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Abstract. This paper proposes an idea of probabilistically using a scalarizing 
fitness function in evolutionary multiobjective optimization (EMO) algorithms. 
We introduce two probabilities to specify how often the scalarizing fitness 
function is used for parent selection and generation update in EMO algorithms. 
Through computational experiments on multiobjective 0/1 knapsack problems 
with two, three and four objectives, we show that the probabilistic use of the 
scalarizing fitness function improves the performance of EMO algorithms. In a 
special case, our idea can be viewed as the probabilistic use of an EMO scheme 
in single-objective evolutionary algorithms (SOEAs). From this point of view, 
we examine the effectiveness of our idea. Experimental results show that our 
idea improves not only the performance of EMO algorithms for multiobjective 
problems but also that of SOEAs for single-objective problems. 

1   Introduction 

Evolutionary multiobjective optimization (EMO) is one of the most active research 
areas in the field of evolutionary computation. EMO algorithms have been success-
fully applied to various application areas [2]. Most EMO algorithms use Pareto rank-
ing to evaluate the fitness of each solution. Pareto ranking-based EMO algorithms, 
however, do not work well on many-objective problems (e.g., see [5], [6], [8], [12], 
[16]). This is because solutions rarely dominate other solutions in the presence of 
many objectives. Hughes [6] showed that multiple runs of single-objective evolution-
ary algorithms (SOEAs) outperformed a single run of EMO algorithms in their appli-
cations to many-objective problems. Similar results were also reported in [8], [12]. 
Whereas EMO algorithms do not work well on many-objective problems, usually 
they work very well on two-objective problems. In some cases, EMO algorithms can 
outperform SOEAs even when they are used to solve single-objective problems. It 
was reported in some studies [13], [18] that better results were obtained by transform-
ing single-objective problems into multi-objective ones. 

These experimental results suggest that SOEAs and EMO algorithms have their 
own advantages and disadvantages. In this paper, we hybridize them into a single 
algorithm in order to simultaneously utilize their advantages. More specifically, we 



 

 

propose an idea of probabilistically using a scalarizing fitness function for parent 
selection and generation update in EMO algorithms. Following this idea, we imple-
ment a hybrid algorithm using NSGA-II [3] and a weighted sum fitness function. The 
weighted sum fitness function is probabilistically used for parent selection and gen-
eration update in NSGA-II. We introduce two probabilities to specify how often the 
weighted sum fitness function is used for parent selection and generation update. 

We use NSGA-II because it is one of the most frequently-used EMO algorithms in 
the literature. The use of the weighted sum fitness function is due to its simplicity. Of 
course, other scalarizing fitness functions can be used in our hybrid algorithm. A 
scalarizing fitness function-based EMO algorithm was proposed by Hughes [5] in a 
general form. The weighted sum fitness function was successfully used in multiobjec-
tive genetic local search (MOGLS) algorithms [7], [9], [10]. High performance of 
MOGLS of Jaszkiewicz [10] was reported [1], [11], [14]. The weighted sum fitness 
function was also used in a two-stage EMO algorithm of Mumford [14]. 

The main feature of our hybrid algorithm is the probabilistic use of the weighted 
sum fitness function. When the probability of its use is very low, our hybrid algo-
rithm is almost the same as NSGA-II. The increase in the probability of its use inten-
sifies the flavor of weighted sum-based algorithms. Another feature is the flexibility 
in the specification of the weight vector in the weighted sum fitness function. We can 
use a set of uniformly distributed weight vectors for multiobjective optimization as 
well as a single weight vector for single-objective optimization. In this paper, we first 
explain our hybrid algorithm in Section 2. Then we examine its performance as sin-
gle-objective and multiobjective algorithms in Section 3 and Section 4, respectively. 

2   Implementation of a Hybrid Algorithm 

In this section, we implement a hybrid algorithm by incorporating a weighted sum 
fitness function into NSGA-II [3]. We introduce two probabilities PPS and PGU, 
which specify how often the weighted sum fitness function is used for parent selec-
tion and generation update, respectively. 

Let us consider the following k-objective maximization problem:  

Maximize ))(...,),(()( 1 xxxf kff=  subject to Xx ∈ , (1) 

where f(x) is the k-dimensional objective vector, x is the decision vector, and X is the 
feasible region in the decision space. When the following relation holds between two 
feasible solutions x and y, x is said to be dominated by y (i.e., y is better than x): 

i∀ , )()( yx ii ff ≤   and   j∃ , )()( yx jj ff < . (2) 

When there is no feasible solution y in X that dominates x, x is referred to as a 
Pareto-optimal solution. Usually multiobjective optimization problems have a large 
number of Pareto-optimal solutions. The set of objective vectors corresponding to all 
Pareto-optimal solutions is referred to as Pareto front. 



 

 

2.1   Description of NSGA-II as a General Evolutionary Algorithm 

NSGA-II of Deb et al. [3] is an elitist EMO algorithm with the (μ + λ)-ES generation 
update mechanism. The outline of NSGA-II can be written as follows: 

[NSGA-II] 
Step 1: P = Initialize(P) 
Step 2: While the stopping condition is not satisfied, do 
Step 3:           P’ = Parent Selection(P) 
Step 4:           P’’ = Genetic Operations(P’) 
Step 5:           P = Generation Update(PUP’’) 
Step 6: End while 
Step 7: Return Non-dominated(P) 

In NSGA-II, each solution in the current population is evaluated using Pareto rank-
ing and a crowding measure in the following manner for parent selection in Step 3. 
First the best rank (i.e., Rank 1) is assigned to all the non-dominated solutions in the 
current population. Solutions with Rank 1 are tentatively removed from the current 
population. Next the second best rank (i.e., Rank 2) is assigned to all the non-
dominated solutions in the remaining population. Solutions with Rank 2 are tenta-
tively removed from the remaining population. In this manner, ranks are assigned to 
all solutions in the current population. Solutions with smaller rank values are viewed 
as being better than those with larger rank values. A crowding measure is used to 
compare solutions with the same rank. Roughly and informally speaking for two-
objective problems, the crowding measure of a solution is the Manhattan distance 
between its two adjacent solutions in the objective space (for details, see [2], [3]). 
When two solutions have the same rank, one solution with a larger value of the 
crowding measure is viewed as being better than the other with a smaller value.  

A prespecified number of pairs of parent solutions are selected from the current 
population by binary tournament selection to form a parent population P’ in Step 3. 
An offspring solution is generated from each pair of parent solutions by crossover 
and mutation to form an offspring population P’’ in Step 4. The current population 
and the offspring population are merged to form an enlarged population. Each solu-
tion in the enlarged population is evaluated by Pareto ranking and the crowding 
measure as in the parent selection phase. A prespecified number of the best solutions 
are chosen from the enlarged population as the next population P in Step 5. 

2.2   Weighted Sum Fitness Function 

The weighted sum fitness function of the k objectives in (1) is written as follows: 

)(...)()()( 2211 xxxx kk fwfwfwfitness ⋅++⋅+⋅= , (3) 

where wi is a non-negative weight value. 
One important issue is the specification of the weight vector w = (w1, w2, ..., wk). 

We examine the following three versions in our hybrid algorithm. 



 

 

Version I: The weight vector is always specified as w = (1, 1, ..., 1). That is, we 
always use the following scalarizing fitness function:  

)(...)()()( 21 xxxx kffffitness +++= . (4) 

Version II: A different weight vector is randomly chosen from the (2k − 1) binary 
vectors excluding the zero vector (0, 0, ..., 0). For example, a weight vector is ran-
domly chosen from the three binary vectors (1, 1), (1, 0) and (0, 1) in the case of k = 
2 (i.e., two-objective problems). We have 7 and 15 non-zero binary vectors for three-
objective and four-objective problems, respectively. 

Version III: A different vector is randomly chosen from a set of non-negative in-
teger vectors satisfying the following relation: w1 + w2 +  ...  + wk = d where d is a 
prespecified integer. In this paper, d is specified as d = 4 (Other values should be 
examined in the future study). In the case of two-objective problems, a weight vector 
is randomly chosen from the five integer vectors (4, 0), (3, 1), (2, 2), (1, 3) and (0, 4). 
For three-objective problems, we have 15 integer vectors: (4, 0, 0), (3, 1, 0), (2, 2, 
0), ..., (0, 1, 3), (0, 0, 4). For four-objective problems, we have 35 integer vectors: (4, 
0, 0, 0), (3, 1, 0, 0), ..., (0, 0, 0, 4). The same idea of the weight vector specification 
was used in [12], [14], [15]. 

2.3   Hybrid Algorithm 

Our hybrid algorithm is the same as NSGA-II except for parent selection in Step 3 
and generation update in Step 5. When a pair of parent solutions are to be selected 
from the current population, the weighted sum fitness function and the NSGA-II 
fitness evaluation mechanism are used with the probabilities PPS and (1− PPS), re-
spectively. When another pair of parent solutions are to be selected, the probabilistic 
choice between the two fitness evaluation schemes is performed again. As in NSGA-
II, we always use binary tournament selection independent of the chosen fitness 
evaluation scheme. It should be noted that we use a randomly chosen weight vector in 
Version II and Version III of our hybrid algorithm. 

As in the parent selection phase, we probabilistically use the weighted sum fitness 
function in the generation update phase. When one solution is to be chosen from the 
enlarged population and added to the next population, the weighted sum fitness func-
tion and the NSGA-II fitness evaluation mechanism are used with the probabilities 
PGU and (1− PGU), respectively. When another solution is to be chosen, the probabil-
istic choice between the two fitness evaluation schemes is performed again. 

One extreme case of our hybrid algorithm with PPS = PGU = 0.0 is exactly the 
same as the pure NSGA-II since the weighted sum fitness function is never used. 
Another extreme case with PPS = PGU = 1.0 is a weighted sum-based genetic algo-
rithm with the (μ + λ)-ES generation update mechanism. In this case, Version I algo-
rithm is a single-objective genetic algorithm (SOGA) since the scalarizing fitness 
function in (4) is always used. Version II and Version III algorithms with PPS = PGU 
= 1.0 are EMO algorithms, which are somewhat similar to VEGA of Schaffer [17]. 



 

 

3   Single-Objective Optimization by Our Hybrid Algorithm 

In this section, we examine the performance of our hybrid algorithm as a single-
objective optimization algorithm for maximizing the sum of the k-objectives (i.e., the 
scalarizing fitness function in (4)). We use Version I of our hybrid algorithm where 
the scalarizing fitness function in (4) is used with the probabilities PPS and PGU for 
parent selection and generation update, respectively. As test problems, we use three 
500-item knapsack problems with two, three and four objectives in [19]. These test 
problems are denoted as 2-500, 3-500 and 4-500, respectively. Our hybrid algorithm 
is applied to each test problem using the following parameter specifications:  

Population size: 200 (i.e., μ = λ  = 200), 
Crossover probability: 0.8 (uniform crossover), 
Mutation probability: 0.002 (bit-flip mutation), 
Probability PPS: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
Probability PGU: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
Termination condition: 2000 generations. 

We examine the 1111×  combinations of the 11 values of PPS and PGU. Our hy-
brid algorithm with each combination of PPS and PGU is applied to each test problem 
50 times. Average results over 50 runs are summarized in Fig. 1 for the 2-500 prob-
lem. In this figure, the performance of the pure SOGA with PPS = PGU = 1.0 at the 
top-right corner is improved by probabilistically using the NSGA-II fitness evaluation 
mechanism for generation update (i.e., by decreasing PGU from PGU = 1.0 to PGU < 
1.0). It is interesting to observe that even the pure NSGA-II with PPS = PGU = 0.0 at 
the bottom-left corner outperforms the pure SOGA with PPS = PGU = 1.0. This ob-
servation supports the idea of using EMO algorithms for single-objective optimiza-
tion to escape from local optima [13], [18].  
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Fig. 1. Experimental results by Version I of our hybrid algorithm on the 2-500 problem. 

In order to further examine the performance of the three algorithms (i.e., our hy-
brid algorithm and its two extreme cases: NSGA-II and SOGA), each algorithm is 
applied to the 2-500 knapsack problem 100 times. In our hybrid algorithm, PPS and 



 

 

PGU are specified as PPS = 0.5 and PGU = 0.0. Fig. 2 shows the histograms of the 
obtained 100 values of the scalarizing fitness function in (4) by each algorithm. From 
Fig. 2 (and also from Fig. 1), we can see that NSGA-II and our hybrid algorithm 
outperform SOGA even when they are evaluated as single-objective optimization 
algorithms for maximizing the sum of the two objectives of the 2-500 problem. 

The performance of SOGA is also improved by probabilistically using the NSGA-
II fitness evaluation mechanism for the knapsack problems with three and four objec-
tives (i.e., 3-500 and 4-500). Experimental results are shown in Fig. 3. The search 
ability of the pure SOGA with PPS = 1.0 and PGU = 1.0 at the top-right corner is 
improved by using the NSGA-II fitness evaluation mechanism for generation update 
(i.e., by decreasing PGU). The pure NSGA-II with PPS = 0.0 and PGU = 0.0 at the 
bottom-left corner, however, cannot find good solutions with respect to the scalariz-
ing fitness function. From the comparison between Fig. 1 and Fig. 3, we can see that 
the convergence ability of NSGA-II is degraded by increasing the number of objec-
tives. This observation coincides with some studies on the performance of Pareto 
ranking-based EMO algorithms for many-objective optimization [6], [8], [12], [16]. 
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Fig. 2. Histograms of the obtained 100 values of the scalarizing fitness function by each of 
NSGA-II, SOGA and our Version I hybrid algorithm with PPS = 0.5 and PGU = 0.0. 
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                   (a) 3-500 knapsack problem.                                (b) 4-500 knapsack problem. 

Fig. 3. Experimental results of our Version I hybrid algorithm. 



 

 

4   Multi-Objective Optimization by Our Hybrid Algorithm 

In this section, we examine the performance of our hybrid algorithm as a multi-
objective optimization algorithm. As in the previous section, we use the three 500-
item knapsack problems as test problems. Version II and Version III of our hybrid 
algorithm are applied to each test problem using the same parameter specifications as 
in the previous section. Each version of our hybrid algorithm is applied to each test 
problem 50 times using each of the 1111×  combinations of PPS and PGU. 

In each run of our hybrid algorithm (i.e., Version II and Version III), we calculate 
the hypervolume measure (e.g., see Deb [2]) after the 2000th generation. Average 
results over 50 runs are summarized in Figs. 4-6.  

The choice of a performance measure is very difficult. Whereas we only use the 
hypervolume (due to the page limitation), it is not necessarily the best choice [8]. We 
may need other performance measures in addition to the hypervolume. For example, 
Jaszkiewicz [12] proposed an idea of using achievement scalarizing functions. For the 
2-500 problem, we also show the 50% attainment surface [4] later. 
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(a) Version II with binary weight vectors.                 (b) Version III with integer weight vectors. 

Fig. 4. Average values of the hypervolume measure for the 2-500 knapsack problem. 
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(a) Version II with binary weight vectors.                 (b) Version III with integer weight vectors. 

Fig. 5. Average values of the hypervolume measure for the 3-500 knapsack problem. 
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(a) Version II with binary weight vectors.                 (b) Version III with integer weight vectors. 

Fig. 6. Average values of the hypervolume measure for the 4-500 knapsack problem. 

In Figs. 4-6, the performance of the pure NSGA-II at the bottom-left corner with 
PPS = PGU = 0.0 is improved by probabilistically using the weighted sum fitness 
function for generation update (i.e., by increasing PGU from PGU = 0.0 to PGU > 0.0). 
Good results are also obtained when the weighted sum fitness function is used with 
high probabilities for both parent selection and generation update (i.e., around the 
top-right corner). An interesting observation is that the use of the weighted sum fit-
ness function only for parent selection (i.e., PPS > 0.0 and PGU = 0.0: experimental 
results along the bottom row) clearly degrades the performance of NSGA-II espe-
cially for the 2-500 problem in Fig. 4 and the 3-500 problem in Fig. 5. 

In all the six plots in Figs. 4-6, good results are obtained by the weighted sum-
based EMO algorithm at the top-right corner with PPS = PGU = 1.0. Its performance, 
however, can be further improved by appropriately specifying the two probabilities 
PPS and PGU. For example, better results are obtained in Fig. 6 around the top-left 
corner with a small value of PPS and a large value of PGU than the top-right corner 
with PPS = PGU = 1.0. For all the three test problems, better results are obtained from 
Version III with integer weight vectors than Version II with binary vectors. 

In Fig. 7, we show the 50% attainment surface [4] over 50 runs of our hybrid algo-
rithm on the 2-500 knapsack problem for some combinations of PPS and PGU includ-
ing the two extreme cases (i.e., the pure NSGA-II and the pure weighted sum-based 
EMO algorithm). We use our Version II hybrid algorithm in Fig. 7 with the three 
binary weight vectors (1, 1), (1, 0) and (0, 1). As a result, the 50% attainment surface 
has three peaks in the case of the pure weighted sum-based EMO algorithm as shown 
by the dotted line labeled as “Weighted sum” in Fig. 7. Whereas NSGA-II can find 
better solutions than the center peak of the pure weighted sum-based EMO algorithm, 
it cannot find extreme solutions around the other two peaks. Depending on the speci-
fications of the two probabilities PPS and PGU, our hybrid algorithm finds different 
solution sets. In Fig. 7 (a), the 50% attainment surface by our hybrid algorithm with 
PPS = 1.0 and PGU = 0.9 is similar to but clearly better than that of the pure weighted 
sum-based EMO algorithm. On the other hand, the 50% attainment surface by our 
hybrid algorithm with PPS = 0.5 and PGU = 0.5 in Fig. 7 (b) is similar to but has lar-
ger diversity than that of NSGA-II. 



 

 

From Fig. 7, we can see that the probabilistic use of the weighted sum fitness func-
tion increases the diversity of obtained non-dominated solutions. Such an increase in 
the diversity leads to the improvement in the hypervolume measure for the 2-500 
problem in Fig. 4. Not only the diversity improvement but also the convergence im-
provement, however, contributes to the improvement in the hypervolume measure in 
Fig. 5 for the 3-500 problem and Fig. 6 for the 4-500 problem. Actually, the conver-
gence performance of NSGA-II is improved by the probabilistic use of the weighted 
sum fitness function in all the four combinations of the two versions (i.e., Version II 
and Version III) and the two test problems (i.e., 3-500 and 4-500). Such improvement 
has already been demonstrated for the case of our Version I hybrid algorithm in Fig. 3 
for the 3-500 and 4-500 problems. 
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                  (a) PPS = 1.0 and PGU = 0.9.                                  (b) PPS = 0.5 and PGU = 0.5. 

Fig. 7. 50% attainment surface over 50 runs by our Version II hybrid algorithm for the 2-500 
problem. Experimental results by the two extreme cases (i.e., the pure NSGA-II and the pure 
weighted sum-based EMO algorithm) are also shown for comparison. 

5   Conclusions 

In this paper, we proposed an idea of probabilistically using a scalarizing fitness func-
tion for parent selection and generation update in EMO algorithms. Following the 
proposed idea, we implemented a hybrid algorithm by incorporating the weighted 
sum fitness function into NSGA-II. When our hybrid algorithm was used for single-
objective optimization, it outperformed SOGA. That is, the probabilistic use of the 
NSGA-II fitness evaluation mechanism improved the performance of SOGA. On the 
other hand, when our hybrid algorithm was used for multiobjective optimization, it 
outperformed NSGA-II in terms of the hypervolume measure. That is, the probabilis-
tic use of the weighted sum fitness function improved the performance of NSGA-II. 
Future work includes the comparison of our hybrid algorithm with other approaches 
to many-objective optimization problems (e.g., [5], [6], [12], [14]). 

This work was partially supported by Japan Society for the Promotion of Science 
(JSPS) through Grand-in-Aid for Scientific Research (B): KAKENHI (17300075). 
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