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Abstract. In this paper, we examine the use of biased neighborhood structures for local search in 

multiobjective memetic algorithms. Under a biased neighborhood structure, each neighbor of the 

current solution has a different probability to be sampled in local search. In standard local search, 

all neighbors of the current solution usually have the same probability because they are randomly 

sampled. On the other hand, we assign larger probabilities to more promising neighbors in order to 

improve the search ability of multiobjective memetic algorithms. In this paper, we first explain our 

multiobjective memetic algorithm, which is a simple hybrid algorithm of NSGA-II and local 

search. Then we explain its variants with biased neighborhood structures for multiobjective 0/1 

knapsack and flowshop scheduling problems. Finally we examine the performance of each variant 

through computational experiments. Experimental results show that the use of biased 

neighborhood structures clearly improves the performance of our multiobjective memetic 

algorithm. 

Keywords: Multiobjective memetic algorithms, multiobjective optimization, 

evolutionary computation, knapsack problems, flowshop scheduling problems. 

1. Introduction 

Search ability of evolutionary algorithms for single-objective optimization 

problems is often significantly improved by the hybridization with local search. 

Such a hybrid algorithm is referred to as a memetic algorithm (Moscato 1999). 

High search ability of memetic algorithms has been reported in the literature 

(Krasnogor and Smith 2005; Ong et al. 2006; Smith 2007). An interesting issue is 

the adaptation of local search (Krasnogor et al. 2002; Ong and Keane 2004; Jakob 

2006; Caponio et al. 2007). Adaptive memetic algorithms with multiple local 

search strategies are often called multimeme algorithms (Krasnogor et al. 2002). 
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 Memetic algorithms have been applied to not only single-objective but 

also multiobjective problems (Knowles and Corne 2005). The main difficulty in 

the design of multiobjective memetic algorithms is the implementation of local 

search. This is because local search is basically a single-objective optimization 

technique. In its application to multiobjective problems, the comparison between 

the current solution and its neighbor should be based on multiple objectives. They 

are often non-dominated with each other. In this case, we can not say which is 

better between the current solution and its neighbor. 

 Some multiobjective memetic algorithms (MOMAs) use a weighted sum 

fitness function in local search to determine which is better between the current 

solution and its neighbor (Ishibuchi and Murata 1998; Jaszkiewicz 2002a; 

Ishibuchi et al. 2003; Jaszkiewicz 2004). Other MOMAs use Pareto dominance-

based local search together with a secondary criterion for tiebreak (Knowles and 

Corne 2000a; Murata et al. 2003). These two types have been compared with each 

other (Knowles and Corne 2000b; Jaszkiewicz 2001; Ishibuchi and Narukawa 

2004). Experimental results in these studies showed that better convergence to the 

Pareto front was obtained by Pareto dominance-based local search while better 

diversity along the Pareto front was obtained by weighted sum-based local search. 

It has also been reported in the literature (Jaszkiewicz 2002b; 2004) that MOMAs 

outperform pure multiobjective evolutionary algorithms (MOEAs) in their 

applications to knapsack problems. 

 As in the case of single-objective memetic algorithms (SOMAs), the 

adaptation of local search is an interesting issue in the design of MOMAs. This 

issue, however, has not been discussed in the literature for multiobjective 

optimization with only a few exceptions (Guo et al. 2006). This is because the 

implementation of local search itself is still a challenging issue in the design of 

MOMAs. In this paper, we empirically examine the use of biased neighborhood 

structures for local search in MOMAs. In almost all of the above-mentioned 

studies on MOMAs, a neighbor of the current solution is randomly generated 

from its neighborhood. Thus each neighbor has the same probability to be 

sampled in local search. It would, however, improve the search ability of MOMAs 

if we sample more promising neighbors with larger probabilities in local search. 

This is the basic idea behind the use of biased neighborhood structures for local 

search in MOMAs. In this paper, we implement this idea for multiobjective 0/1 
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knapsack problems (Zitzler and Thiele 1999) and multiobjective flowshop 

scheduling problems (Ishibuchi et al. 2003).  

 This paper is organized as follows. In Section 2, we explain a simple 

multiobjective genetic local search (S-MOGLS) algorithm. Our S-MOGLS is 

implemented by combining local search into NSGA-II of Deb et al. (2002) in a 

straightforward manner. When local search frequency is zero (i.e., the local search 

application probability is zero), our S-MOGLS is exactly the same as NSGA-II. 

We use such a simple MOMA in order to examine the effect of local search on the 

performance of MOMAs. In Section 3, we implement two variants of S-MOGLS 

for multiobjective 0/1 knapsack problems. Different problem-specific knowledge 

is incorporated into local search in each variant. In these variants, some neighbors 

have higher probabilities to be sampled in local search than others. We also 

implement a variant of S-MOGLS for multiobjective flowshop scheduling 

problems in Section 3 by incorporating problem-specific knowledge into local 

search. In Section 4, we examine the performance of each algorithm (i.e., NSGA-

II, S-MOGLS and its variants) through computational experiments. Experimental 

results show that the performance of S-MOGLS is significantly improved by the 

incorporation of problem-specific knowledge into local search (i.e., by the use of 

biased neighborhood structures). It is also shown that the performance of NSGA-

II is significantly improved by the hybridization with local search. Finally we 

conclude this paper in Section 5. 

2. Multiobjective Memetic Algorithms 

In this section, we first explain some basic concepts of multiobjective 

optimization. Next we explain the outline of our multiobjective memetic 

algorithm called S-MOGLS. Then we implement our S-MOGLS algorithm for 

multiobjective 0/1 knapsack and flowshop scheduling problems. 

2.1 Multiobjective Optimization 

Let us consider the following k-objective maximization problem: 

  Maximize ,        (1) 

  subject to ,          (2) 
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where z is the objective vector,  is the i-th objective to be maximized, x is 

the decision vector, and X is the feasible region in the decision space. 

 Let x and y be two feasible solutions (i.e., feasible decision vectors) of the 

k-objective maximization problem in (1)-(2). If the following conditions hold, y 

can be viewed as being better than x: 

  ,   and  , .      (3) 

In this case, we say that y dominates x (equivalently x is dominated by y). 

 When x is not dominated by any other feasible solutions (i.e., when there 

exists no feasible solution y that dominates x), the solution x is referred to as a 

Pareto-optimal solution of the k-objective maximization problem in (1)-(2). The 

set of all Pareto-optimal solutions forms the tradeoff surface in the objective 

space. This tradeoff surface in the objective space is referred to as the Pareto 

front. Various EMO algorithms have been proposed to efficiently search for 

Pareto-optimal solutions as many as possible along the entire Pareto front by their 

single run (Deb 2001; Coello et al. 2002; Coello and Lamont 2004). 

2.2 Outline of S-MOGLS 

We use a simple multiobjective genetic local search (S-MOGLS) algorithm, 

which is a hybrid version of NSGA-II (Deb et al. 2002) with local search, in order 

to examine the effect of local search in comparison with the performance of the 

well-known base algorithm: NSGA-II. The outline of our S-MOGLS can be 

written as follows: 

 

Step 1: P := Initialize (P) 

Step 2: while a termination condition is not satisfied, do 

Step 3:     P’ := Selection (P) 

Step 4:     P’’ := Genetic Operations (P’) 

Step 5:     P’’’ := Local Search (P’’) 

Step 6:     P := Generation Update (P P’’ P’’’) 

Step 7: end while 

Step 8: return (Non-dominated solutions (P)) 

 

 This is a general framework of MOMAs where local search is invoked in 



H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima, "Use of biased neighborhood structures 

in multiobjective memetic algorithms," Soft Computing (in press).  

-5- 

every generation. In some MOMAs, local search is not used in every generation 

(e.g., it is used in every ten generations). In other MOMAs, local search is used in 

only the initial or final generation. 

 In Step 1, an initial population P is randomly generated. In Step 3, a 

prespecified number of pairs of parent solutions (i.e., a parent population P’) are 

selected from the current population P using binary tournament selection with 

replacement. The number of pairs of parent solutions is the same as the population 

size when a single offspring is generated from each pair of parent solutions. Each 

solution is evaluated in the same manner as NSGA-II for parent selection. That is, 

the primary criterion is the rank of each solution, which is assigned based on 

Pareto-dominance relation. The best rank is assigned to solutions that are not 

dominated by any other solutions in P. The second rank is assigned to solutions 

that are not dominated by any other solutions in P except for the best rank 

solutions. In this manner, all solutions in P are sorted based on Pareto-dominance 

relation. When two solutions have the same rank, they are compared with each 

other using a secondary criterion called a crowding distance. Roughly speaking, 

the crowding distance of a solution is the sum of axis-wise distances between its 

adjacent two solutions with respect to the k axes of the objective space (for details, 

see Deb 2001 and Deb et al. 2002).  

 In Step 4, an offspring solution is generated from each pair of parent 

solutions by crossover and mutation. As a result, an offspring population P’’ is 

generated. In Step 5, local search is probabilistically applied to each solution in 

the offspring population P’’. Only when a solution in P’’ is improved by local 

search, the obtained solution by local search is inserted into the improved 

population P’’’. The next population in Step 6 is chosen from the current 

population P, the offspring population P’’, and the improved population P’’’ in 

the same manner as NSGA-II (i.e., using the rank and the crowding distance of 

each solution). When the local search application probability is zero in Step 5, our 

S-MOGLS is exactly the same as NSGA-II. 

2.3 Local Search in S-MOGLS 

In local search, we use the following weighted sum fitness function:  

  ,       (4) 
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where  is a non-negative weight vector. In this paper, we first 

generate a set of uniformly distributed weight vectors using the following 

formulation as in Murata et al. (2001): 

  ,          (5) 

   for .         (6) 

 For example, we have six weight vectors (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 

0), (0, 1, 1), (0, 0, 2) when the value of d is specified as d =2 for k =3. In our 

computational experiments, the value of d is specified as d =100 for k =2 (i.e., 101 

weight vectors), d =13 for k =3 (i.e., 105 weight vectors), d =7 for k =4 (i.e., 120 

weight vectors), and d =7 for k =6 (i.e., 792 weight vectors). 

 When local search is employed, a weight vector is randomly drawn from 

the weight vector set generated by the above-mentioned method. Then an initial 

solution for local search is selected from the offspring population P’’ using 

tournament selection with replacement. In order to choose a good initial solution 

for local search, we use a large tournament size (20 in our computational 

experiments). Solutions are compared with each other based on the weighted sum 

fitness function with the current weight vector in tournament selection. The same 

weighted sum fitness function is used for local search from the chosen initial 

solution. That is, the current solution and its neighbor are compared with each 

other in local search based on the weighted sum fitness function with the current 

weight vector. A neighbor is randomly generated from the neighborhood of the 

current solution. When a better neighbor is found, the current solution is replaced 

with that neighbor. This means that we adopt the first move strategy (i.e., the 

strategy to move to a neighbor that is first found to be better than the current 

solution). When a better neighbor is not found among a prespecified number of 

randomly drawn neighbors (say, among Lfail neighbors), the local search 

procedure is terminated. That is, Lfail is the upper bound on the number of 

successive failure attempts. In our computational experiments, Lfail is specified as 

Lfail =5. The local search procedure is also terminated by the total number of 

examined neighbors in a series of local search from the initial solution (say, 

Lsearch neighbors). That is, Lsearch is the upper bound on the total number of 

attempted local moves in a series of local search from a single initial solution. In 
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our computational experiments, Lsearch is specified as Lsearch =20. We 

simultaneously use these two termination conditions. That is, local search is 

terminated when at least one of these two conditions is satisfied. If the initial 

solution is improved by local search, the final solution is added to the improved 

population P’’’.  

 Local search is applied with a local search application probability PLS, 

which is specified as PLS = 0.1 in our computational experiments. The selection of 

an initial solution and the probabilistic application of local search are iterated 

Npop times in each generation where Npop is the population size. Almost the same 

local search procedure can be more efficiently executed by calculating the number 

of solutions to which local search is applied in each generation as  

where  shows the largest integer that is smaller than or equal to X. This 

efficient implementation, however, is not used in our computational experiments 

since it slightly changes the original algorithm of S-MOGLS. 

It should be noted that a weight vector is randomly drawn whenever an 

initial solution for local search is to be selected. This means that local search from 

each initial solution is governed by the weighted sum fitness function with a 

different weight vector. This is to search for a variety of Pareto-optimal solutions 

with a wide range of objective values along the entire Pareto front. 

2.4 Implementation for Knapsack Problems 

In this subsection, we explain the implementation of S-MOGLS for multi-

objective 0/1 knapsack problems of Zitzler and Thiele (1999). In general, a k-

objective n-item 0/1 knapsack problem (k-n problem) in Zitzler and Thiele (1999) 

is written as follows: 

  Maximize ,       (7) 

  subject to ,  ,       (8) 

      0 or 1, ,       (9) 

where 

  ,  .       (10) 
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In this formulation, x is an n-dimensional binary vector, pij is the profit of item j 

according to knapsack i, wij is the weight of item j according to knapsack i, and ci 

is the capacity of knapsack i. Each solution x is handled as a binary string of 

length n. In Zitzler and Thiele (1999), nine test problems were examined. Each 

test problem has two, three or four objectives and 250, 500 or 750 items (i.e., 2-

250, 2-500, 2-750, 3-250, 3-500, 3-750, 4-250, 4-500, and 4-750 test problems).  

 In the following, we explain problem-specific procedures in S-MOGLS for 

multiobjective 0/1 knapsack problems: repair, genetic operations, and local 

search. 

 In S-MOGLS, initial solutions are randomly generated. Such an initial 

solution does not always satisfy the constraint conditions in (8). Genetic 

operations and local moves also generate infeasible solutions even when their 

parents are feasible. We use a repair procedure based on a maximum profit/weight 

ratio as in Zitzler and Thiele (1999). When an infeasible solution is generated, a 

feasible solution is created by removing items in ascending order of the following 

maximum profit/weight ratio until the constraint conditions are satisfied:  

  , .     (11) 

The repair of infeasible solutions is implemented in the Lamarckian manner. That 

is, repaired strings are used in genetic operations in the next generation. For the 

comparison between the two repair schemes (i.e., Lamarckian and Baldwinian), 

see Ishibuchi et al. (2005). 

 As a crossover operator, we apply one-point crossover with a prespecified 

crossover probability to each pair of parent solutions. Whereas two offspring are 

generated from each pair of parent solutions by this crossover operation, only a 

single offspring is randomly chosen. The chosen offspring is used in mutation (the 

other offspring is discarded). When crossover is not applied, one of the two 

parents is randomly chosen and used in mutation. Bit-flip mutation is applied to 

each bit value of the chosen offspring (or parent) with a prespecified mutation 

probability. After mutation, the above-mentioned repair procedure is applied to 

the generated solution if it is infeasible. These genetic operations are iterated Npop 

times to construct an offspring population P’’ of size Npop. 

 Then local search is applied to the generated offspring population P’’. As 

we have already explained, local search is probabilistically applied to a solution 
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selected from P’’ by tournament selection of size 20. A neighbor is generated by 

flipping each bit value of the current solution with a prespecified probability (1/n 

in our computational experiments where n is the number of items, i.e., n is the 

string length). When the generated neighbor is infeasible, the above-mentioned 

repair procedure is used to generate a feasible neighbor. The probabilistic bit-flip 

operation and the repair procedure are exactly the same as those in mutation. The 

generated neighbor is accepted only when it is better than the current solution in 

local search. On the other hand, mutated offspring are always accepted after repair 

independently of their fitness values in mutation.   

2.5 Implementation for Flowshop Scheduling Problems 

In this subsection, we explain the implementation of S-MOGLS for multi-

objective flowshop scheduling problems in Ishibuchi et al. (2003). Each solution 

of a flowshop scheduling problem with n jobs is represented by a permutation of 

the given n jobs {J1, J2, ..., Jn}. A three-objective test problem with n jobs in 

Ishibuchi et al. (2003) is written as 

 Minimize ,       (12) 

 Minimize ,     (13) 

 Minimize ,         (14) 

where x, Cj  and dj  are a permutation of the given n jobs, the completion time of 

the jth job, and its due-date, respectively. The first objective is to minimize the 

makespan, the second objective is to minimize the maximum tardiness, and the 

third objective is to minimize the total flow time. Two-objective test problems in 

Ishibuchi et al. (2003) have only the first two objectives: f1(x) and f2(x).  

 Each test problem has two or three objectives and 20, 40, 60 or 80 jobs. 

All test problems have 20 machines. We denote the k-objective flowshop 

scheduling problem with n jobs as the k-n problem (i.e., 2-20, 2-40, 2-60, 2-80, 3-

20, 3-40, 3-60 and 3-80 problems). 

 In the following, we explain problem-specific procedures in S-MOGLS for 

multiobjective flowshop scheduling: genetic operations and local search. 

 In S-MOGLS, initial solutions are randomly generated as permutations of 

the given n jobs. No repair procedure is needed because all permutations are 
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feasible solutions in flowshop scheduling. As a crossover operator, we use two-

point order crossover in Fig. 1 to generate a single offspring. In this crossover, 

two crossover points are randomly chosen to divide each parent into three parts. 

All jobs (A, B, G and H in Fig. 1) outside the crossover points are inherited from 

one parent (Parent 1 in Fig. 1) to the offspring with no changes. The other jobs (C, 

D, E and F in Fig. 1) are sorted in the same order as in the other parent (Parent 2 

in Fig. 1). As a mutation operator, we use insertion in Fig. 2. This mutation is 

often referred to as shift. In this mutation, a randomly chosen job (F marked by * 

in Fig. 2) is inserted to a randomly chosen position (the 2nd locus marked by ** in 

Fig. 2). We use two-point order crossover and insertion mutation because good 

results were obtained by this combination of genetic operations in Murata et al. 

(1996) for flowshop scheduling to minimize the makespan. Insertion is also used 

to generate a neighbor from the current solution in local search. 

 

 

Fig. 1.  Two-point order crossover. 

 

 

Fig. 2.  Insertion (shift) mutation. 

 

3. MOGLS with Biased Neighborhood Structures 

In this section, we explain the implementation of biased neighborhood structures 

using problem-specific knowledge for the multiobjective 0/1 knapsack and 

flowshop scheduling problems. Effects of the use of biased neighborhood 

structures on the performance of S-MOGLS are examined in the next section.  
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3.1  Weighted Ratio Repair: MOGLS-WR 

First we show that the use of the weighted sum fitness function in repair indirectly 

biases the neighborhood structure in local search for multiobjective 0/1 knapsack 

problems. 

 In an MOMA of Jaszkiewicz (2001; 2002b), the weighted sum fitness 

function in (4) was used for repair in the following manner: An infeasible solution 

is repaired by removing items in ascending order of the weighted profit/weight 

ratio: 

 ,  ,       (15) 

where  is the current weight vector used in local search.  

 It should be noted that the weighted ratio repair is applicable to infeasible 

solutions only in local search with the weighted sum fitness function. Thus we 

still use the maximum ratio repair for infeasible solutions generated by genetic 

operations (and for infeasible solutions in an initial population). 

 For illustrating the difference between the maximum ratio repair in (11) 

and the weighted ratio repair in (15), we randomly generated an n-dimensional 

binary vector  by assigning 0 with the probability 0.4 and 1 with 

the probability 0.6 to each . Then we repaired the generated binary vector 

using one of the two repair methods. If the generated binary vector was feasible, 

we randomly generated another binary vector in the same manner. The random 

generation of an infeasible solution and the application of a repair method to the 

generated infeasible solution were iterated to obtain a prespecified number of 

feasible solutions. Then we drew the trajectory from each infeasible solution to its 

repaired one in the objective space. 

 In Fig. 3 (a), we show the trajectories from ten infeasible solutions by the 

maximum ratio repair for the 2-500 knapsack problem. In this figure, infeasible 

and feasible solutions are denoted by open and closed circles, respectively. It 

should be noted that the same order of items specified by (11) was always used 

for all the ten infeasible solutions in the case of the maximum ration repair. Thus 

the directions of the trajectories are similar to each other in Fig. 3 (a). On the other 

hand, we show the trajectories from the same ten infeasible solutions by the 
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weighted ratio repair in Fig. 3 (b)-(d). The weight vector  was specified 

as (0.5, 0.5) in Fig. 3 (b), (0.9, 0.1) in Fig. 3 (c), and (0.1, 0.9) in Fig. 3 (d) just for 

illustration purpose. In Fig. 3 (b) with the same weight for the two objectives, the 

directions of the trajectories are similar to those in Fig. 3 (a) with the maximum 

ratio repair. The weighted ratio repair in Fig. 3 (c) tried to find feasible solutions 

with large values of the first objective because the weight for the first objective 

was large (i.e., 0.9). On the contrary, the weighted ratio repair in Fig. 3 (d) tried to 

find feasible solutions with large values of the second objective. 

    
       (a) Maximum ratio repair.       (b) Weighted ratio repair with (0.5, 0.5). 

    
 (c) Weighted ratio repair with (0.9, 0.1).      (d) Weighted ratio repair with (0.1, 0.9). 

Fig. 3. Infeasible solutions (open circles) and repaired solutions (closed circles). 

 

 From Fig. 3, we can see that the probability of each feasible neighbor to be 

sampled from the current solution in local search strongly depends on the 
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specification of the weight vector used in the weighted ratio repair. This means 

that the neighborhood structure is indirectly biased by the weight vector in local 

search.  

 Jaszkiewicz (2004) used the weighted profit/weight ratio in (15) not only 

for repair but also for item inclusion. An infeasible solution was first repaired by 

the weighted ratio repair in local search. Then the inclusion of each item into the 

repaired solution was examined in descending order of the weighted profit/weight 

ratio. We use this weighted ratio inclusion strategy as well as the weighted ratio 

repair in local search. When a generated neighbor in local search is feasible (i.e., 

when repair is not needed for the generated neighbor), we apply only the weighted 

ratio inclusion to the generated neighbor. In this paper, the S-MOGLS algorithm 

with the weighted ratio repair and inclusion is referred to as MOGLS-WR because 

the weighted ratio repair has a dominant effect on biasing the neighborhood 

structure. 

3.2  Different Bit-Flip Probabilities: MOGLS-BF 

In the previous subsection, we indirectly biased the neighborhood structure using 

the weighted ratio repair. In this subsection, we directly bias the neighborhood 

structure. 

 A good approximate solution can be obtained for a single-objective 0/1 

knapsack problem by simply choosing items in descending order of the 

profit/weight ratio. For convenience of explanation, let us assume that n items in 

the single-objective 0/1 knapsack problem have already been sorted in descending 

order of the profit/weight ratio. That is, small item numbers close to 1 mean good 

items while large item numbers close to n mean bad items. Let us assume that the 

first Nitem items are included in an approximate solution generated by the above-

mentioned heuristic manner (the other items are not included in the solution). 

Now we consider local search from this approximate solution. This solution is not 

likely to be improved by removing good items with small item numbers. It is not 

likely to be improved by including bad items with large item numbers, either. On 

the contrary, promising neighbors seem to be generated by exchanging items with 

intermediate item numbers close to Nitem. These discussions suggest the use of a 

different bit-flip probability for each item in local search: larger bit-flip 
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probabilities for items with intermediate item numbers close to Nitem than good 

items with small item numbers and bad items with large item numbers.  

 In the case of multiobjective 0/1 knapsack problems, it is not easy to sort 

items based on their profit/weight ratios because multiple profits are involved in 

each item. It is not the case, however, in weighted sum-based local search because 

multiple objectives are combined into a single weighted sum fitness function. That 

is, we can use the weighted profit/weight ratio in (15) for sorting items in local 

search.  

 When an initial solution is chosen for local search based on the weighted 

sum fitness function, we sort items (i.e., we tentatively renumber items) in 

descending order of the weighted profit/weight ratio using the current weight 

vector. Since we use a prespecified number of uniformly distributed weight 

vectors, the sorting of items can be preformed for each weight vector before the 

execution of our S-MOGLS algorithm.  

 Let Nitem be the number of items in the current solution. We assign larger 

bit-flip probabilities to items with intermediate item numbers close to Nitem than 

good items with small item numbers and bad items with large item numbers. In 

our computational experiments, we assign a larger bit-flip probability to 20 items 

from the (Nitem − 9)th item to the (Nitem + 10)th item than the other items. More 

specifically, the bit-flip probability for these 20 items is 1/20 while it is zero for 

the other items. That is, we concentrate local search on the examination of these 

20 items. In this manner, we directly bias the neighborhood structure in local 

search for sampling more promising neighbors with larger probabilities. 

 It should be noted that the value of Nitem is recalculated when the current 

solution is replaced with its neighbor in local search. It should also be noted that 

the n items are tentatively renumbered by the current weight vector when a new 

initial solution is selected for local search. We bias the neighborhood structure in 

the above-mentioned manner using different bit-flip probabilities in MOGLS-WR 

(i.e., we use different bit-flip probabilities explained in this subsection together 

with the weighted ratio repair and inclusion explained in the previous subsection). 

In this paper, the MOGLS-WR algorithm with different bit-flip probabilities is 

referred to as MOGLS-BF in order to clearly show that the neighborhood 

structure is directly biased by the use of different bit-flip probabilities.  
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3.3  Maximum Tardiness Insertion: MOGLS-MT 

We have already explained two variants of S-MOGLS for multiobjective 0/1 

knapsack problems (i.e., MOGLS-WR and MOGLS-BF). In this subsection, we 

explain a variant of S-MOGLS for multiobjective flowshop scheduling problems 

where the neighborhood structure is biased by assigning a different insertion 

probability to each job. 

 From the definition of the second objective (i.e., maximum tardiness) in 

(13) of our two-objective and three-objective flowshop scheduling problems, we 

can see that its objective value is determined by a single job with the largest delay. 

Thus the second objective is likely to be improved by moving this job to an earlier 

position in the current solution by an insertion move. Let us assume that the jth 

processing job has the largest delay in the current solution. In this case, the second 

objective is likely to be improved by inserting this job to one of the first ( j − 1) 

positions. The inserted position is randomly chosen from these ( j − 1) positions 

with the same probability (i.e., each position is chosen with the probability 

1/( j − 1)). Since this heuristic insertion move is effective only for the second 

objective, we also use the standard insertion move (i.e., insertion of a randomly 

chosen job into a randomly chosen position). 

 In our computational experiments, the heuristic insertion for improving the 

maximum tardiness is used with the probability PMT while the standard insertion 

is used with the probability (1 −PMT). It should be noted that we always use the 

standard insertion in mutation (i.e., the heuristic insertion is used only in local 

search). In this paper, the S-MOGLS algorithm with the heuristic insertion is 

referred to as MOGLS-MT in order to clearly indicate that the neighborhood 

structure is biased for improving the maximum tardiness (i.e., the second 

objective). 

4. Computational Experiments 

In this section, we examine the performance of each algorithm (i.e., NSGA-II, S-

MOGLS and its three variants) through computational experiments. Experimental 

results clearly show the effectiveness of the use of biased neighborhood 

structures. 



H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima, "Use of biased neighborhood structures 

in multiobjective memetic algorithms," Soft Computing (in press).  

-16- 

4.1  Performance Measures 

In the field of evolutionary multiobjective optimization, a number of performance 

measures have already been proposed to evaluate the quality of an obtained non-

dominated solution set (e.g., see Deb 2001). The performance of MOEAs and 

MOMAs has been evaluated by such a performance measure. It is, however, also 

shown that no single performance measure can simultaneously evaluate various 

aspects of an obtained non-dominated solution set such as its diversity along the 

Pareto front and its convergence to the Pareto front (see Zitzler et al. 2003). That 

is, the use of only a single performance measure is often misleading. 

 In this paper, we use four performance measures. Let S be a set of non-

dominated solutions obtained by an MOEA or MOMA. The proximity of the 

solution set S to the Pareto front is evaluated by the generational distance (GD) as 

follows (Van Veldhuizen 1999):  

 ,       (16) 

where  is the set of all Pareto-optimal solutions and  is the distance 

between a solution x and a Pareto optimal solution y in the k-dimensional 

objective space: 

 .      (17) 

 When the Pareto-optimal solution set  is not known, we construct  

by choosing non-dominated solutions from the set of all the obtained solutions for 

each test problem in our computational experiments (including some preliminary 

experiments for each test problem).  

 Because each objective in our flowshop scheduling problems has a 

different order of magnitude, we use a normalized objective space when we 

calculate the generational distance for each flowshop scheduling problem. More 

specifically, we normalize the objective space of each test problem so that the 

minimum and maximum objective values in  become 0 and 100, respectively. 

Other performance measures, which are explained below, are calculated after the 

same normalization for the flowshop scheduling problems. On the other hand, we 
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do not use such a normalization procedure for the knapsack problems where each 

objective has objective values of the same magnitude.  

 While the generational distance can evaluate only the convergence of the 

solution set S to the Pareto front, the following measure called D1R (Knowles and 

Corne 2002) can evaluate both the convergence and the diversity of S: 

 .       (18) 

This measure was used in Ishibuchi et al. (2003). Almost the same measure was 

also used in Czyzak and Jaszkiewicz (1998). 

 It should be noted that D1R(S) is the average distance from each Pareto-

optimal solution y in  to its nearest solution in S while GD(S) is the average 

distance from each solution x in S to its nearest Pareto-optimal solution in . 

 A simple way to directly evaluate the diversity of solutions in the solution 

set S is to sum up the range of objective values over the k objectives as follows: 

 .      (19) 

 Multiple solution sets can be directly compared with each other using 

Pareto dominance relation. Let us assume that we have h non-dominated solution 

sets , , ..., . First all solutions in these solution sets are compared with 

each other using Pareto dominance relation. Next we remove all solutions that are 

dominated by other solutions. Let  be the set of remaining solutions in the 

solution set . That is, no solutions in  are dominated by any other 

solutions in the h solution sets. Then we calculate the percentage of remaining 

solutions (i.e., the percentage of overall non-dominated solutions) over all 

solutions in each solution set as follows: 

 ,  ,       (20) 

where  is the cardinality of  (i.e., the number of solutions in ).  

 For a two-objective test problem, we can depict a 50% attainment surface 

(Fonseca and Fleming 1996) over multiple runs in order to visually show the 
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performance of each algorithm in the two-dimensional objective space. Roughly 

and informally speaking, the 50% attainment surface can be viewed as a kind of 

median of multiple non-dominated solution sets in the two-dimensional objective 

space. See Fonseca and Fleming (1996) and Deb (2001) for the calculation of the 

50% attainment surface. 

4.2  Results on Knapsack Problems 

We applied each of the four algorithms (i.e., NSGA-II, S-MOGLS, MOGLS-WR 

and MOGLS-BF) to each knapsack problem 30 times. The population size and the 

termination condition (i.e., the total number of examined solutions) were specified 

as in Table 1. The specifications in Table 1 are the same as those in Zitzler and 

Thiele (1999). The other parameters in the four algorithms were specified for all 

the nine knapsack problems as follows: 

Crossover probability: 0.8 (One-point crossover), 

Mutation probability: 1/n where n is the number of items (Bit-flip mutation), 

Local search application probability: 0.1. 

 

 

Table 1. Specifications of the population size and the termination condition for each of the nine 

knapsack problems.  

 

Problem Population size 
Total number of 

examined 
solutions 

2-250 150 75,000 
2-500 200 100,000 
2-750 250 125,000 
3-250 200 100,000 
3-500 250 125,000 
3-750 300 150,000 
4-250 250 125,000 
4-500 300 150,000 
4-750 350 175,000 

 

 

 Experimental results are summarized in Tables 2-5 for the above-

mentioned four performance measures. In each row of these tables, the best result 

is highlighted by bold face with underline. We can see from these tables that the 
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best results were obtained by MOGLS-WR for the two-objective test problems 

(i.e., 2-250, 2-500 and 2-750) and by MOGLS-BF for the three-objective and 

four-objective test problems (i.e., 3-250, 3-500, 3-750, 4-250, 4-500 and 4-750) 

with respect to all the four performance measures. These results show that the use 

of the biased neighborhood structures improved the search ability of S-MOGLS. 

We can also see that MOGLS-WR and MOGLS-BF consistently outperformed 

NSGA-II on all the nine test problems for all the four performance measures. 

 

Table 2. Generational distance for knapsack problems. The termination condition is a prespecified 

number of examined solutions.  

 
MOGLS 

Problem NSGA-
II S WR BF 

2-250  94.8 112.2 14.6  31.4 
2-500 273.6 345.7 37.5  91.9 
2-750 470.1 553.1 46.1 116.1 
3-250 245.2 268.2  85.4 73.5 
3-500 478.4 534.6 175.1 155.5 
3-750 845.5 936.9 223.3 198.5 
4-250 355.2 352.9 153.0 128.1 
4-500 1146.

1 
1074.

3 
377.1 262.8 

4-750 1676.
5 

1551.
6 

551.2 389.7 
 

 

Table 3. D1R measure for knapsack problems. 

 
MOGLS 

Problem NSGA-
II S WR BF 

2-250 390.4 354.4 21.9 41.5 
2-500 819.9 786.5 44.5 114.8 
2-750 1627.

2 
1527.

8 
60.4 173.0 

3-250 508.6 525.1 147.9 135.0 
3-500 1290.

0 
1271.

8 
293.5 267.8 

3-750 2082.
4 

2076.
9 

364.5 331.7 
4-250 597.3 595.1 281.5 256.4 
4-500 1600.

1 
1565.

9 
576.2 494.1 

4-750 2784.
0 

2723.
4 

864.6 712.4 
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Table 4. Range measure for knapsack problems. 

 
MOGLS 

Problem NSGA-
II S WR BF 

2-250 1288.3 1496.2 4520.0 4208.6 
2-500 1654.2 1957.4 7314.5 6352.5 
2-750 2224.5 2815.4 11822.0 10581.9 
3-250 3601.5 3520.5 7489.7 8056.4 
3-500 4410.5 4632.0 13382.9 13975.6 
3-750 4466.4 4713.1 18439.1 19367.9 
4-250 5691.2 5580.8 10180.1 10847.4 
4-500 8763.7 8473.7 19192.3 20372.4 
4-750 9705.1 9469.3 27707.7 30656.3 

 

 

Table 5. Percentage of non-dominated solutions for knapsack problems. 

 
MOGLS 

Problem NSGA-
II S WR BF 

2-250 0.0 0.0 92.6 20.4 
2-500 0.0 0.0 99.4 2.6 
2-750 0.0 0.0 98.3 4.2 
3-250 5.8 3.0 77.0 82.5 
3-500 5.8 2.3 73.3 82.1 
3-750 0.0 0.0 73.7 81.1 
4-250 19.5 18.5 77.5 87.1 
4-500 1.0 1.7 70.5 89.4 
4-750 0.7 1.1 69.7 90.7 

 

 

 One may think that the performance improvement in the two variants of S-

MOGLS with the biased neighborhood structures was achieved at the cost of a 

heavy computational overhead. In order to examine this issue, we also performed 

the same computational experiments using 15 seconds as the termination 

condition of each algorithm on a PC with a Pentium 4, 3.6GHz and 1GB of RAM. 

Experimental results are shown in Table 6. Because the same observations were 

obtained from the two specifications of the termination condition (i.e., the total 

number of examined solutions and the CPU time), we only show experimental 

results for the D1R measure in Table 6. It should be noted that the D1R measure 

can evaluate both the convergence of solutions to the Pareto front and their 
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diversity. As in Table 3, the use of the biased neighborhood structures improved 

the performance of S-MOGLS in Table 6. We can also see that MOGLS-WR and 

MOGLS-BF consistently outperformed NSGA-II in Table 6.  

 

 

Table 6. D1R measure for knapsack problems. The termination condition is a prespecified CPU 

time (15 seconds).  

 
MOGLS 

Problem NSGA-
II S WR BF 

2-250 339.9 273.5 16.7 30.5 
2-500 880.1 768.9 41.5 110.9 
2-750 1951.

3 
1729.

0 
95.2 203.8 

3-250 545.8 507.0 144.7 132.7 
3-500 1657.

4 
1444.

3 
308.6 264.3 

3-750 2808.
5 

2596.
0 

470.5 357.2 
4-250 694.3 641.1 278.8 251.6 
4-500 2141.

5 
1953.

9 
606.1 496.3 

4-750 3777.
1 

3526.
0 

1049.
2 

770.8 
 

 

 

 In order to visually demonstrate the performance improvement of NSGA-

II by the hybridization with local search, we show 50% attainment surfaces 

obtained by NSGA-II, S-MOGLS and MOGLS-WR for the 2-500 knapsack 

problem in Fig. 4. Each algorithm was terminated using 15 seconds as the 

termination condition. For comparison, we also show the Pareto front in Fig. 4. 

From this figure, we can see that the performance of NSGA-II was improved by 

the hybridization with local search in terms of both the diversity of solutions and 

their convergence to the Pareto front. 
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Fig. 4. Comparison of the three algorithms (NSGA-II, S-MOGLS and MOGLS-WR) using the 

50% attainment surface by each algorithm for the 2-500 knapsack problem. The termination 

condition is a prespecified CPU time (15 seconds). 

 

 

 As shown in Tables 2-6, MOGLS-BF was outperformed by MOGLS-WR 

for the two-objective knapsack problems whereas the best results were obtained 

by MOGLS-BF for the other knapsack problems with three or four objectives. 

This means that the concentration of local search on only promising 20 items was 

not effective for the two-objective knapsack problems while it worked very well 

on the other knapsack problems. These observations suggest that broader local 

search is needed for the two-objective knapsack problems. In order to examine 

this issue, we performed computational experiments using various specifications 

of the number of promising items on which local search were concentrated.  

 In MOGLS-BF, the bit-flip probability in local search is 1/20 only for 

promising 20 items and zero for the other items. We generalize MOGLS-BF as 

MOGLS-BF(nBF) where the bit-flip probability in local search is 1/nBF only for 

promising nBF items and zero for the other items. The promising nBF items are 

from the (Nitem + 1 − nBF / 2 )th item to the (Nitem +  nBF / 2 )th item. We applied 

MOGLS-BF(nBF) to each test problem using the total number of examined 

solutions in Table 1 as the termination condition. Experimental results are 
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summarized in Table 7 for the D1R measure. We can see from Table 7 that the 

performance of MOGLS-BF (i.e., BF(20) in Table 7) was improved by the use of 

broader local search (i.e., BF(40) and BF(100)) for the two-objective knapsack 

problems. On the other hand, the best results for the four-objective knapsack 

problems were obtained from the use of narrower local search (i.e., BF(10)). 

These observations suggest that local search strategies can be more sophisticated 

by adjusting them not only to the problem type (e.g., knapsack problems) but also 

to the problem size (e.g., the number of objectives and the number of items). 

 

 

Table 7. D1R measures obtained by MOGLS-BF(nBF) for knapsack problems where local search is 

concentrated on promising nBF items. The bit-flip probability for each of those items is 1/ nBF . 

BF(20) in this table is the same as MOGLS-BF in Tables 2-6. 

 
Problem BF(10) BF(20) BF(40) BF(100) 

2-250 48.5 41.5 31.3 17.6 
2-500 108.7 114.8 106.1 72.5 
2-750 173.8 173.0 149.9 103.5 
3-250 133.9 135.0 135.5 133.6 
3-500 256.1 267.8 271.1 268.2 
3-750 318.7 331.7 346.5 344.8 
4-250 254.4 256.4 258.5 262.8 
4-500 484.9 494.1 508.2 514.0 
4-750 704.7 712.4 725.9 735.2 

  

 

 

 We also performed the same computational experiments as in Table 7 after 

increasing the bit-flip probability for the promising items from 1/nBF to 2/nBF . 

Experimental results are summarized in Table 8. We can see that experimental 

results in Table 8 are similar to those in Table 7. Actually we can obtain almost 

the same observations from these two tables. That is, except for the 3-250 test 

problems in Table 7, the best results were obtained by the broadest local search 

for the two-objective problems, and by the narrowest local search for the three-

objective and four-objective knapsack problems in both tables. 

 

 



H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima, "Use of biased neighborhood structures 

in multiobjective memetic algorithms," Soft Computing (in press).  

-24- 

Table 8. D1R measures obtained by MOGLS-BF(nBF) for knapsack problems where local search is 

concentrated on promising nBF items. The bit-flip probability for each of those items is 2/ nBF .  

 
Problem BF(10) BF(20) BF(40) BF(100) 

2-250 45.2 40.0 29.9 16.8 
2-500 101.2 107.1 101.6 68.7 
2-750 145.7 148.2 135.3 100.5 
3-250 128.8 130.5 132.4 129.3 
3-500 239.2 246.4 256.9 252.8 
3-750 291.3 300.9 324.9 328.1 
4-250 248.3 250.5 252.6 260.2 
4-500 463.0 473.3 486.5 503.6 
4-750 654.9 671.8 679.2 708.1 

 

4.3  Results on Flowshop Scheduling Problems 

We applied NSGA-II and MOGLS-MT to each of the eight flowshop scheduling 

problems 30 times using the following parameter specifications: 

Population size: 200, 

Termination condition: Examination of 100,000 solutions, 

Crossover probability: 0.9 (Two-point order crossover in Fig. 1), 

Mutation probability: 0.6 for each string (Insertion mutation in Fig. 2), 

Local search application probability: 0.1, 

Probability of the heuristic insertion in local search: PMT = 0.0, 0.1, 0.2, 0.4, 0.8, 

Probability of the standard insertion in local search: 1 −PMT . 

The same parameter specifications were used in NSGA-II and MOGLS-MT for 

all the eight flowshop scheduling problems. It should be noted that MOGLS-MT 

is exactly the same as S-MOGLS when PMT = 0.0. In this case, the heuristic 

insertion for improving the maximum tardiness is never used in MOGLS-MT. 

 Experimental results are summarized in Tables 9-12. We can see that 

MOGLS-MT with PMT > 0.0 outperformed S-MOGLS (i.e., MOGLS-MT with 

PMT = 0.0) in many cases. This observation shows that the use of the biased 

neighborhood structure improved the performance of S-MOGLS. We can also see 

that the performance of NSGA-II was improved by the hybridization with local 

search on almost all test problems with respect to all the four measures.  
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Table 9. Generational distance for flowshop scheduling problems. The termination condition is a 

prespecified number of examined solutions.  

 
PMT  in MOGLS-MT Proble

m 
NSGA-

II 0.0 0.1 0.2 0.4 0.8 
2-20 2.6  2.7  2.6  2.4 2.8  2.9  
2-40 16.6  17.2  15.3  14.5  14.2 14.6  
2-60 18.3  17.6  14.4  12.2 13.7  12.9  
2-80 117.4  103.

6  
89.3  88.6 93.3  100.

2  3-20 2.7  2.4 2.5  2.6  2.5  2.6  
3-40 14.2  15.0  12.9  13.4  12.5  12.1 
3-60 19.9  20.1  18.3  16.1  15.2  14.0 
3-80 21.9  20.6  17.8  15.9  15.5  13.9 

 

 

Table 10. D1R measure for flowshop scheduling problems. 

 
PMT  in MOGLS-MT Proble

m 
NSGA-

II 0.0 0.1 0.2 0.4 0.8 
2-20 6.9 6.3 7.1 7.6 6.6 6.9 
2-40 16.9 16.4 14.4 14.3 14.6 15.1 
2-60 21.1 21.0 20.5 20.4 20.6 22.9 
2-80 104.1 88.3 67.6 69.6 63.0 65.3 
3-20 5.3 5.5 5.4 5.9 5.7 5.9 
3-40 16.6 16.9 15.6 16.1 16.6 16.6 
3-60 23.8 23.3 22.4 21.5 22.6 23.6 
3-80 29.0 27.8 26.2 25.6 26.6 26.6 

 

 

Table 11. Range measure for flowshop scheduling problems. 

 
PMT  in MOGLS-MT Proble

m 
NSGA-

II 0.0 0.1 0.2 0.4 0.8 
2-20 75.0 81.7 74.6 68.0 74.5 77.4 
2-40 89.0 109.

7 
98.6 102.

9 
96.0 93.1 

2-60 66.8 59.4 62.3 59.1 64.5 66.8 
2-80 237.8 223.

9 
197.

5 
246.

0 
265.

2 
306.

8 3-20 272.0 264.
5 

267.
0 

261.
1 

264.
0 

264.
4 3-40 228.9 232.

6 
235.

2 
235.

3 
221.

9 
222.

3 3-60 181.8 194.
6 

195.
9 

187.
1 

189.
9 

176.
5 3-80 154.8 160.

2 
144.

4 
138.

7 
144.

9 
139.

8  

 



H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima, "Use of biased neighborhood structures 

in multiobjective memetic algorithms," Soft Computing (in press).  

-26- 

Table 12. Percentage of non-dominated solutions for flowshop scheduling problems. 

 
PMT  in MOGLS-MT Proble

m 
NSGA-

II 0.0 0.1 0.2 0.4 0.8 
2-20 50.6  52.6 52.3  50.3  50.6  47.3  
2-40 18.9  18.7  23.4  25.9  28.2  30.9 
2-60 19.1  15.6  23.7  40.9 28.1  28.0  
2-80 8.3  17.3  26.6  30.5  39.3 35.0  
3-20 43.3  47.0  47.1 44.4  45.9  43.9  
3-40 27.7  21.7  31.0  23.9  32.1 31.3  
3-60 15.0  16.4  16.7  31.2  37.8  38.4 
3-80 8.8  16.3  23.1  30.6  29.7  49.9 

 

 

 

 Experimental results under the termination condition specified by the CPU 

time of 15 seconds are summarized in Table 13 for the D1R measure. Since local 

search is faster than genetic search (i.e., more solutions can be examined by local 

search than genetic search in the same CPU time), the performance improvement 

of NSGA-II by the hybridization with local search became much clearer in Table 

13 under the same CPU time than Table 10 under the same number of examined 

solutions. 

 

 

Table 13. D1R measure for flowshop scheduling problems. The termination condition is a 

prespecified CPU time (15 seconds).  

 
PMT  in MOGLS-MT Proble

m 
NSGA-

II 0.0 0.1 0.2 0.4 0.8 
2-20 6.4 5.5 6.5 6.5 6.0 6.1 
2-40 17.0 14.2 12.5 12.3 12.8 13.5 
2-60 22.2 19.8 19.5 19.6 19.4 21.3 
2-80 114.2 83.9 63.7 66.4 61.1 62.8 
3-20 5.2 4.9 4.8 5.1 5.0 5.2 
3-40 17.8 15.9 14.9 15.0 15.6 15.7 
3-60 26.5 23.0 22.1 20.9 22.3 23.4 
3-80 33.5 28.1 26.4 25.8 26.6 26.9 
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 The performance of NSGA-II, S-MOGLS (i.e., MOGLS-MT with 

PMT = 0.0) and MOGLS-MT with PMT = 0.1 are visually compared using 50% 

attainment surfaces for the 2-80 flowshop scheduling problem in Fig. 5 where the 

termination condition is 15 seconds. We can see from this figure that the use of 

the biased neighborhood structure improved the performance of S-MOGLS with 

respect the maximum tardiness. This is because the neighborhood structure is 

biased only for improving the maximum tardiness. We can also see from Fig. 5 

that the performance of NSGA-II was improved by the hybridization with local 

search with respect to both objectives.  

 

 

 

Fig. 5. Comparison of the three algorithms (NSGA-II, S-MOGLS and MOGLS-MT with 

PMT = 0.1) using 50% attainment surfaces for the 2-80 flowshop scheduling problem. 

 

 

 In Fig. 6, we show the effect of the specification of PMT  on the behavior 

of MOGLS-MT. We can see from Fig. 6 that the increase in the probability PMT  

of the heuristic insertion for improving the maximum tardiness drove the search 

by MOGLS-MT toward smaller values of the second objective. As its side-effect, 

good results with respect to the first objective (i.e., makespan) were not obtained 

by MOGLS-MT when PMT  was large (e.g., PMT = 0.8). 
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Fig. 6. Effect of the specification of PMT  on the search behavior by MOGLS-MT on the 2-80 

flowshop scheduling problem. 

 

4.4  Experimental Results on Large Test Problems 

In this subsection, we examine the effect of the hybridization with local search on 

the performance of NSGA-II through computational experiments on large 

knapsack problems. In Subsection 4.2, we used the same knapsack problems as 

those in Zitzler and Thiele (1999). The test problems had two, three and four 

objectives and 250, 500 and 750 items. In the same manner as in Zitzler and 

Thiele (1999), we generated larger test problems with 1500 items (i.e., 2-1500, 3-

1500 and 4-1500). We also generated six-objective test problems (i.e., 6-250, 6-

500, 6-750, 6-1500). We applied NSGA-II, S-MOGLS, MOGLS-WR and 

MOGLS-BF (i.e., BF(20)) to these newly generated larger test problems. We used 

the same parameter specifications as those for the 4-750 problem in Table 1. 

 Experimental results are summarized in Table 14 for the D1R measure. We 

can see that the performance of NSGA-II and S-MOGLS was drastically 

improved by biasing the neighborhood structure in MOGLS-WR for all test 

problems. We can also see that the performance of MOGLS-WR was further 

improved by concentrating local search on only 20 promising items in MOGLS-

BF for almost all test problems (except for 2-1500). From Table 14, we can 
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conclude that MOGLS-WR and MOGLS-BF worked very well on large knapsack 

problems with many items and many objectives in comparison with NSGA-II. 

 

 

Table 14. D1R measure for large knapsack problems where the same parameter specifications as 

those for the 4-750 test problem in Table 1 are used.  

 
MOGLS 

Problem NSGA-
II S WR BF 

2-1500 3541.1 3414.2 76.8 286.9 
3-1500 5248.5 5251.0 784.0 501.2 
4-1500 6106.4 6022.6 1476.6 1085.2 
6-250 816.9 766.3 395.7 377.1 
6-500 1901.5 1819.3 776.2 716.2 
6-750 3258.5 3032.1 1140.8 1044.7 

6-1500 7870.4 7232.5 2065.2 1813.9 
 

 

4.5  Parameter Specifications in Local Search 

In our previous computational experiments, we always used the following 

parameter specifications in local search: 

Local search application probability: PLS = 0.1, 

Upper bound on the number of successive failure attempts: Lfail = 5, 

Upper bound on the total number of attempted local moves: Lsearch = 20. 

In this subsection, we examine the sensitivity of the performance of S-MOGLS 

and MOGLS-WR on the specifications of these parameters through computational 

experiments on the 2-500 knapsack problem. 

 We examined  combinations of the following parameter values: 

PLS = 0.0, 0.1, 0.2, 0.5, 1.0, 

Lfail = 0, 1, 2, 5, 10, 20, 50, 100, 

Lsearch = 0, 10, 20, 50, 100, 200, 500, 1000. 
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It should be noted that S-MOGLS and MOGLS-WR are the same as NSGA-II 

when at least one of these three parameters is zero. It should be also noted that 

Lfail  is never activated as the stopping condition when Lfail  is larger than Lsearch .  

 Experimental results by S-MOGLS with PLS = 0.1 are summarized in Fig. 

7 where the average value of the D1R measure was calculated over 30 runs for 

each combination of Lfail  and Lsearch . We can see from Fig. 7 that the 

performance of NSGA-II (i.e., S-MOGLS with Lfail = 0 and/or Lsearch = 0) was 

improved by the hybridization with local search when Lfail  and Lsearch  are 

appropriately specified (e.g., Lfail 5 and Lsearch = 10, Lfail = 10 and Lsearch 10). 

The combination of Lfail = 5 and Lsearch = 20 in our previous computational 

experiments is not an optimal setting but a good one in Fig. 7. We can also 

observe a negative effect of the hybridization with local search when Lfail  and 

Lsearch  are too large (i.e., around the top-right corner with Lfail = 100 and 

Lsearch = 1000). In this case, too much local search is performed in S-MOGLS. 

For example, at least 100 neighbors are examined in a series of local search from 

a single initial solution when Lfail = 100 and Lfail  Lsearch . 

 

 

Fig. 7. D1R measure by S-MOGLS with PLS = 0.1 for the 2-500 knapsack problem. 

 

 

 The negative effect of the hybridization with local search becomes more 

prominent when we use a larger value of the local search application probability 
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PLS . For example, we show experimental results by S-MOGLS with PLS = 0.2 in 

Fig. 8 (whereas PLS = 0.1 in Fig. 7). We can observe the negative effect of the 

hybridization more clearly in Fig. 8. From the comparison between Fig. 7 and Fig. 

8, we can also see that the range of appropriate specifications of Lfail  and Lsearch  

moved toward their smaller values in Fig. 8 from Fig. 7. This is because we used a 

larger value of the local search application probability PLS  in Fig. 8 than Fig. 7. 

Since local search was more frequently used in Fig. 8, its execution should be 

terminated earlier than the case of Fig. 7 in order to strike a good balance between 

local search and genetic search.  

 

 

Fig. 8. D1R measure by S-MOGLS with PLS = 0.2 for the 2-500 knapsack problem. 

 

 

 When we used MOGLS-WR, much better results were obtained from 

MOGLS-WR than NSGA-II independent of parameter specifications in local 

search. We show experimental results by MOGLS-WR in Fig. 9 for PLS = 0.1 and 

Fig. 10 for PLS = 1.0. It should be noted that the scale of the vertical axes of Fig. 9 

and Fig. 10 is smaller than that of Fig. 7 and Fig. 8 by an order of magnitude. The 

average value of the D1R measure by MOGLS-WR was always smaller than 120 

in Fig. 9 and Fig. 10 whereas it was larger than 800 by NSGA-II in Fig. 7 and Fig. 

8 (i.e., by S-MOGLS with Lfail = 0 and/or Lsearch = 0). Whereas much better 

results were always obtained by MOGLS-WR than NSGA-II, we can also observe 

the negative effect of too much local search in Fig. 10 around its top-right corner 
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with Lfail = 100 and Lsearch = 1000. This observation suggests that a good balance 

between local search and genetic search is necessary for implementing MOMAs 

with high search ability. 

 

 

Fig. 9. D1R measure by MOGLS-WR with PLS = 0.1 for the 2-500 knapsack problem. 

 

 

 

Fig. 10. D1R measure by MOGLS-WR with PLS = 1.0 for the 2-500 knapsack problem. 

 

5. Concluding Remarks 

In this paper, we proposed the use of biased neighborhood structures in local 

search for improving the search ability of multiobjective memetic algorithms 
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(MOMAs). We implemented this idea for multiobjective 0/1 knapsack and 

flowshop scheduling problems. The effectiveness of this idea was demonstrated 

through computational experiments. That is, the use of biased neighborhood 

structure improved the performance of MOMAs. It was also shown that the 

performance of NSGA-II was improved by the hybridization with local search. 

This suggests that MOMAs can outperform multiobjective evolutionary 

algorithms (MOEAs).  

 Since this paper is the first attempt toward the use of biased neighborhood 

structures in local search for MOMAs, their implementation was not so 

sophisticated. As shown by computational experiments on multiobjective 0/1 

knapsack problems, the performance of MOMAs can be improved by the use of 

an adjusted neighborhood structure for each problem (i.e., adjusted to the problem 

type and the problem size). In this sense, our implementation of biased 

neighborhood structures can be further improved. Especially, the biased 

neighborhood structure for multiobjective flowshop scheduling problems was 

implemented only for improving the second objective (i.e., the maximum 

tardiness). By using the other objectives to bias the neighborhood structure, we 

will obtain better MOMAs with higher search ability for multiobjective flowshop 

scheduling problems. The implementation of such a more sophisticated biased 

neighborhood structure is left for future research. This paper, however, clearly 

demonstrated the effectiveness of the use of biased neighborhood structures in 

MOMAs while their implementation was not so sophisticated. 

 As we explained in this paper, we need problem-specific knowledge to 

bias the neighborhood structure for each problem. Thus the effectiveness of the 

biased neighborhood structure depends on the usefulness of the utilized problem-

specific knowledge. In this sense, it is difficult to generalize the performance 

improvement in our computational experiments on multiobjective knapsack and 

flowshop scheduling problems to other problems. However, there exist efficient 

heuristic techniques in many single-objective combinatorial optimization 

problems. Such a heuristic technique can be utilized to bias neighborhood 

structures for multiobjective optimization problems as we explained for flowshop 

scheduling problems in this paper. 

 Recently multiobjective optimization has been actively tackled by not only 

evolutionary algorithms but also other meta-heuristic approaches. For example, 
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Rahimi-Vahed and Mirghorbani (2007) used a particle swarm optimization (PSO) 

algorithm for two-objective flow shop scheduling. In their computational 

experiments, better results were obtained from their multiobjective PSO than 

SPEA2 (Zitzler et al. 2001). On the other hand, Doerner et al. (2004) applied an 

ant colony optimization (ACO) algorithm to multiobjective portfolio selection 

problems with the same coding scheme as multiobjective knapsack problems. 

They demonstrated that better results were obtained by their multiobjective ACO 

than NSGA-II (Deb et al. 2002) and Pareto simulated annealing (Czyzak and 

Jaszkiewicz 1998). An important future research issue is the performance 

comparison of various meta-heuristic approaches to multiobjective optimization 

such as evolutionary algorithms, memetic algorithms, PSO and ACO. 

 This work was partially supported by Japan Society for the Promotion of 

Science (JSPS) through Grand-in-Aid for Scientific Research (B): KAKENHI 

(20300084). 
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