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ABSTRACT 
 
   In this paper, we show how two-objective genetic 
algorithms can be applied to a rule selection problem of 
linguistic classification rules. First we briefly describe a 
generation method of linguistic classification rules from 
numerical data. Next we formulate a rule selection problem 
of linguistic classification rules. This problem has two 
objectives: to maximize the number of correctly classified 
training patterns and to minimize the number of selected 
rules. Then we propose a two-objective genetic algorithm 
for finding non-dominated solutions of the rule selection 
problem. Last we extend our two-objective genetic 
algorithm to a hybrid algorithm where a learning method is 
applied to each individual (i.e., each rule set) generated in 
the execution of the two-objective genetic algorithm. 
 

1. INTRODUCTION 
 
   Fuzzy systems based on fuzzy if-then rules have been 
applied to various problems (for example, see Lee [1]). 
One advantage of fuzzy-rule-based systems is their clarity. 
Human users of such systems can easily understand each 
fuzzy if-then rule because its antecedent and consequent 
are related to linguistic values such as “small”, “medium” 
and “large”. The number of fuzzy if-then rules is also 
closely connected to the clarity of fuzzy systems. If a single 
fuzzy system consists of thousands of fuzzy if-then rules, it 
is difficult for human users to carefully examine each rule. 
Therefore we should choose a small number of fuzzy 
if-then rules for constructing a fuzzy system that is easily 
understood by human users. 
   Recently a genetic-algorithm-based approach [2-3] was 
proposed for constructing a compact fuzzy classification 
system with a small number of fuzzy if-then rules. In that 
approach, a rule selection problem with the following two 
objectives was formulated: 

(i) To maximize the number of correctly classified 
training patterns. 

(ii) To minimize the number of selected rules. 
These two objectives were combined into a single scalar 
fitness function, and genetic algorithms were applied to the 
rule selection problem in [2-3]. 
   Because various antecedent fuzzy sets were used in 
[2-3], the linguistic interpretation of selected fuzzy if-then 
rules was not always easy. Thus we have already 
formulated a rule selection problem of linguistic 
classification rules in [4]. A single-objective genetic 
algorithm was employed to select linguistic classification 
rules in a similar manner as in [2-3].  
   The main aim of this paper is to extend single-objective 
genetic algorithms in [2-4] to two-objective genetic 
algorithms for finding non-dominated solutions of the rule 
selection problem of linguistic classification rules. In this 
paper, we employ the following linguistic rules for 
classification problems in an n-dimensional pattern space.  
     Rule R j : If x1 is Aj1  and  ...  and xn  is Ajn  

 then Class C j  with CFj ,          (1) 
 
where R j  is a label of the rule, x = ( ,..., )x xn1  is a 

pattern vector in the n-dimensional pattern space, Aji  is 
an antecedent fuzzy set with a linguistic label, C j  is a 
consequent class, and CFj  is the grade of certainty of this 
rule. This rule can be generated from numerical data [4] 
and the grade of certainty CFj  of this rule can be adjusted 
by a learning method [5]. 
   In this paper, first we describe a generation method of 
linguistic classification rules from numerical data [4]. Next 
we formulate a rule selection problem of linguistic 
classification rules as a two-objective optimization problem. 
Then we propose a two-objective genetic algorithm for 



finding non-dominated solutions of this problem. Last we 
combine a learning method [5] of linguistic classification 
rules into our two-objective genetic algorithm. 
 

2. GENERATING LINGUISTIC RULES 
 
   In this section, we describe a generation method of 
linguistic classification rules from numerical data [4]. This 
method is basically the same as that of fuzzy if-then rules 
for classification problems in [2-3].  
 
A. Classification Problems  
   Let us consider a classification problem in an 
n-dimensional pattern space [ , ]0 1 n . It is assumed that m 
patterns xp p p pnx x x= ( , ,..., )1 2 , p m= 1 2, ,..., , are given 
as training data from c classes (Class 1, Class 2, ..., Class c). 
Fig.1 shows an example of the classification problem with 
n = 2, c = 2  and m = 121. 
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Fig.1  A two-class classification problem in the 

two-dimensional pattern space [ , ]0 1 2 
 
B. Fuzzy Partition 
   In this paper, we use six fuzzy sets with linguistic 
labels in the antecedent part of linguistic classification 
rules. Five of them are shown in Fig.2, which are related to 
the five linguistic labels: small, medium small, medium, 
medium large and large, respectively.  
   The other fuzzy set is the unit interval [0,1] that is used 
for denoting a "don't care" attribute. Therefore we assign 
the linguistic label "don't care" to the unit interval. The 
membership function of the unit interval (i.e., the linguistic 
label "don't care") is defined as 
 

     μdon t care x
x
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            (2) 

 
This membership function is always equal to 1 for all the 
possible values of any attribute because we consider the 
classification problem in the n-dimensional unit hyper-cube 
[ , ]0 1 n . Therefore the attributes with "don't care" in each 
linguistic rule are negligible. 
   For example, the first attribute x1 is negligible in the 

linguistic rule:  
     If x1 is don't care and x2  is small then Class 1. 
 
Actually this linguistic rule is the same as the following 
linguistic rule with no condition on x1: 
 
     If x2  is small then Class 1. 
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Fig.2  Membership functions of the five fuzzy sets 
     (S: Small, MS: Medium Small, M: Medium,  

    ML: Medium Large and L: Large)  
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Fig.3  Fuzzy partitions of the two-dimensional pattern 
     space corresponding to the 36 linguistic rules  

(DC: Don't Care)   
   Because we use the six fuzzy sets for each axis (i.e., for 
each attribute) of the n-dimensional pattern space [ , ]0 1 n , 
we can generate 6n  linguistic rules. For example, we can 
generate 6 362 =  linguistic rules for the two-dimensional 
pattern space [ , ]0 1 2. In Fig.3, we show the fuzzy partitions 
of the pattern space corresponding to these 36 linguistic 
rules. From Fig.3, we can see that several linguistic rules 
are overlapping in the pattern space. This means that some 
of the 36 linguistic rules in Fig.3 may be redundant for the 
classification task. 



 
C. Rule Generation 
   Let us denote the 6n  linguistic rules for the 
n-dimensional pattern space [ , ]0 1 n  as 
 
    Rule R j : If x1 is Aj1 and  ...  and xn  is Ajn   

       then Class C j  with CFj ,  j=1,2,...,r, (3) 
 
where r is the number of linguistic rules (i.e., r n= 6 ). 
Since the antecedent fuzzy sets Aji ’s are given as in Fig.3, 
our rule generation is to determine the consequent class 
C j  and the grade of certainty CFj  of each linguistic rule. 
   The consequent C j  and the grade of certainty CFj  of 
each linguistic rule can be determined from the given 
patterns xp p p pnx x x= ( , ,..., )1 2 , p m= 1 2, ,...,  as in [2-4]. 
First let us define the grade of compatibility of xp  to the 
j-th linguistic rule R j  in (3) as 
 
     μ μ μj p A p A pnj jnx x( ) ( ) ... ( )x = ⋅ ⋅1 1   ,        ( 4 ) 
 
where μA piji x( )  is the membership function of the 

antecedent fuzzy set Aji . Thus the total grade of 
compatibility to the j-th linguistic rule R j  is calculated 
for each class as  
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h c=1 2, ,..., ,  (5) 
 
where βClass h  is the total grade of compatibility of the 
given patterns in Class h to the j-th linguistic rule in (3). 
   The consequent C j  of the j-th linguistic rule R j  is 
determined as the class with the maximum total grade of 
compatibility. That is, C j  is determined as Class $h  by 
 
    β β β βClass Class 1 Class 2 Class    $ max{ , , ..., }h c= .  ( 6 ) 
 
If Class $h  is not determined uniquely (i.e., if two or more 
classes have the same maximum value in (6)), we assign 
φ  to C j  where φ  means an empty class. For example, 
the consequent class C j  is determined as Class 1 in 
Fig.4(a)~(c) while φ  is assigned to C j  in Fig.4(d). The 
consequent C j  also becomes φ  when βClass h = 0  for 
all classes. This means that a linguistic rule with φ  in the 
consequent part is generated when there are no patterns 
compatible with that rule. In this paper, linguistic rules 
with φ  in the consequent part are referred to as "dummy 
rules" because those rules have no effect on the 
classification phase of new patterns. 
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Fig.4  Antecedent fuzzy sets and given patterns 

 
   The grades of certainty of all dummy rules are 
specified as CFj = 0 . For non-dummy rules, the grade of 
certainty CFj  is determined as 
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where  
     β β= −

≠
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Class h
h h

c 1 .                 (8) 
 
The grade of certainty CFj  is maximum (i.e., CFj =1) 

when βClass $h > 0 and βClass h = 0 for h h≠ $ . That is, if 
all the patterns compatible with the j-th linguistic rule R j  

belong to the same class, the grade of certainty CFj  of 
this rule is equal to 1 (the maximum certainty). On the 
contrary, if the total grades of compatibility for the c 
classes are similar to one another (i.e., 
β βClass 1 Class   ≅ ≅... c ), the grade of certainty is nearly 
equal to 0 (the minimum certainty). Among the four 
situations in Fig.4, the grade of certainty CFj  is 
maximum in Fig.4(a), and it is minimum in Fig.4(d). The 
grade of certainty CFj  in Fig.4(b) is larger than that in 
Fig.4(c). 
   By applying the rule generation procedure to all the 
linguistic rules in (3), we have r ( r n= 6 ) linguistic rules 



including dummy rules. Let us denote the set of the 
generated r linguistic rules by SALL : 
 
     S j rALL j=  |   {Rule R = 1 2, ,..., }.             (9) 
 
D. Classification of New Patterns 
   Let us denote a subset of the rule set SALL  by S. A 
new pattern xp p pnx x= ( ,..., )1  is classified by linguistic 
rules in S as follows [2-4]. 
 
Step 1: Calculate αClass h  for h c=1 2, ,...,  as  
 

  
α μClass Class 

}
h j p j jCF C h

S

= ⋅ =

∈

max{ ( ) |x     

                                          and Rule R ,j
 (10) 

where μ j p( )x  is the grade of compatibility of xp  to the 
j-th linguistic rule R j , which is defined by (4). 

Step 2: Find the maximum value of αClass h ’s as  
 

α α αClass Class 1 Class   $ max{ , ..., }h c= .       (11) 
 
If two or more classes take the same maximum value in 
(11), then the classification of xp  is rejected (i.e., xp  is 
left as an unclassifiable pattern), else assign xp  to Class 
$h  determined by (11). 

 
   In this procedure, a new pattern xp p pnx x= ( ,..., )1  is 
classified by the linguistic rule that has the maximum 
product of μ j p( )x  and CFj . 
 

3. LINGUISTIC RULE SELECTION BY A 
TWO-OBJECTIVE GENETIC ALGORITHM 

 
A. Problem Formulation 
   Our rule selection problem is to select a small number 
of linguistic rules from the rule set S ALL  to construct a 
compact classification system S  with high classification 
power. Therefore our problem can be written as follows: 
 
     Maximize NCP S( )  and minimize | |S ,    (12) 
     subject to  S SALL⊆ ,                   (13) 
 
where NCP(S) is the number of correctly classified training 
patterns by linguistic rules in a rule set S, and S  is the 
number of the linguistic rules in S. 
 
B. Two-Objective Genetic Algorithm 
   In our former work [4], we applied a single-objective 
genetic algorithm to the rule selection problem by 
combining the two objectives into a scalar fitness function: 
 
     f S W NCP S W SNCP S( ) ( )= ⋅ − ⋅ ,          ( 1 4 ) 
 
where WNCP  and WS  are positive constant weights. 
Because the weight for each objective in the fitness 
function is constant, the search direction of the genetic 

algorithm in [4] is also constant as shown in Fig.5. This 
means that the choice of the weight values in (14) has a 
significant effect on the final solution (i.e., rule set S) 
obtained by the genetic algorithm. Because the importance 
of each objective in the rule selection problem depends on 
the preference of human users, it is not easy to assign 
constant values to the weights WNCP  and WS . Therefore 
we propose a two-objective genetic algorithm to find 
multiple non-dominated solutions of the two-objective rule 
selection problem in (12)-(13). Human users will choose a 
final solution (i.e., rule set S) from the obtained 
non-dominated solutions. 
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Fig.5  Search direction of a single-objective genetic 

algorithm 
 
   As in [4], each rule set S is treated as an individual in 
our two-objective genetic algorithm. Each rule set S (i.e., 
each individual) is represented by a string as S s s sr= 1 2...  
where r is the number of all the linguistic rules in SALL  
and s j = −1 1 0,  or  means the following: 

s j =1 means that the j-th rule is included in the rule set S, 
s j = −1 means that the j-th rule is not included in S, 
s j = 0  means that the j-th rule is a dummy rule. 

   Since dummy rules have no effect on the classification 
phase of new patterns, they should be excluded from a rule 
set S. Therefore the special coding s j = 0  is assigned to 
them. A string S s s sr= 1 2...  is decoded as  
 
     S R s j rj j= = ={ | ; ,2,... , }Rule    1 1 .          (15) 
   Our two-objective genetic algorithm differs from 
single-objective algorithms in its selection procedure and 
elitist strategy. The selection probability in our 
two-objective genetic algorithm is specified according to 
the fitness function f S( )  in (14) with randomly specified 
weight values. That is, when each pair of parent individuals 
are selected, the values of the weights WNCP  and WS  
are assigned as 
 



     WNCP : a random real number in [0, 1],    (16) 
     WS : W WS NCP= −1 .                  (17) 
 
   In our two-objective genetic algorithm, multiple 
solutions are preserved from the current generation to the 
next generation as elite solutions. Those elite solutions are 
randomly selected from a tentative set of non-dominated 
solutions that is stored and updated at each generation of 
our two-objective genetic algorithm. Multiple search 
directions in Fig.6 are realized by the selection procedure 
with random weight values and the elitist strategy with 
multiple elite solutions. 
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Fig.6  Search directions of our two-objective genetic 

algorithm 
 
 
   The outline of our two-objective genetic algorithm can 
be written as follows: 
 
Step 0 (Initialization): Generate an initial population 
containing N pop  strings where N pop  is the number of 
strings in each population. 
Step 1 (Evaluation): Calculate the values of the two 
objectives for the generated strings. Update the tentative 
set of non-dominated solutions. 
Step 2 (Selection): Calculate the fitness value of each 
string using random weight values. Select a pair of strings 
from the current population according to the following 
selection probability. The selection probability P S( )  of a 
string S  in a population Ψ  is specified as  
 

     P S
f S f S
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S
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  Ψ

,            (18) 

where  
     f S f S Smin ( ) min{ ( ) | }= ∈  Ψ .           ( 1 9 ) 
 
This procedure is repeated for selecting N pop / 2  pairs of 
parent strings. 
Step 3 (Crossover): For each selected pair, apply a 
crossover operation to generate two strings. 

Step 4 (Mutation): For each bit value of the generated 
strings by the crossover operation, apply a mutation 
operation with a pre-specified mutation probability. 
Step 5 (Elitist strategy): Randomly remove Nelite  
strings from the generate N pop  strings, and add Nelite  
solutions that are randomly selected from the tentative set 
of non-dominated solutions. 
Step 6 (Termination test): If a pre-specified stopping 
condition is not satisfied, return to Step 1. 
 
C. Computer Simulation 
   We applied the two-objective genetic algorithm to the 
well-known iris data (see, for example, Fisher [6]) for 
selecting linguistic rules. The classification problem of the 
iris data is a three-class problem with four attributes. In 
each class, 50 patterns are given (total 150 patterns). Since 
the iris data has four attributes, 6 12964 =  linguistic rules 
were generated as candidate rules. 
   By the two-objective genetic algorithm, non-dominated 
solutions in Table 1 were obtained. In Table 1, 146 patterns 
(97.3%) are correctly classified by six linguistic rules, 145 
patterns (96.7%) by five linguistic rules and so on. If the 
human user prefers a high classification rate, he/she would 
choose the rule set with six linguistic rules in Table 1. On 
the contrary, if the human user prefers the compactness of 
rule sets to the high classification performance, he/she 
would choose the rule set with three linguistic rules in 
Table 1. Those three rules are shown in Fig.7. We can 
linguistically interpret the three rules in Fig.7 as follows by 
ignoring “don’t care” attributes: 
 
   If x1  is medium small and x4  is small then Class 1, 
   If x3  is medium then Class 2, 
   If x4  is medium large then Class 3. 

 
Table 1  Non-dominated solutions obtained by the 

two-objective genetic algorithm 
 

NCP(S) 146 145 144 141 99 50 0 
|S| 6 5 4 3 2 1 0 
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Fig.7  Selected three linguistic rules  

 



4. A HYBRID GENETIC ALGORITHM 
 
   In this section, we show that the classification 
performance of selected linguistic rules can be improved 
by combining a learning method of fuzzy if-then rules [5] 
into our two-objective genetic algorithm. 
 
A. Learning of Linguistic Classification Rules 
   From the classification procedure in Subsection 2.D, 
we can see that a pattern xp p pnx x= ( , )1  ...,   is classified 

by a linguistic rule R j$  that satisfies the following 

relation:  
μ μ$ $( ) max{ ( ) | }j p j j p j jCF CF R Sx x⋅ = ⋅ ∈  Rule   . (20) 

 
If the consequent class Cj$  of this rule is the same as the 
actual class of xp , x p  is correctly classified, otherwise 
xp  is misclassified. 
   When xp  is correctly classified by the linguistic rule 
R j$ , the grade of certainty CFj$  of this rule is increased as 

the reward of the correct classification [5]:  
     CF CF CFj

new
j
old

j
old

$ $ $( )= + ⋅ −η1 1 ,           (21) 
 
where η1 is a positive learning constant for increasing the 
grade of certainty. On the contrary, when xp  is 
misclassified by the linguistic rule R j$ , the grade of 

certainty CFj$  of this rule is decreased as the punishment 
of the misclassification [5]:  
     CF CF CFj

new
j
old

j
old

$ $ $= − ⋅η2 ,              (22) 
 
where η2  is a positive learning constant for decreasing 
the grade of certainty. 
 
B. A Hybrid Genetic Algorithm 
   The learning method of the grade of certainty described 
in the last subsection is incorporated into our two-objective 
genetic algorithm. Since the learning method can be 
applicable to any rule set S, we apply it to half of the rule 
sets (i.e., half of the individuals) generated by the 
crossover and the mutation in the two-objective genetic 
algorithm. 
 
C. Simulation Result 
   We apply the hybrid two-objective genetic algorithm to 
the classification problem of the iris data. We show the 
obtained non-dominated solutions in Table 2. From the 
comparison of Table 2 with Table 1, we can see that the 
learning method incorporated in the two-objective genetic 
algorithm improved the classification performance (i.e., 
NCP S( )  in each table) of the selected linguistic rules. 
 

Table 2  Non-dominated solutions obtained by the hybrid 
two-objective genetic algorithm  

NCP(S) 150 149 147 145 100 50 0 
|S| 11 6 5 4 2 1 0 

  
5. CONCLUSION  

   In this paper, we proposed a two-objective genetic 
algorithm to find non-dominated solutions of the rule 
selection problem of linguistic classification rules with two 
objectives: to maximize the number of correctly classified 
training patterns and to minimize the number of selected 
rules. We also extended the two-objective genetic 
algorithm to a hybrid algorithm where a learning method 
was applied to rule sets generated by genetic operations. 
The selection of a final rule set from the obtained 
non-dominated solutions should be done based on the 
preference of human users. 
 

REFERENCES  
[1] C.C.Lee, Fuzzy logic in control systems: fuzzy logic 

controller - Part I and Part II, IEEE Trans. on SMC 20 
(1990) 404-435. 

[2] H.Ishibuchi, K.Nozaki, N.Yamamoto and H.Tanaka, 
Selecting fuzzy if-then rules for classification 
problems using genetic algorithms, IEEE Trans. on 
Fuzzy Systems 3 (1995, in press). 

[3] H.Ishibuchi, K.Nozaki, N.Yamamoto and H.Tanaka, 
Construction of fuzzy classification systems with 
rectangular fuzzy rules using genetic algorithms, Fuzzy 
Sets and Systems 65 (1994) 237-253. 

[4] H.Ishibuchi, T.Murata and I.B.Turksen, A 
genetic-algorithm-based approach to the selection of 
linguistic classification rules, Proc. of the 3rd EUFIT 
(August 28-31, 1995, Aachen, Germany, in press). 

[5] K.Nozaki, H.Ishibuchi and H.Tanaka, Trainable fuzzy 
classification systems based on fuzzy if-then rules, 
Proc. of 3rd FUZZ-IEEE (Orlando, USA, June 26-29, 
1994) 498-502. 

[6] R.A.Fisher, The use of multiple measurements in 
taxonomic problems, Annals of Eugenics 7 (1936) 
179-188. 


