
H. Ishibuchi, T. Doi, and Y. Nojima, “Incorporation of scalarizing fitness functions into evolution-
ary multiobjective optimization algorithms,” Lecture Notes in Computer Science 4193: Parallel
Problem Solving from Nature - PPSN IX, pp. 493-502, Springer, Berlin, September 2006.

Incorporation of Scalarizing Fitness Functions into
Evolutionary Multiobjective Optimization Algorithms

Hisao Ishibuchi, Tsutomu Doi, and Yusuke Nojima

Department of Computer Science and Intelligent Systems, Graduate School of Engineering,
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

hisaoi@cs.osakafu-u.ac.jp, doi@ci.cs.osakafu-u.ac.jp
nojima@cs.osakafu-u.ac.jp

http://www.ie.osakafu-u.ac.jp/~hisaoi/ci_lab_e

Abstract. This paper proposes an idea of probabilistically using a scalarizing
fitness function in evolutionary multiobjective optimization (EMO) algorithms.
We introduce two probabilities to specify how often the scalarizing fitness
function is used for parent selection and generation update in EMO algorithms.
Through computational experiments on multiobjective 0/1 knapsack problems
with two, three and four objectives, we show that the probabilistic use of the
scalarizing fitness function improves the performance of EMO algorithms. In a
special case, our idea can be viewed as the probabilistic use of an EMO scheme
in single-objective evolutionary algorithms (SOEAs). From this point of view,
we examine the effectiveness of our idea. Experimental results show that our
idea improves not only the performance of EMO algorithms for multiobjective
problems but also that of SOEAs for single-objective problems.

1 Introduction

Evolutionary multiobjective optimization (EMO) is one of the most active research
areas in the field of evolutionary computation. EMO algorithms have been success-
fully applied to various application areas [2]. Most EMO algorithms use Pareto rank-
ing to evaluate the fitness of each solution. Pareto ranking-based EMO algorithms,
however, do not work well on many-objective problems (e.g., see [5], [6], [8], [12],
[16]). This is because solutions rarely dominate other solutions in the presence of
many objectives. Hughes [6] showed that multiple runs of single-objective evolution-
ary algorithms (SOEAs) outperformed a single run of EMO algorithms in their appli-
cations to many-objective problems. Similar results were also reported in [8], [12].
Whereas EMO algorithms do not work well on many-objective problems, usually
they work very well on two-objective problems. In some cases, EMO algorithms can
outperform SOEAs even when they are used to solve single-objective problems. It
was reported in some studies [13], [18] that better results were obtained by transform-
ing single-objective problems into multi-objective ones.

These experimental results suggest that SOEAs and EMO algorithms have their
own advantages and disadvantages. In this paper, we hybridize them into a single
algorithm in order to simultaneously utilize their advantages. More specifically, we

propose an idea of probabilistically using a scalarizing fitness function for parent
selection and generation update in EMO algorithms. Following this idea, we imple-
ment a hybrid algorithm using NSGA-II [3] and a weighted sum fitness function. The
weighted sum fitness function is probabilistically used for parent selection and gen-
eration update in NSGA-II. We introduce two probabilities to specify how often the
weighted sum fitness function is used for parent selection and generation update.

We use NSGA-II because it is one of the most frequently-used EMO algorithms in
the literature. The use of the weighted sum fitness function is due to its simplicity. Of
course, other scalarizing fitness functions can be used in our hybrid algorithm. A
scalarizing fitness function-based EMO algorithm was proposed by Hughes [5] in a
general form. The weighted sum fitness function was successfully used in multiobjec-
tive genetic local search (MOGLS) algorithms [7], [9], [10]. High performance of
MOGLS of Jaszkiewicz [10] was reported [1], [11], [14]. The weighted sum fitness
function was also used in a two-stage EMO algorithm of Mumford [14].

The main feature of our hybrid algorithm is the probabilistic use of the weighted
sum fitness function. When the probability of its use is very low, our hybrid algo-
rithm is almost the same as NSGA-II. The increase in the probability of its use inten-
sifies the flavor of weighted sum-based algorithms. Another feature is the flexibility
in the specification of the weight vector in the weighted sum fitness function. We can
use a set of uniformly distributed weight vectors for multiobjective optimization as
well as a single weight vector for single-objective optimization. In this paper, we first
explain our hybrid algorithm in Section 2. Then we examine its performance as sin-
gle-objective and multiobjective algorithms in Section 3 and Section 4, respectively.

2 Implementation of a Hybrid Algorithm

In this section, we implement a hybrid algorithm by incorporating a weighted sum
fitness function into NSGA-II [3]. We introduce two probabilities PPS and PGU,
which specify how often the weighted sum fitness function is used for parent selec-
tion and generation update, respectively.

Let us consider the following k-objective maximization problem:

Maximize))(...,),(()(1 xxxf kff= subject to Xx ∈ , (1)

where f(x) is the k-dimensional objective vector, x is the decision vector, and X is the
feasible region in the decision space. When the following relation holds between two
feasible solutions x and y, x is said to be dominated by y (i.e., y is better than x):

i∀ ,)()(yx ii ff ≤ and j∃ ,)()(yx jj ff < . (2)

When there is no feasible solution y in X that dominates x, x is referred to as a
Pareto-optimal solution. Usually multiobjective optimization problems have a large
number of Pareto-optimal solutions. The set of objective vectors corresponding to all
Pareto-optimal solutions is referred to as Pareto front.

2.1 Description of NSGA-II as a General Evolutionary Algorithm

NSGA-II of Deb et al. [3] is an elitist EMO algorithm with the (μ + λ)-ES generation
update mechanism. The outline of NSGA-II can be written as follows:

[NSGA-II]
Step 1: P = Initialize(P)
Step 2: While the stopping condition is not satisfied, do
Step 3: P’ = Parent Selection(P)
Step 4: P’’ = Genetic Operations(P’)
Step 5: P = Generation Update(PUP’’)
Step 6: End while
Step 7: Return Non-dominated(P)

In NSGA-II, each solution in the current population is evaluated using Pareto rank-
ing and a crowding measure in the following manner for parent selection in Step 3.
First the best rank (i.e., Rank 1) is assigned to all the non-dominated solutions in the
current population. Solutions with Rank 1 are tentatively removed from the current
population. Next the second best rank (i.e., Rank 2) is assigned to all the non-
dominated solutions in the remaining population. Solutions with Rank 2 are tenta-
tively removed from the remaining population. In this manner, ranks are assigned to
all solutions in the current population. Solutions with smaller rank values are viewed
as being better than those with larger rank values. A crowding measure is used to
compare solutions with the same rank. Roughly and informally speaking for two-
objective problems, the crowding measure of a solution is the Manhattan distance
between its two adjacent solutions in the objective space (for details, see [2], [3]).
When two solutions have the same rank, one solution with a larger value of the
crowding measure is viewed as being better than the other with a smaller value.

A prespecified number of pairs of parent solutions are selected from the current
population by binary tournament selection to form a parent population P’ in Step 3.
An offspring solution is generated from each pair of parent solutions by crossover
and mutation to form an offspring population P’’ in Step 4. The current population
and the offspring population are merged to form an enlarged population. Each solu-
tion in the enlarged population is evaluated by Pareto ranking and the crowding
measure as in the parent selection phase. A prespecified number of the best solutions
are chosen from the enlarged population as the next population P in Step 5.

2.2 Weighted Sum Fitness Function

The weighted sum fitness function of the k objectives in (1) is written as follows:

)(...)()()(2211 xxxx kk fwfwfwfitness ⋅++⋅+⋅= , (3)

where wi is a non-negative weight value.
One important issue is the specification of the weight vector w = (w1, w2, ..., wk).

We examine the following three versions in our hybrid algorithm.

Version I: The weight vector is always specified as w = (1, 1, ..., 1). That is, we
always use the following scalarizing fitness function:

)(...)()()(21 xxxx kffffitness +++= . (4)

Version II: A different weight vector is randomly chosen from the (2k − 1) binary
vectors excluding the zero vector (0, 0, ..., 0). For example, a weight vector is ran-
domly chosen from the three binary vectors (1, 1), (1, 0) and (0, 1) in the case of k =
2 (i.e., two-objective problems). We have 7 and 15 non-zero binary vectors for three-
objective and four-objective problems, respectively.

Version III: A different vector is randomly chosen from a set of non-negative in-
teger vectors satisfying the following relation: w1 + w2 + ... + wk = d where d is a
prespecified integer. In this paper, d is specified as d = 4 (Other values should be
examined in the future study). In the case of two-objective problems, a weight vector
is randomly chosen from the five integer vectors (4, 0), (3, 1), (2, 2), (1, 3) and (0, 4).
For three-objective problems, we have 15 integer vectors: (4, 0, 0), (3, 1, 0), (2, 2,
0), ..., (0, 1, 3), (0, 0, 4). For four-objective problems, we have 35 integer vectors: (4,
0, 0, 0), (3, 1, 0, 0), ..., (0, 0, 0, 4). The same idea of the weight vector specification
was used in [12], [14], [15].

2.3 Hybrid Algorithm

Our hybrid algorithm is the same as NSGA-II except for parent selection in Step 3
and generation update in Step 5. When a pair of parent solutions are to be selected
from the current population, the weighted sum fitness function and the NSGA-II
fitness evaluation mechanism are used with the probabilities PPS and (1− PPS), re-
spectively. When another pair of parent solutions are to be selected, the probabilistic
choice between the two fitness evaluation schemes is performed again. As in NSGA-
II, we always use binary tournament selection independent of the chosen fitness
evaluation scheme. It should be noted that we use a randomly chosen weight vector in
Version II and Version III of our hybrid algorithm.

As in the parent selection phase, we probabilistically use the weighted sum fitness
function in the generation update phase. When one solution is to be chosen from the
enlarged population and added to the next population, the weighted sum fitness func-
tion and the NSGA-II fitness evaluation mechanism are used with the probabilities
PGU and (1− PGU), respectively. When another solution is to be chosen, the probabil-
istic choice between the two fitness evaluation schemes is performed again.

One extreme case of our hybrid algorithm with PPS = PGU = 0.0 is exactly the
same as the pure NSGA-II since the weighted sum fitness function is never used.
Another extreme case with PPS = PGU = 1.0 is a weighted sum-based genetic algo-
rithm with the (μ + λ)-ES generation update mechanism. In this case, Version I algo-
rithm is a single-objective genetic algorithm (SOGA) since the scalarizing fitness
function in (4) is always used. Version II and Version III algorithms with PPS = PGU
= 1.0 are EMO algorithms, which are somewhat similar to VEGA of Schaffer [17].

3 Single-Objective Optimization by Our Hybrid Algorithm

In this section, we examine the performance of our hybrid algorithm as a single-
objective optimization algorithm for maximizing the sum of the k-objectives (i.e., the
scalarizing fitness function in (4)). We use Version I of our hybrid algorithm where
the scalarizing fitness function in (4) is used with the probabilities PPS and PGU for
parent selection and generation update, respectively. As test problems, we use three
500-item knapsack problems with two, three and four objectives in [19]. These test
problems are denoted as 2-500, 3-500 and 4-500, respectively. Our hybrid algorithm
is applied to each test problem using the following parameter specifications:

Population size: 200 (i.e., μ = λ = 200),
Crossover probability: 0.8 (uniform crossover),
Mutation probability: 0.002 (bit-flip mutation),
Probability PPS: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
Probability PGU: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
Termination condition: 2000 generations.

We examine the 1111× combinations of the 11 values of PPS and PGU. Our hy-
brid algorithm with each combination of PPS and PGU is applied to each test problem
50 times. Average results over 50 runs are summarized in Fig. 1 for the 2-500 prob-
lem. In this figure, the performance of the pure SOGA with PPS = PGU = 1.0 at the
top-right corner is improved by probabilistically using the NSGA-II fitness evaluation
mechanism for generation update (i.e., by decreasing PGU from PGU = 1.0 to PGU <
1.0). It is interesting to observe that even the pure NSGA-II with PPS = PGU = 0.0 at
the bottom-left corner outperforms the pure SOGA with PPS = PGU = 1.0. This ob-
servation supports the idea of using EMO algorithms for single-objective optimiza-
tion to escape from local optima [13], [18].

37900

37950

38000

38050

38100

PPS

Su
m

 o
f t

he
 tw

o
ob

je
ct

iv
es

0.0 0.2 0.4 0.6 0.8 1.0
PGU

0.0
0.2

0.4

0.8
0.6

1.0

Fig. 1. Experimental results by Version I of our hybrid algorithm on the 2-500 problem.

In order to further examine the performance of the three algorithms (i.e., our hy-
brid algorithm and its two extreme cases: NSGA-II and SOGA), each algorithm is
applied to the 2-500 knapsack problem 100 times. In our hybrid algorithm, PPS and

PGU are specified as PPS = 0.5 and PGU = 0.0. Fig. 2 shows the histograms of the
obtained 100 values of the scalarizing fitness function in (4) by each algorithm. From
Fig. 2 (and also from Fig. 1), we can see that NSGA-II and our hybrid algorithm
outperform SOGA even when they are evaluated as single-objective optimization
algorithms for maximizing the sum of the two objectives of the 2-500 problem.

The performance of SOGA is also improved by probabilistically using the NSGA-
II fitness evaluation mechanism for the knapsack problems with three and four objec-
tives (i.e., 3-500 and 4-500). Experimental results are shown in Fig. 3. The search
ability of the pure SOGA with PPS = 1.0 and PGU = 1.0 at the top-right corner is
improved by using the NSGA-II fitness evaluation mechanism for generation update
(i.e., by decreasing PGU). The pure NSGA-II with PPS = 0.0 and PGU = 0.0 at the
bottom-left corner, however, cannot find good solutions with respect to the scalariz-
ing fitness function. From the comparison between Fig. 1 and Fig. 3, we can see that
the convergence ability of NSGA-II is degraded by increasing the number of objec-
tives. This observation coincides with some studies on the performance of Pareto
ranking-based EMO algorithms for many-objective optimization [6], [8], [12], [16].

0

5

10

15

20

25

30

37
90

0
37

91
0

37
92

0
37

93
0

37
94

0
37

95
0

37
96

0
37

97
0

37
98

0
37

99
0

38
00

0
38

01
0

38
02

0
38

03
0

38
04

0
38

05
0

38
06

0
38

07
0

38
08

0
38

09
0

38
10

0
38

11
0

38
12

0
38

13
0

NSGA-II
SOGA
Hybrid

Sum of the two objectives

N
um

be
r o

f r
un

s

Fig. 2. Histograms of the obtained 100 values of the scalarizing fitness function by each of
NSGA-II, SOGA and our Version I hybrid algorithm with PPS = 0.5 and PGU = 0.0.

53200

53400

53600

53800

54000

PPS

Su
m

 o
f t

he
 th

re
e

ob
je

ct
iv

es

0.0 0.2 0.4 0.6 0.8 1.0
PGU

0.0
0.2

0.4

0.8
0.6

1.0

66700

67200

67700

68200

68700

PPS

Su
m

 o
f t

he
 fo

ur
 o

bj
ec

tiv
es

0.0 0.2 0.4 0.6 0.8 1.0
PGU

0.0
0.2

0.4

0.8
0.6

1.0

 (a) 3-500 knapsack problem. (b) 4-500 knapsack problem.

Fig. 3. Experimental results of our Version I hybrid algorithm.

4 Multi-Objective Optimization by Our Hybrid Algorithm

In this section, we examine the performance of our hybrid algorithm as a multi-
objective optimization algorithm. As in the previous section, we use the three 500-
item knapsack problems as test problems. Version II and Version III of our hybrid
algorithm are applied to each test problem using the same parameter specifications as
in the previous section. Each version of our hybrid algorithm is applied to each test
problem 50 times using each of the 1111× combinations of PPS and PGU.

In each run of our hybrid algorithm (i.e., Version II and Version III), we calculate
the hypervolume measure (e.g., see Deb [2]) after the 2000th generation. Average
results over 50 runs are summarized in Figs. 4-6.

The choice of a performance measure is very difficult. Whereas we only use the
hypervolume (due to the page limitation), it is not necessarily the best choice [8]. We
may need other performance measures in addition to the hypervolume. For example,
Jaszkiewicz [12] proposed an idea of using achievement scalarizing functions. For the
2-500 problem, we also show the 50% attainment surface [4] later.

3.70

3.75

3.80

3.85

3.90

3.95

PPS

PGU
0.0 0.2 0.4 0.6 0.8 1.0 0.0

0.2
0.4

0.8
0.6

1.0

H
yp

er
vo

lu
m

e
m

ea
su

re

)10(8×

3.70

3.75

3.80

3.85

3.90

3.95

PPS

0.0 0.2 0.4 0.6 0.8 1.0
PGU

0.0
0.2

0.4

0.8
0.6

1.0

H
yp

er
vo

lu
m

e
m

ea
su

re

)10(8×

(a) Version II with binary weight vectors. (b) Version III with integer weight vectors.

Fig. 4. Average values of the hypervolume measure for the 2-500 knapsack problem.

6.30
6.40
6.50
6.60

6.70

6.80

6.90

PPS

0.0 0.2 0.4 0.6 0.8 1.0
PGU

0.0
0.2

0.4

0.8
0.6

1.0

H
yp

er
vo

lu
m

e
m

ea
su

re

)10(12×

6.30
6.40
6.50
6.60

6.70

6.80

6.90

PPS

0.0 0.2 0.4 0.6 0.8 1.0
PGU

0.0
0.2

0.4

0.8
0.6

1.0

H
yp

er
vo

lu
m

e
m

ea
su

re

)10(12×

(a) Version II with binary weight vectors. (b) Version III with integer weight vectors.

Fig. 5. Average values of the hypervolume measure for the 3-500 knapsack problem.

0.95

1.00

1.05

1.10

1.15

PPS

0.0 0.2 0.4 0.6 0.8 1.0
PGU

0.0
0.2

0.4

0.8
0.6

1.0

H
yp

er
vo

lu
m

e
m

ea
su

re

)10(17×

0.95

1.00

1.05

1.10

1.15

PPS

0.0 0.2 0.4 0.6 0.8 1.0
PGU

0.0
0.2

0.4

0.8
0.6

1.0

H
yp

er
vo

lu
m

e
m

ea
su

re

)10(17×

(a) Version II with binary weight vectors. (b) Version III with integer weight vectors.

Fig. 6. Average values of the hypervolume measure for the 4-500 knapsack problem.

In Figs. 4-6, the performance of the pure NSGA-II at the bottom-left corner with
PPS = PGU = 0.0 is improved by probabilistically using the weighted sum fitness
function for generation update (i.e., by increasing PGU from PGU = 0.0 to PGU > 0.0).
Good results are also obtained when the weighted sum fitness function is used with
high probabilities for both parent selection and generation update (i.e., around the
top-right corner). An interesting observation is that the use of the weighted sum fit-
ness function only for parent selection (i.e., PPS > 0.0 and PGU = 0.0: experimental
results along the bottom row) clearly degrades the performance of NSGA-II espe-
cially for the 2-500 problem in Fig. 4 and the 3-500 problem in Fig. 5.

In all the six plots in Figs. 4-6, good results are obtained by the weighted sum-
based EMO algorithm at the top-right corner with PPS = PGU = 1.0. Its performance,
however, can be further improved by appropriately specifying the two probabilities
PPS and PGU. For example, better results are obtained in Fig. 6 around the top-left
corner with a small value of PPS and a large value of PGU than the top-right corner
with PPS = PGU = 1.0. For all the three test problems, better results are obtained from
Version III with integer weight vectors than Version II with binary vectors.

In Fig. 7, we show the 50% attainment surface [4] over 50 runs of our hybrid algo-
rithm on the 2-500 knapsack problem for some combinations of PPS and PGU includ-
ing the two extreme cases (i.e., the pure NSGA-II and the pure weighted sum-based
EMO algorithm). We use our Version II hybrid algorithm in Fig. 7 with the three
binary weight vectors (1, 1), (1, 0) and (0, 1). As a result, the 50% attainment surface
has three peaks in the case of the pure weighted sum-based EMO algorithm as shown
by the dotted line labeled as “Weighted sum” in Fig. 7. Whereas NSGA-II can find
better solutions than the center peak of the pure weighted sum-based EMO algorithm,
it cannot find extreme solutions around the other two peaks. Depending on the speci-
fications of the two probabilities PPS and PGU, our hybrid algorithm finds different
solution sets. In Fig. 7 (a), the 50% attainment surface by our hybrid algorithm with
PPS = 1.0 and PGU = 0.9 is similar to but clearly better than that of the pure weighted
sum-based EMO algorithm. On the other hand, the 50% attainment surface by our
hybrid algorithm with PPS = 0.5 and PGU = 0.5 in Fig. 7 (b) is similar to but has lar-
ger diversity than that of NSGA-II.

From Fig. 7, we can see that the probabilistic use of the weighted sum fitness func-
tion increases the diversity of obtained non-dominated solutions. Such an increase in
the diversity leads to the improvement in the hypervolume measure for the 2-500
problem in Fig. 4. Not only the diversity improvement but also the convergence im-
provement, however, contributes to the improvement in the hypervolume measure in
Fig. 5 for the 3-500 problem and Fig. 6 for the 4-500 problem. Actually, the conver-
gence performance of NSGA-II is improved by the probabilistic use of the weighted
sum fitness function in all the four combinations of the two versions (i.e., Version II
and Version III) and the two test problems (i.e., 3-500 and 4-500). Such improvement
has already been demonstrated for the case of our Version I hybrid algorithm in Fig. 3
for the 3-500 and 4-500 problems.

17000 18000 19000 20000
17000

18000

19000

20000

Weighted sum
NSGA-II
Hybrid

f1(x)

f 2
(x

)

17000 18000 19000 20000

17000

18000

19000

20000

Weighted sum
NSGA-II
Hybrid

f1(x)

f 2
(x

)

 (a) PPS = 1.0 and PGU = 0.9. (b) PPS = 0.5 and PGU = 0.5.

Fig. 7. 50% attainment surface over 50 runs by our Version II hybrid algorithm for the 2-500
problem. Experimental results by the two extreme cases (i.e., the pure NSGA-II and the pure
weighted sum-based EMO algorithm) are also shown for comparison.

5 Conclusions

In this paper, we proposed an idea of probabilistically using a scalarizing fitness func-
tion for parent selection and generation update in EMO algorithms. Following the
proposed idea, we implemented a hybrid algorithm by incorporating the weighted
sum fitness function into NSGA-II. When our hybrid algorithm was used for single-
objective optimization, it outperformed SOGA. That is, the probabilistic use of the
NSGA-II fitness evaluation mechanism improved the performance of SOGA. On the
other hand, when our hybrid algorithm was used for multiobjective optimization, it
outperformed NSGA-II in terms of the hypervolume measure. That is, the probabilis-
tic use of the weighted sum fitness function improved the performance of NSGA-II.
Future work includes the comparison of our hybrid algorithm with other approaches
to many-objective optimization problems (e.g., [5], [6], [12], [14]).

This work was partially supported by Japan Society for the Promotion of Science
(JSPS) through Grand-in-Aid for Scientific Research (B): KAKENHI (17300075).

References

1. Colombo, G., Mumford, C. L.: Comparing Algorithms, Representations and Operators for
the Multi-objective Knapsack Problem. Proc. of 2005 Congress on Evolutionary Computa-
tion (2005) 2241-2247

2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons,
Chichester (2001)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6 (2002) 182-197

4. Fonseca, C. M., Fleming, P. J.: On the Performance Assessment and Comparison of Sto-
chastic Multiobjective Optimizers. Lecture Notes in Computer Science, Vol. 114: Parallel
Problem Solving from Nature - PPSN IV. Springer, Berlin (1996) 584-593

5. Hughes, E. J.: Multiple Single Objective Sampling. Proc. of 2003 Congress on Evolutionary
Computation (2003) 2678-2684

6. Hughes, E. J.: Evolutionary Many-objective Optimization: Many Once or One Many? Proc.
of 2005 Congress on Evolutionary Computation (2005) 222-227

7. Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Ap-
plication to Flowshop Scheduling. IEEE Trans. on Systems, Man, and Cybernetics - Part C:
Applications and Reviews 28 (1998) 392-403

8. Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between Single-objective and Multi-
objective Genetic Algorithms: Performance Comparison and Performance Measures. Proc.
of 2006 Congress on Evolutionary Computation (2006) (in press)

9. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between Genetic Search and Local Search in
Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Trans. on
Evolutionary Computation 7 (2003) 204-223

10. Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimization.
European Journal of Operational Research 137 (2002) 50-71

11. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the
0/1 Knapsack Problem - A Comparative Experiment. IEEE Trans. on Evolutionary Compu-
tation 6 (2002) 402-412

12. Jaszkiewicz, A.: On the Computational Efficiency of Multiple Objective Metaheuristics:
The Knapsack Problem Case Study. European Journal of Operational Research 158 (2004)
418-433

13. Knowles, J. D., Watson, R. A., Corne, D. W.: Reducing Local Optima in Single-Objective
Problems by Multi-Objectivization. Lecture Notes in Computer Science, Vol. 1993: Evolu-
tionary Multi-Criterion Optimization - EMO 2001. Springer, Berlin (2001) 269-283

14. Mumford, C. L.: A Hierarchical Solve-and-Merge Framework for Multi-Objective Optimi-
zation. Proc. of 2005 Congress on Evolutionary Computation (2005) 2241-2247

15. Murata, T., Ishibuchi, H., Gen, M.: Specification of Genetic Search Directions in Cellular
Multi-Objective Genetic Algorithms. Lecture Notes in Computer Science, Vol. 1993: Evo-
lutionary Multi-Criterion Optimization - EMO 2001, Springer, Berlin (2001) 82-95

16. Purshouse, R. C., Fleming, P. J.: Evolutionary Many-Objective Optimization: An Explora-
tory Analysis. Proc. of 2003 Congress on Evolutionary Computation (2003) 2066-2073

17. Schaffer, J. D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms.
Proc. of 1st International Conference on Genetic Algorithms and Their Applications (1985)
93-100

18. Watanabe, S., Sakakibara K.: Multi-Objective Approaches in a Single-Objective Optimiza-
tion Environment. Proc. of 2005 Congress on Evolutionary Computation (2005) 1714-1721

19. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study
and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3 (1999) 257-
271

