25 neighbors in Fig. 1, 49 neighbors in the 77×
square, and the unstructured case. These five specifications are used for interaction
and mating. That is, we examine 25 combinations of the two neighborhood structures.

Our cellular genetic algorithm is applied to each test problem using the following
parameter specifications:

Population size: 121 (1111×), 441 (2121×), 961 (3131×),
Crossover probability (One-point crossover): 1.00,
Mutation probability (Bit-flip mutation): 0.05,
Termination condition: 500 generations.

3.2 Experimental Results: Version I

In this subsection, we report experimental results using our Version I algorithm where
two parents are selected from the mating neighborhood to generate an offspring for
each cell by crossover and mutation. In the next subsection, we report experimental
results by our Version II algorithm where the current individual in each cell is used as
one parent and its mate is selected from the mating neighborhood.

We examine the 25 combinations of the two neighborhood structures for the three
grid-worlds. That is, we examine 75 different settings. Using each setting, we apply
our Version I algorithm to each test problem 100 times. In each run, we record the
best (i.e., smallest) objective value over all the examined individuals. Then the aver-
age of the best objective values is calculated over 100 runs.

Experimental results are shown in Figs. 2-6. In each figure, the left, center and
right plots are results with the 1111× , 2121× and 3131× grid-worlds, respectively.
In each plot, 121, 441 and 961 denotes the unstructured case (i.e., the total number of
cells). The diagonal five bars from the bottom-left to the top-right corner of each plot
correspond to the cases where the two neighborhood structures are the same (e.g.,
|NCompete(i)| = |NSelect(i)| = 5 at the bottom-left corner). On the other hand, the other
20 off-diagonal bars correspond to the cases with two different neighborhood struc-
tures. In Figs. 2-5, we can observe the improvement in the search ability of our cellu-
lar genetic algorithm by the use of a small interaction neighborhood NCompete(i) and a
large mating neighborhood NSelect(i). On the contrary, the search ability of our cellu-
lar genetic algorithm is degraded by the opposite combination: a large interaction
neighborhood NCompete(i) and a small mating neighborhood NSelect(i). In Fig. 6, the
effect of using the two neighborhood structures is not clear. The search ability is
somewhat degraded around the bottom-right corner in Fig. 6 (especially Fig. 6 (c)).

0.0
0.1
0.2
0.3
0.4
0.5

0.6
f1 (x)

NSelect (i) N Co
m

pe
te

(i)

5 9 4925
121

5
9

49
25

121

0.0
0.1
0.2
0.3
0.4
0.5

0.6

5 9 4925
441

5
9

49
25

441

f1 (x)

NSelect (i) N Co
m

pe
te

(i)

0.0
0.1
0.2
0.3
0.4
0.5

0.6

5 9 4925
961

5
9

49
25

961

f1 (x)

NSelect (i) N Co
m

pe
te

(i)

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.

Fig. 2. Experimental results by our Version I algorithm on F1 (Sphere Function).

0

5

10

15

20
f2 (x)

NSelect (i) N Co
m

pe
te

(i)

5
9

49
25

121

5 9 4925
121

0

5

10

15

20

NSelect (i) N Co
m

pe
te

(i)

f2 (x)

5
9

49
25

441

5 9 4925
441

0

5

10

15

20

NSelect (i) N Co
m

pe
te

(i)

f2 (x)

5
9

49
25

961

5 9 4925
961

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.

Fig. 3. Experimental results by our Version I algorithm on F2 (Rastrigin Function).

0
100
200
300
400
500

600
f3 (x)

N Co
m

pe
te

(i)

5
9

49
25

121

NSelect (i)

5 9 4925
121

0
100
200
300
400
500

600
f3 (x)

5
9

49
25

441

N Co
m

pe
te

(i)

5 9 4925
441NSelect (i)

0
100
200
300
400
500

600
f3 (x)

5
9

49
25

961

N Co
m

pe
te

(i)

5 9 4925
961NSelect (i)

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.

Fig. 4. Experimental results by our Version I algorithm on F3 (Schwefel Function).

0.0

0.5

1.0

1.5

2.0

2.5
f4 (x)

N Co
m

pe
te

(i)

5
9

49
25

121

NSelect (i)

5 9 4925
121

0.0

0.5

1.0

1.5

2.0

2.5
f4 (x)

5
9

49
25

441
N Co

m
pe

te
(i)

5 9 4925
441NSelect (i)

0.0

0.5

1.0

1.5

2.0

2.5
f4 (x)

5
9

49
25

961

N Co
m

pe
te

(i)

5 9 4925
961NSelect (i)

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.
Fig. 5. Experimental results by our Version I algorithm on F4 (Griewangk Function).

0

5

10

15

20
f5 (x)

NSelect (i) N Co
m

pe
te

(i)

5
9

49
25

121

5 9 4925
121

0

5

10

15

20
f5 (x)

NSelect (i) N Co
m

pe
te

(i)

5
9

49
25

441

5 9 4925
441

0

5

10

15

20
f5 (x)

NSelect (i) N Co
m

pe
te

(i)

5
9

49
25

961

5 9 4925
961

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.

Fig. 6. Experimental results by our Version I algorithm on F5 (Rosenbrock Function).

3.3 Experimental Results: Version II

In this subsection, we report experimental results using our Version II algorithm. In
the same manner as Figs. 2-6, average results over 100 runs are shown in Figs. 7-11.
From the comparison between Figs. 2-6 and Figs. 7-11, we can see that our Version II
algorithm is inferior to our Version I algorithm (the scale of the vertical axis is not the

same between the corresponding figures, e.g., see Fig. 2 and Fig. 7). Nevertheless, we
can obtain almost the same observation from Figs. 7-11 as Figs. 2-6. That is, the
search ability of our cellular genetic algorithm is improved around the bottom-right
corner in Figs. 7-11 by the use of a small interaction neighborhood NCompete(i) and a
large mating neighborhood NSelect(i), and degraded by the opposite combination: a
large interaction neighborhood and a small mating neighborhood.

0.0
0.5
1.0
1.5
2.0
2.5

3.0
f1 (x)

NSelect (i) N Co
m

pe
te

(i)

5 9 4925
121

5
9

49
25

121

0.0
0.5
1.0
1.5
2.0
2.5

3.0

5 9 4925
441

5
9

49
25

441

f1 (x)

NSelect (i) N Co
m

pe
te

(i)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

5 9 4925
961

5
9

49
25

961

f1 (x)

NSelect (i) N Co
m

pe
te

(i)

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.

Fig. 7. Experimental results by our Version II algorithm on F1 (Sphere Function).

0

10

20

30

40
f2 (x)

NSelect (i) N Co
m

pe
te

(i)

5
9

49
25

121

5 9 4925
121

0

10

20

30

40

NSelect (i) N Co
m

pe
te

(i)

f2 (x)

5
9

49
25

441

5 9 4925
441

0

10

20

30

40

NSelect (i) N Co
m

pe
te

(i)

f2 (x)

5
9

49
25

961

5 9 4925
961

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.

Fig. 8. Experimental results by our Version II algorithm on F2 (Rastrigin Function).

0
200
400
600
800

1000
1200
f3 (x)

N Co
m

pe
te

(i)

5
9

49
25

121

NSelect (i)

5 9 4925
121

0
200
400
600
800

1000
1200
f3 (x)

5
9

49
25

441

N Co
m

pe
te

(i)

5 9 4925
441NSelect (i)

0
200
400
600
800

1000
1200
f3 (x)

5
9

49
25

961

N Co
m

pe
te

(i)

5 9 4925
961NSelect (i)

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.
Fig. 9. Experimental results by our Version II algorithm on F3 (Schwefel Function).

0

2

4

6

8
f4 (x)

N Co
m

pe
te

(i)

5
9

49
25

121

NSelect (i)

5 9 4925
121

0

2

4

6

8
f4 (x)

N Co
m

pe
te

(i)

NSelect (i)
5

9

49
25

441

5 9 4925
441

0

2

4

6

8
f4 (x)

N Co
m

pe
te

(i)

NSelect (i)
5

9

49
25

961

5 9 4925
961

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.

Fig. 10. Experimental results by our Version II algorithm on F4 (Griewangk Function).

0

10

20

30

40

50
f5 (x)

NSelect (i) N Co
m

pe
te

(i)

5
9

49
25

121

5 9 4925
121

0

10

20

30

40

50
f5 (x)

NSelect (i) N Co
m

pe
te

(i)

5
9

49
25

441

5 9 4925
441

0

10

20

30

40

50
f5 (x)

NSelect (i) N Co
m

pe
te

(i)

5
9

49
25

961

5 9 4925
961

 (a) 1111× grid-world. (b) 2121× grid-world. (c) 3131× grid-world.

Fig. 11. Experimental results by our Version II algorithm on F5 (Rosenbrock Function).

4 Conclusions

In this paper, we examined the effect of using two neighborhood structures on the
search ability of cellular genetic algorithms: One is for interaction among individuals
and the other is for mating. We first implemented a cellular genetic algorithm with the
two neighborhood structures following the concept of structured demes. Then we
examined the effect of the two neighborhood structures through computational ex-
periments on function optimization problems. Experimental results showed that the
search ability of our cellular genetic algorithm was improved by using a small inter-
action neighborhood and a large mating neighborhood. Such a combination of the
two neighborhood structures coincides with many cases in nature such as plants and
territorial animals. It was also shown that the opposite combination degraded the
search ability of our cellular genetic algorithm. In our current implementation, the
number of elite individuals depends on the size of the interaction neighborhood. In
future work, we will compare different specifications of the neighborhood size under
the same condition with respect to the number of elite individuals.

This work was partially supported by Japan Society for the Promotion of Science
(JSPS) through Grand-in-Aid for Scientific Research (B): KAKENHI (17300075).

References

1. Alba, E., Dorronsoro, B.: The Exploration/Exploitation Tradeoff in Dynamic Cellular Ge-
netic Algorithms. IEEE Trans. on Evolutionary Computation 9 (2005) 126-142

2. Alba, E., Tomassini, M.: Parallelism and Evolutionary Algorithms. IEEE Trans. on Evolu-
tionary Computation 6 (2002) 443-462

3. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Springer, Berlin (2000)
4. Charlesworth, B.: A Note on the Evolution of Altruism in Structured Demes. The American

Naturalist 113 (1979) 601-605
5. Giacobini, M., Tomassini, M., Tettamanzi, A. G. B., Alba, E.: Selection Intensity in Cellu-

lar Evolutionary Algorithms for Regular Lattices. IEEE Trans. on Evolutionary Computa-
tion 9 (2005) 489-505

6. Gorges-Schleuter, M.: ASPARAGOS: An Asynchronous Parallel Genetic Optimization
Strategy. Proc. of 3rd International Conference on Genetic Algorithms (1989) 422-427

7. Gorges-Schleuter, M.: A Comparative Study on Global and Local Selection in Evolutionary
Strategies. Lecture Notes in Computer Science, Vol. 1498: Parallel Problem Solving from
Nature - PPSN V. Springer, Berlin (1998) 367-377

8. Ifti, M., Killingback, T., Doebelic, M.: Effects of Neighborhood Size and Connectivity on
the Spatial Continuous Prisoner’s Dilemma. Journal of Theoretical Biology 231 (2004) 97-
106

9. Ishibuchi, H., Namikawa, N.: Evolution of Iterated Prisoner’s Dilemma Game Strategies in
Structured Demes under Random Pairing in Game Playing. IEEE Trans. on Evolutionary
Computation 9 (2005) 552-561

10. Ishibuchi, H., Namikawa, N.: Evolution of Cooperative Behavior in the Iterated Prisoner’s
Dilemma under Random Pairing in Game Playing. Proc. of 2005 Congress on Evolutionary
Computation (2005) 2637-2644

11. Ishibuchi, H., Namikawa, N., Ohara, K.: Effects of Spatial Structures on Evolution of
Iterated Prisoner’s Dilemma Game Strategies in Single-Dimensional and Two-Dimensional
Grids. Proc. of 2006 Congress on Evolutionary Computation (2006) (in press)

12. Manderick, B., Spiessens, P.: Fine-Grained Parallel Genetic Algorithms. Proc. of 3rd Inter-
national Conference on Genetic Algorithms (1989) 428-433

13. Sarma, J., De Jong, K.: An Analysis of the Effects of Neighborhood Size and Shape on
Local Selection Algorithms. Lecture Notes in Computer Science, Vol. 1141: Parallel Prob-
lem Solving from Nature - PPSN IV. Springer, Berlin (1996) 236-244

14. Sarma, J., De Jong, K.: An Analysis of Local Selection Algorithms in a Spatially Struc-
tured Evolutionary Algorithm. Proc. of 7th International Conference on Genetic Algorithms
(1997) 181-186

15. Slatkin, M., Wilson, D. S.: Coevolution in Structured Demes. Proc. of the National Acad-
emy of Sciences 76 (1979) 2084-2087

16. Spiessens, P., Manderick, B.: A Massively Parallel Genetic Algorithm: Implementation and
First Analysis. Proc. of 4th International Conference on Genetic Algorithms (1991) 279-286

17. Whitley, D.: Cellular Genetic Algorithms. Proc. of 5th International Conference on Genetic
Algorithms (1993) 658

18. Wilson, D. S.: Structured Demes and the Evolution of Group-Advantageous Traits. The
American Naturalist 111 (1977) 157-185

19. Wilson, D. S.: Structured Demes and Trait-Group Variation. The American Naturalist 113
(1979) 606-610

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

