
H. Ishibuchi and N. Namikawa, “Evolution of Iterated Prisoner’s Dilemma Game Strategies in Structured Demes under 
Random Pairing in Game-Playing,” IEEE Trans. on Evolutionary Computation, Vol. 9, No. 6, pp. 552-561, December 2005. 
  

Final Version of the Accepted Paper 

 
Evolution of Iterated Prisoner’s Dilemma Game Strategies in 
Structured Demes under Random Pairing in Game-Playing 

 
 

Hisao Ishibuchi, Member, IEEE   and    Naoki Namikawa, Student Member, IEEE 
 

Graduate School of Engineering, Osaka Prefecture University 

1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan 

 

 

 

Corresponding author: Prof. Hisao Ishibuchi 

        Graduate School of Engineering, Osaka Prefecture University, 

        1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan 

        Phone +81-72-254-9350, FAX +81-72-254-9915 

        E-mail: hisaoi@cs.osakafu-u.ac.jp 

 

 

 

 

 

 

 



 -1-

H. Ishibuchi and N. Namikawa, “Evolution of Iterated Prisoner’s Dilemma Game Strategies in Structured Demes under 
Random Pairing in Game-Playing,” IEEE Trans. on Evolutionary Computation, Vol. 9, No. 6, pp. 552-561, December 2005. 

 

 
Evolution of Iterated Prisoner’s Dilemma Game Strategies in 
Structured Demes under Random Pairing in Game-Playing 

 

Hisao Ishibuchi, Member, IEEE   and    Naoki Namikawa, Student Member, IEEE 
 

Graduate School of Engineering, Osaka Prefecture University 

1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan 

 

Abstract - We discuss the evolution of strategies in a spatial iterated prisoner’s dilemma (IPD) game in 

which each player is located in a cell of a two-dimensional grid-world. Following the concept of 

structured demes, two neighborhood structures are used. One is for the interaction among players 

through the IPD game. A player in each cell plays against its neighbors defined by this neighborhood 

structure. The other is for mating strategies by genetic operations. A new strategy for a player is 

generated by genetic operations from a pair of parent strings, which are selected from its neighboring 

cells defined by the second neighborhood structure. After examining the effect of the two 

neighborhood structures on the evolution of cooperative behavior with standard pairing in game-

playing, we introduce a random pairing scheme in which each player plays against a different 

randomly chosen neighbor at every round (i.e., every iteration) of the game. Through computer 

simulations, we demonstrate that small neighborhood structures facilitate the evolution of cooperative 

behavior under random pairing in game-playing. 

 

Index Terms - Game strategies, evolutionary games, iterated prisoner’s dilemma, structured demes, 

random pairing. 

 

I. Introduction 
 The evolution of cooperative behavior in the iterated prisoner’s dilemma (IPD) game has been 

discussed in many studies (for example, see Axelrod [1], Lindgren [2], and Fogel [3]). In those studies, 

each player plays against all other players in the current population. A player’s strategy, which may be 

represented as a binary string or a finite state machine, is evolved by operations such as selection, 

crossover, and/or mutation. The fitness of a player is defined as its average payoff obtained through 

the IPD game. Some techniques and concepts have been introduced to the IPD game such as the 

speciation of strategies in Darwen and Yao [4], a two-level evolution model in Vega-Redondo [5], 

individual recognition in Crowley et al. [6], rule hierarchies in Crowley [7], partner selection in 
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Ashlock et al. [8], and Q-learning in Sandholm and Crites [9]. The IPD game has also been extended 

to various cases such as a multi-player version [10], [11] and a spatial version [12]-[15]. In the latter 

version, each player is fixed spatially in a cell of a grid-world and plays against only its neighboring 

players. In [12]-[14], basically two extreme strategies (i.e., “always defect” and “always cooperate”) 

were considered in the spatial IPD game. Grim [15] and Brauchli et al. [16] examined the evolution of 

stochastic strategies in the spatial IPD game, in which the probability of cooperation depends on the 

result of the previous round of the IPD game. For a broader review of past work on the IPD game, see 

Dugatkin [17]. 

 In this paper, we discuss the evolution of strategies in the spatial IPD game with two neighborhood 

structures: one is for the interaction among players through the IPD game and the other is for mating 

strategies. Each player in a cell plays against its neighbors defined by the first neighborhood structure. 

A new strategy for each player is generated by genetic operations performed on a pair of parent strings, 

which are selected from its neighboring cells defined by the second neighborhood structure. This 

spatial IPD game can be described in the framework of structured demes [18]-[21]. (The standard non-

spatial IPD game is an example of unstructured demes because there is no structure of players.)  

 A group of individuals within which interactions occur is referred to as a trait group [18]. The trait 

groups in our spatial IPD game overlap with each other, as in the cases of territorial animals and most 

plants in which each individual forms the center of its own trait group. In addition to the neighborhood 

structure for the interaction through the IPD game (i.e., trait groups), we use another neighborhood 

structure for mating strategies.  

 The second neighborhood structure for mating is usually much larger than the first one for 

interaction, as is true in many cases of structured demes such as territorial animals and most plants. 

For example, neighboring plants fight with each other for water and sunlight in the first neighborhood 

structure, which is much smaller than the second neighborhood structure where they can disperse their 

pollen. For details of structured demes and trait groups, see [18]-[21].  

 The use of two neighborhood structures was examined by Ifti et al. [22] for a continuous prisoner’s 

dilemma (CPD) model in which the degree of cooperation is represented by the amount of investment 

(i.e., a non-negative real number). They used an interaction neighborhood for pairing in game-playing 

and a learning neighborhood for comparing each player’s payoff with those of its neighbors. The 

fitness of each player was calculated from game-playing against neighbors in the interaction 

neighborhood. Then each player adopted the amount of investment of the neighbor (i.e., the neighbor’s 

strategy) with the highest fitness in the learning neighborhood.  

 In almost all published studies on the IPD game, each player plays against the same opponent for a 

prespecified number of rounds. In addition to this standard pairing scheme, we also examine the 

evolution of cooperative behavior in our spatial IPD game using a random pairing scheme in which 

each player plays against a different randomly chosen neighbor at every round (i.e., every iteration) of 

the game. In this paper, we first examine the effect of the two neighborhood structures on the 
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evolution of cooperative behavior using the standard pairing scheme. Simulation results show that 

cooperative behavior is more easily evolved in the spatial IPD game than the non-spatial one. This 

result coincides with Wilson’s discussion [18]-[20] on altruistic behavior of individuals in structured 

and unstructured demes. Next we introduce a random pairing scheme in order to examine the 

evolution of cooperative behavior in a more difficult situation. In this pairing scheme, the interaction 

sequence length against the same opponent is minimum because the opponent of each player is 

selected randomly from its neighbors at every round of the game. It has already been shown that the 

evolution of cooperative behavior is difficult when the interaction sequence length is short [6], [7], 

[23]. This is because cooperation in the IPD game is based on reciprocal altruism [24]. Reciprocal 

altruism is not fostered in the case of a short interaction sequence against the same opponent. Our 

computer simulations demonstrate that cooperative behavior can be evolved even in such a difficult 

case when two neighborhood structures are specified appropriately. The main contribution of this 

paper is twofold. One is the formulation of the spatial IPD game with the two neighborhood structures 

using the concept of structured demes. The other is the demonstration of the evolution of cooperative 

behavior in the case of random pairing (i.e., a short interaction sequence against the same opponent). 

 This paper is organized as follows. Section II describes our spatial IPD game with the two 

neighborhood structures. Section III examines the effect of the sizes of these neighborhood structures 

on the evolution of cooperative behavior. Section IV introduces the random pairing scheme and 

examines the evolution of cooperative behavior. Finally, Section V concludes this paper. 

 

II. Spatial IPD Game with Structured Demes 

A. Game Playing in the First Neighborhood Structure 

 We use a typical payoff matrix in Table 1. When both players cooperate, each receives three points. 

When both players defect, each player’s payoff is one point. The highest payoff of five is obtained by 

defecting when the opponent cooperates. In this case, the opponent receives the lowest payoff, zero. A 

player’s strategy is denoted by a binary string (say is , where is  is the strategy of Player i). The 

strategy determines the next action based on a finite history of previous plays of the IPD game. We 

show an example of such a strategy in Table 2, which illustrates how the binary string “10011” called 

“tit-for-tat” determines its next action based on the previous single round of the game. A player with 

this strategy cooperates first and then cooperates at the t-th round ( 2≥t ) only when the opponent 

cooperated in ( 1−t )-th round. Every single-round-memory strategy is denoted by a binary string of 

length five in the same manner as in Table 2. 
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Table 1. Payoff matrix. 
 

Opponent’s Move Player’s 
Move C: Cooperate D: Defect 

C: Cooperate
Player:      3 
Opponent: 3 

Player:      0 
Opponent: 5 

D: Defect 
Player:      5 
Opponent: 0 

Player:      1 
Opponent: 1 

 

Table 2. Illustration of the coding of the tit-for-tat strategy “10011”. 

 
Player’s first move: Cooperate 1

Moves on the preceding round
Player Opponent 

Suggested 
move 

  D: Defect   D: Defect   D: Defect 0
  C: Cooperate   D: Defect   D: Defect 0
  D: Defect    C: Cooperate   C: Cooperate 1
  C: Cooperate   C: Cooperate   C: Cooperate 1

 

 

 Here, we assume that each player is located in a cell of a two-dimensional grid-world with the torus 

structure. We use a 3131×  grid-world. In the 3131×  grid-world, each player plays the IPD game 

against only its neighbors defined by a neighborhood structure for interaction. Let )(IPD iN  be the set 

of Player i and its neighbors. Player i plays the IPD game against only players in .)(IPD iN  We examine 

several specifications of )(IPD iN  in computer simulations. Some examples are shown in Fig. 1. The 

standard non-spatial IPD game can be viewed as the case where )(IPD iN  is the same as the entire grid-

world. The game is iterated between a player and its neighbor for a prespecified number of rounds 

(e.g., 100 rounds). After a player completes the IPD game against a prespecified number of its 

neighbors, the fitness value of the player is calculated as the average payoff obtained from each round 

of the game. When )(IPD iN  for interaction is small, the fitness value of each player is calculated after 

the IPD game is completed against all of its neighbors. On the other hand, when )(IPD iN  is large, a 

fixed number of opponents is selected randomly for each player from its neighbors. Here, we 

randomly select five opponents from )(IPD iN  to calculate the fitness value of Player i at every 

generation when )(IPD iN  includes more than five neighbors. This setting prevents a combinatorial 

increase in CPU time with the size of .)(IPD iN  In computer simulations, we also examine the case 

where each player always plays against all neighbors in )(IPD iN  for comparison. 



 -5-

 

: Player
: Neighboring player
: Player
: Neighboring player

  
 
          (a) 3 neighbors    (b) 5 neighbors 

 

   
 

          (c) 9 neighbors   (d) 25 neighbors 

 

Fig. 1. Examples of neighborhood structures. 

 

B. Evolution in the Second Neighborhood Structure 

 The evolution of strategies as well as the interaction among players is performed in the two-

dimensional grid-world in the framework of cellular genetic algorithms [25]-[27]. Players’ strategies 

are denoted by binary strings of length five as described previously. Since a single player with a single 

strategy exists in every cell of the two-dimensional grid-world, the population size is the same as the 

grid-world size 961 ( 3131× ).  

 A new strategy of a player is generated by selecting two strings from its neighborhood. Let 

)(GA iN  be the set of Player i and its neighbors. A pair of parent strategies is selected from )(GA iN  to 

generate a new strategy for Player i. It should be noted that )(GA iN for mating is not always the same 

as )(IPD iN  for interaction (i.e., )()( IPDGA iNiN =  does not always hold). We examine various 

specifications of these two neighborhood structures. 

 Let )( isf  be the fitness value of Player i with strategy is . When a new strategy is to be created, a 

pair of parent strategies is selected from )(GA iN  following roulette wheel selection with a linear 

scaling: 

∑ −

−
=

∈ )(
GAmin

GAmin

GA

))}(()({
))(()(

)(

iNk
k

j
ji iNfsf

iNfsf
sp   for  )(GA iNj∈ ,               (1) 

where Player j is a neighbor of Player i (or Player i itself), )( ji sp  is the selection probability of js  for 

generating a new strategy of Player i, and ))(( GAmin iNf  is the minimum fitness value among the 
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players in )(GA iN : 

)}(:)(min{))(( GAGAmin iNjsfiNf j ∈= .                  (2) 

After selecting two strings using (1), a new string is generated by one-point crossover (Fig. 2) and bit-

flip mutation (Fig. 3).  

 

 

1 0 1 0 1 1 0 1 0 0

0 1 1 0 0 0 1 1 0 1Parent 2 

Parent 1 Offspring 1

Offspring 2  

Fig. 2. One-point crossover. 

 

1 0 1 0 0 1 0 0 0 1
* * * *

 

Fig. 3. Bit-flip mutation. 

 

 

 After new strategies for all players are generated by the genetic operations, the current population 

of strategies is updated by the newly generated strategies. The same procedures (i.e., the IPD game 

and the genetic operations) are applied to the new population again. In this manner, the generation 

update is iterated from a randomly generated initial population until a stopping condition is satisfied 

(e.g., 1000 generations). 

 

III. Computer Simulations with Standard Pairing 

 Using various specifications of the two neighborhood structures (i.e., )(IPD iN  and )(GA iN , see 

Fig. 1), we examined the effect of their specifications on the evolution of cooperative behavior among 

961 spatially fixed players in the two-dimensional 3131×  grid-world. We examined all the 36 

combinations of the following specifications of the two neighborhood structures: 

The number of players in )(IPD iN : 3, 5, 9, 25, 49, 961, 

The number of players in )(GA iN : 3, 5, 9, 25, 49, 961. 

 The spatial IPD game with 961 players in )(IPD iN  and )(GA iN  is the same as the standard non-

spatial IPD game. When we use the neighborhood structure with three players in Fig. 1 (a) for )(GA iN , 
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strategies of 31 players in each row are never crossed over with strategies of other players in different 

rows in the two-dimensional 3131×  grid-world. This means that players’ strategies cannot be 

propagated to other players in different rows. In order to avoid this undesirable situation, we use not 

only the horizontal neighborhood structure in Fig. 1 (a) but also a vertical neighborhood structure for 

)(GA iN  as shown in Fig. 4. For example, )(GA MN  in Fig. 4 is horizontal (i.e., =)(GA MN {L, M, 

N}) while )(GA NN  is vertical (i.e., =)(GA NN {I, N, S}). More specifically, we specified )(GA iN  

according to the location of Player i. Let ),( 21 ii  be the location of Player i in the two-dimensional 

3131×  grid-world (i.e., =),( 21 ii (1, 1), (1, 2), ..., (31, 31)). )(GA iN  is horizontal when )( 21 ii +  is 

even, otherwise )(GA iN  is vertical. 

 

A B C D E

F G H I J

K L M N O

P Q R S T

U V W X Y
 

 

 

Fig. 4. Horizontal and vertical neighborhood structures for )(GA iN  with three players. 

 

 

 It should be noted that we do not use the vertical neighborhood structure for )(IPD iN . This is 

because the use of both the horizontal and vertical neighborhood structures for )(IPD iN  is not 

consistent with the meaning of the interaction neighborhood. For example, =)(IPD MN {L, M, N} 

means that Player M plays against Player N while =)(IPD NN {I, N, S} means that Player N does not 

play against Player M. Thus we only use the horizontal neighborhood structure for )(IPD iN  when 

)(IPD iN  includes only three players. For example, =)(IPD MN {L, M, N} and =)(IPD NN {M, N, O} 

in Fig. 4. 

 Our computer simulations were performed with various specifications of a probability for a mistake 

(i.e., noise [2]), in which a player chooses an action different from the one suggested by its strategy. 

The idea of a noisy IPD model dates back to Lindgren [2]. We used the noisy IPD model with the 

standard pairing scheme in order to demonstrate the effect of using the two neighborhood structures on 

the evolution of cooperative behavior. As we show later in this section, cooperative behavior was 
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evolved independent of the use of the two neighborhood structures in the case of the mistake 

probability being zero.  

 We used the following parameter values: 

Mistake probability: 0, 0.001, 0.01, 0.1, 

Crossover probability: 1.0, 

Mutation probability: 1/ )9615( × , 

Termination of the IPD game: 100 rounds, 

Termination of the evolution: 1000 generations. 

Under the mutation probability of 1/ )9615( × , a single strategy is mutated at each generation on 

average since we have 961 players whose strategies are represented by binary strings of length five. 

The sensitivity of simulation results to the specifications of the crossover and mutation probabilities is 

examined later in this paper. 

 The average payoff over 100 independent runs for each combination of )(IPD iN  and )(GA iN  is 

shown in Fig. 5 for the case of the mistake probability 0.1. The average payoff in Fig. 5 was calculated 

over 1000 generations in each of 100 independent runs. An initial strategy for each player was 

generated by randomly generating a binary string of length five (i.e., by randomly specifying each bit 

value of the binary string as 0 and 1 with the same probability). We also show the percentage of the 

occurrence of mutual cooperation (C, C) in Fig. 6. That is, Fig. 6 shows the percentage of the rounds 

with the mutual cooperation (C, C) among all rounds of the game. These figures show that the size of 

the neighborhood for interaction (i.e., the number of players in )(IPD iN ) has a significant effect on the 

evolution of cooperative behavior. Higher payoffs and more frequent mutual cooperation were 

obtained from a smaller neighborhood for interaction. The size of the neighborhood for mating (i.e., 

the number of players in )(GA iN ) also has an effect on the evolution of cooperative behavior while its 

effect is much smaller than that of the size of the interaction neighborhood. In Fig. 7, we show the 

average payoff at the 1000-th generation. We can see that the average results at the 1000-th generation 

in Fig. 7 are similar to those over 1000 generations in Fig. 5. Good results were not obtained even at 

the final generation in Fig. 7 when the interaction neighborhood )(IPD iN  was large. 
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Fig. 5. Average payoff over 1000 generations in the case of the mistake probability 0.1. 
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Fig. 6. Percentage of mutual cooperation over 1000 generations in the case of the mistake probability 0.1. 
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Fig. 7. Average payoff at the 1000-th generation in the case of the mistake probability 0.1. 
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 Simulation results with other specifications of the mistake probability are shown in Fig. 8 and Fig. 

9. These figures show that better results were obtained from smaller mistake probabilities. When we 

specified the mistake probability as zero, good results were obtained independent of the specifications 

of the two neighborhood structures. In this case, the average payoff and the percentage of mutual 

cooperation were larger than 2.9 and 95%, respectively, for all the 36 combinations of )(IPD iN  and 

)(GA iN . 
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Fig. 8. Average payoff over 1000 generations in the case of the mistake probability 0.01. 
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Fig. 9. Average payoff over 1000 generations in the case of the mistake probability 0.001. 

 

 

 In order to examine the effect of the crossover and mutation operations on the evolution of 

cooperative behavior, we performed the same computer simulation as Fig. 5 by specifying the 

crossover or mutation probability as zero. Simulation results are shown in Fig. 10 (no mutation) and 

Fig. 11 (no crossover). When the mutation probability was zero, simulation results depend strongly on 
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randomly generated initial strings and a sequence of random numbers used in each trial. Thus there are 

a number of ups and downs in Fig. 10 with no mutation. On the other hand, Fig. 11 with only mutation 

(i.e., no crossover) is very similar to Fig. 5 with both crossover and mutation. In both Fig. 10 with only 

crossover and Fig. 11 with only mutation, best results were obtained in the case of the smallest 

interaction neighborhood )(IPD iN  with three players (i.e., 3|)(| IPD =iN ). 
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Fig. 10. Average payoff over 1000 generations in the case of the mutation probability being zero. The 

other parameter specifications are the same as Fig. 5. 
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Fig. 11. Average payoff over 1000 generations in the case of the crossover probability being zero. The 

other parameter specifications are the same as Fig. 5. 

 

 

 We also examined the effect of random sampling of five opponents from )(IPD iN  on our 

simulation results. For this purpose, we performed the same computer simulation as Fig. 5 without this 
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sampling. That is, each player played against all players in .)(IPD iN  This computer simulation was 

very time-consuming. For example, when )(IPD iN  includes 961 players, it requires about 200 times 

more CPU time than the case of random sampling of five opponents. The average payoff over ten 

independent runs for each combination of )(IPD iN  and )(GA iN  is shown in Fig. 12. We can see that 

similar results were obtained in the two settings of game playing: Fig. 5 with random sampling of five 

opponents from )(IPD iN  and Fig. 12 with game-playing against all opponents in .)(IPD iN  
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Fig. 12. Average payoff over 1000 generations with game-playing against all opponents in ).(IPD iN  

The other parameter specifications are the same as Fig. 5. 

 

IV. IPD Game with Random Pairing 
 In this section, we change the pairing scheme in the spatial IPD game to further examine the effect 

of the two neighborhood structures on the evolution of cooperative behavior. In the previous section 

and almost all studies on the IPD game in the literature, each player plays against the same opponent 

for a prespecified number of rounds (e.g., 100 rounds in our computer simulations in the previous 

section). We change this pairing scheme in the following manner: Every player chooses its opponent 

randomly from )(IPD iN  at every round of the game. This pairing scheme requires a new 

implementation because the game is not iterated between the fixed pair of players for a prespecified 

number of rounds. This random pairing scheme may correspond to a simple model of territorial 

animals with partially overlapping territories. In this model, every territorial animal is supposed to 

walk randomly about in its territory. When an animal comes across its neighbor, some interaction 

among them may happen just once. The memory about the interaction with a neighbor may influence 

an animal’s future action against another neighbor. We have a number of similar situations in our 
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everyday life. For example, a tourist usually does not have an iterated interaction with a souvenir store 

owner at a foreign sightseeing spot. In this case, the memory about the interaction with the owner may 

have an effect on future actions of the tourist at other souvenir stores. While a buyer in online auction 

sites usually does not buy from the same seller many times, memories about past transactions with 

some sellers will influence future actions of the buyer in transactions with other sellers. Random 

pairing seems to be more suitable to these situations than the iterated interaction with the same 

opponent. 

 In the spatial IPD game with random pairing, the choice of an action by a player depends on the 

previous action of its opponent, which is in general different from the opponent in the current round. 

For example, the defection of an opponent in the previous round may cause the defection of the player 

against a different opponent in the current round. We implement the spatial IPD game with the random 

pairing scheme in the 3131×  grid-world as follows: 

 

Step 0: Specify t as 1=t  where t indexes the number of rounds of the IPD game. Let T be the 

maximum number of rounds of the IPD game, which is used as the termination condition of the 

execution of the IPD game. 

Step 1: Specify i as 1=i  where i is a player index. 

Step 2:  Randomly select one player (say Player j) from .)(IPD iN  

Step 3:  Player i plays a single round of the IPD game against Player j based on their strategies. 

Step 4:  Update the memories of Player i and Player j according to the result of the game in Step 3. 

Step 5:  If 961<i  (i.e., if some players have not been selected as Player i yet), let 1: += ii  and return 

to Step 2. 

Step 6:  If Tt < , let 1: += tt  and return to Step 1. Otherwise stop the execution of the IPD game. 

 

 By the above procedures, the fitness values of all players are calculated simultaneously. The next 

population of strategies is generated by the genetic operations with the neighborhood structure 

)(GA iN  using the calculated fitness values.  

 The same parameter specifications were used as in the previous computer simulations in Section III. 

Since opponents are selected randomly at every round, the evolution of reciprocal strategies is very 

difficult to achieve. Actually the average payoff was 1.01 even when we specified the mistake 

probability as zero in the non-spatial IPD game with random pairing. The average payoff of 1.01 

means that mutual defection was played in almost all rounds. 

 The average payoff over 1000 generations of 100 independent runs is shown in Fig. 13 for each 

combination of the two neighborhood structures in the spatial IPD game with the random pairing 

scheme. The mistake probability was specified as zero in Fig. 13. High average payoff was obtained 

only when we used )(IPD iN  with three players and )(GA iN  with three, five, or nine players. We also 
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show percentage of mutual cooperation in Fig. 14, which shows that the use of the smallest interaction 

neighborhood and a small mating neighborhood facilitated the evolution of cooperative behavior. 

Cooperative behavior was not evolved when the interaction neighborhood )(IPD iN  included nine or 

more players. In Fig. 15, we show average results at the 1000-th generation. Even at the 1000-th 

generation, the average payoff was close to 1.00 when the interaction neighborhood )(IPD iN  included 

nine or more players. We can see that the average results over 1000 generations in Fig. 13 are similar 

to those at the 1000-th generation in Fig. 15. 
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Fig. 13. Average payoff over 1000 generations with random pairing in the case of the mistake 

probability zero. 
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Fig. 14. Percentage of mutual cooperation over 1000 generations with random pairing in the case of 

the mistake probability zero. 
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Fig. 15. Average payoff at the 1000-th generation with random pairing in the case of the mistake 

probability zero. 

 

 Similar results were obtained in the case of other specifications of the mistake probability. For 

example, the average payoff over 1000 generations of 100 independent runs is shown in Fig. 16 for the 

case of the mistake probability 0.01. As in Fig. 13 with the mistake probability zero, high average 

payoff was obtained when we used the smallest interaction neighborhood for )(IPD iN  and a small 

mating neighborhood for .)(GA iN  
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Fig. 16. Average payoff over 1000 generations with random pairing in the case of the mistake 

probability 0.01. 

 

 

 As we have already explained in Section III using Fig. 4, we used only the horizontal neighborhood 

structure as the smallest interaction neighborhood )(IPD iN  while both the horizontal and vertical 

neighborhood structures were used as the smallest mating neighborhood )(GA iN  in the case of 
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3|)(| IPD =iN  and .3|)(| GA =iN  For comparison, we examined the use of both the horizontal and 

vertical neighborhood structures as the smallest interaction neighborhood )(IPD iN  in the computer 

simulation in Fig. 13. In this computer simulation, we randomly assigned the horizontal or vertical 

neighborhood structure to each player in the 3131×  grid-world as ).(IPD iN  Table 3 compares average 

payoff obtained from the two specifications of .)(IPD iN  In Table 3, we observe the decrease in average 

payoff by the use of both the horizontal and vertical neighborhood structures as .)(IPD iN  This decrease 

can be explained as follows. When we used both the horizontal and vertical neighborhood structures as 

)(IPD iN  in the case of 3|)(| IPD =iN , each player played against more than three opponents as we have 

already explained in Section III using Fig. 4. This increase in the number of opponents decreased the 

probability to play against the same opponent in the next round of the IPD game under the random 

pairing scheme. The decrease in the probability to play against the same opponent also explains the 

decrease in average payoff with the increase in the size of the interaction neighborhood )(IPD iN  in Fig. 

13. 

 

 

Table 3.  Average payoff obtained from the two specifications of )(IPD iN  in the case of 

3|)(| IPD =iN  (i.e., the use of only the horizontal neighborhood structure and the use of both the 

horizontal and vertical neighborhood structures). The other specifications are the same as Fig. 13.  

 

Size of )(GA iN  
)(IPD iN  

3 5 9 25 49 961
Average

Horizontal 2.89 2.91 2.85 2.19 1.78 1.21 2.31 
Both 2.44 2.50 2.29 1.66 1.53 1.22 1.94 

 

 

 

 In order to examine the effect of the size of the two-dimensional grid-world on our simulation 

results, we performed the same computer simulation as Fig. 13 using a 100100×  grid-world with 

10000 players. Simulation results of 100 independent runs for each combination of )(IPD iN  and 

)(GA iN  are summarized in Fig. 17. While average payoff was increased by the use of the larger grid-

world for some combinations of )(IPD iN  and )(GA iN  in Fig. 17 from Fig. 13, the same conclusion 

can be obtained from Fig. 13 and Fig. 17. That is, high average payoff was obtained when we used the 

smallest interaction neighborhood )(IPD iN  and a small mating neighborhood )(GA iN  with three, five, 

or nine players. 
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Fig. 17. Average payoff over 1000 generations with random pairing in the 100100×  grid-world. The 

same parameter specifications were used as Fig. 13. 

 

 

 In order to demonstrate how cooperative behavior was evolved with random pairing in the 

computer simulation of Fig. 13 in the 3131×  grid-world with the mistake probability zero, we show 

percentages of some strategies over 100 independent runs for two combinations of )(IPD iN  and 

)(GA iN  in Fig. 18 and Fig. 19. Strategies characterized by the generic form “1***1” had high 

percentages in Fig. 18 (with 3|)(| IPD =iN  and 5|)(| GA =iN ) where high average payoff was 

obtained. Strategies of this form (e.g., TFT “10011” and Pavlov “11001” [28]) start with cooperation 

(C) and cooperate when the result of the previous round was mutual cooperation (C, C). Thus 100% 

mutual cooperation can be achieved under the mistake probability zero when all players have 

strategies of this type, even in the case of random pairing. In Fig. 20, we show how the average 

percentage of mutual cooperation over 100 independent runs in Fig. 18 increased during 1000 

generations.  

 On the other hand, strategies of the form “****0” were included in Fig. 19 (with 5|)(| IPD =iN  

and 5|)(| GA =iN ) where average payoff was not high. Strategies of this form defect when the result 

of the previous round was mutual cooperation (C, C). Thus the existence of strategies of this type 

prevents the consecutive occurrence of mutual cooperation. As a result, the average payoff and 

percentage of mutual cooperation were not high in the trials shown in Fig. 19, where percentages of 

those strategies were high. Fig. 21 shows the average percentage of mutual cooperation over 100 

independent runs in Fig. 19. 
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Fig. 18. Percentages of some strategies under the random pairing scheme, the mistake probability zero, 

)(IPD iN  with three players, and )(GA iN  with five players. Average payoff was 2.91. 
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Fig. 19. Percentages of some strategies under the random pairing scheme, the mistake probability zero, 

)(IPD iN  with five players, and )(GA iN  with five players. Average payoff was 1.82. 
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Fig. 20. Percentages of mutual cooperation (C, C), and mutual defection (D, D) over the same 100 

runs in  Fig. 18. We also show the percentage of (C, D) which includes the case of (D, C). 



 -19-

Generation
Pe

rc
en

ta
ge

 o
f e

ac
h 

co
m

bi
na

tio
n (C, C) (C, D) (D, D)

0 200 400 600 800 1000
0

20

40

60

80

100

 
 

Fig. 21. Percentages of mutual cooperation (C, C), and mutual defection (D, D) over the same 100 

runs in  Fig. 19. We also show the percentage of (C, D) which includes the case of (D, C). 

 Percentages of some strategies were also examined in the case of the mistake probability 0.01 (i.e., 

in the computer simulation of Fig. 16) over 100 independent runs for the same two combinations of 

)(IPD iN  and )(GA iN  as in Fig. 18 and Fig. 19. Results are shown in Fig. 22 and Fig. 23. For the 

combination of 3|)(| IPD =iN  and 5|)(| GA =iN  that showed high average payoff (i.e., Fig. 22), 

strategies characterized by the generic form “11**1” had high percentages. Strategies of this form 

(e.g., Pavlov “11001” [28]) start with cooperation (C) and cooperate when the result of the previous 

round was mutual cooperation (C, C) and mutual defection (D, D). That is, those strategies have the 

ability to recover from mutual defection. This ability seems to be important under a noisy situation 

with the existence of mistakes. The TFT strategy “10011”, which does not have this ability, decreased 

its percentage during the evolution of cooperative behavior under the existence of mistakes in Fig. 22 

while it maintained high percentage in the case of the mistake probability zero in Fig. 18. High 

percentage of mutual cooperation was achieved in Fig. 22. Fig. 24 shows how the average percentage 

of mutual cooperation increased during 1000 generations of 100 independent runs in Fig. 22. 

 On the other hand, we can observe that the TFT strategy “10011” increased its percentage to almost 

100% during 1000 generations in Fig. 23. This does not always mean the evolution of cooperative 

behavior under random pairing in game-playing with the existence of mistakes. Fig. 25 shows the 

average percentage of mutual cooperation over 100 independent runs in Fig. 23. While almost all 

players used the TFT strategy at the 1000-th generation in Fig. 23, the corresponding percentage of 

mutual cooperation was about 40% in Fig. 25. As shown in Fig. 22, a higher average payoff was 

obtained from strategies of the form “11**1” rather than the TFT strategy “10011”. 
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Fig. 22. Percentages of some strategies under the random pairing scheme, the mistake probability 0.01, 

)(IPD iN  with three players, and )(GA iN  with five players. Average payoff was 2.87. 
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Fig. 23. Percentages of some strategies under the random pairing scheme, the mistake probability 0.01, 

)(IPD iN  with five players, and )(GA iN  with five players. Average payoff was 2.03. 
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Fig. 24. Percentages of mutual cooperation (C, C), and mutual defection (D, D) over the same 100 

runs in  Fig. 22. We also show the percentage of (C, D) which includes the case of (D, C). 
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Fig. 25. Percentages of mutual cooperation (C, C), and mutual defection (D, D) over the same 100 

runs in  Fig. 23. We also show the percentage of (C, D) which includes the case of (D, C). 

 

 We further examined the 36 combinations of the two neighborhood structures for various 

specifications of the mistake probability (i.e., 0, 0.001, 0.005, 0.01, 0.05, 0.1). Simulation results for 

the mistake probabilities 0 and 0.01 were shown in Fig. 13 and Fig. 16, respectively. In our computer 

simulations with various specifications of the mistake probability, the highest average payoff was 

always obtained from )(IPD iN  with three players and )(GA iN  with five players. Table 4 summarizes 

the relation between the mistake probability and the best average payoff among the 36 combinations 

of the two neighborhood structures. As in the case of the standard pairing scheme with a long 

interaction sequence against the same opponent, Table 4 shows that high mistake probabilities 

decreased the average payoff. That is, the evolution of cooperative behavior was disturbed by high 

mistake probabilities in the case of the random pairing scheme as well as the standard one. 

 

 

Table 4. Relation between the mistake probability and the best average payoff among the 36 

combinations of the two neighborhood structures under the random pairing scheme. 
 

Probability 0 0.001 0.005 0.01 0.05 0.1
Payoff 2.91 2.92 2.89 2.87 2.71 2.56

 

 

 We also examined the effect of the crossover and mutation probabilities on the evolution of 

cooperative behavior under random pairing. The mistake probability was specified as zero and the size 

of the interaction neighborhood )(IPD iN  as three (i.e., 3|)(| IPD =iN ). We examined four 

specifications of the crossover probability: =CP 0, 0.1, 0.5, 1.0, and also four specifications of the 

mutation probability: =MP 0, 0.1/ )9615( × , 1/ )9615( × , 10/ )9615( × . We show percentages of 
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mutual cooperation for various specifications of the crossover and mutation probabilities in Table 5 

and Table 6 where high percentages of mutual cooperation (over 70%) are highlighted by boldface. 

Table 5 shows the effect of the crossover probability on the percentage of mutual cooperation. High 

percentages of mutual cooperation were obtained in Table 5 even in the case of the crossover 

probability being zero. On the other hand, Table 6 shows the effect of the mutation probability on the 

percentage of mutual cooperation. High percentages of mutual cooperation were obtained in Table 6 in 

a wide range of mutation probabilities while a too large mutation probability decreased the percentage 

of mutual cooperation.  

 

 

Table 5. Percentage of mutual cooperation for each specification of the crossover probability 
( 3|)(| IPD =iN  and =MP 1/ )9615( × ). 

 
Size of )(GA iN  Crossover 

probability 3 5 9 25 49 961
Average

0.0 93.4 95.6 93.2 63.4 42.0 37.0 70.8 
0.1 92.7 95.1 92.7 57.7 26.7 11.1 62.7 
0.5 92.4 94.1 90.6 44.8 21.1 5.2 58.0 
1.0 92.3 93.6 90.2 40.5 19.6 3.3 56.6 

 

 

Table 6. Percentage of mutual cooperation for each specification of the mutation probability 
( 3|)(| IPD =iN , =CP 1 and =MP 1/ )9615( × ). 

 
Size of )(GA iN  Mutation 

probability 3 5 9 25 49 961
Average

0.0 94.0 94.5 90.3 36.2 16.3 2.4 55.6 
0.1 MP×  93.8 94.3 90.7 37.9 18.6 3.8 56.5 

MP  92.3 93.6 90.2 40.5 19.6 3.3 56.6 
10 MP×  71.9 81.2 70.7 37.7 16.7 3.9 47.0 

 

 

 We also performed computer simulations using other specifications of the interaction neighborhood 

)(IPD iN . High percentages of mutual cooperation were not obtained when )(IPD iN  included five 

neighbors. More specifically, the percentage of mutual cooperation was always less than 50% in the 

case of 5|)(| IPD =iN . When )(IPD iN  included nine or more neighbors, the percentage of mutual 

cooperation was always almost zero. Since these results are similar to Fig. 13, they are omitted in 

Table 5 and Table 6. These tables show that the combination of the smallest interaction neighborhood 

)(IPD iN  and a small mating neighborhood )(GA iN  facilitated the evolution of cooperative behaviors 
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in all the examined specifications of the crossover and mutation probabilities. 

 Finally we examined other specifications of the number of rounds (i.e., iterations) of the game in 

each generation for each player. In each trial of the computer simulations in this section, we specified 

the number of rounds in each generation as 100 for each player (i.e., =T 100 in the random pairing 

scheme). We performed computer simulations using other specifications of the number of rounds (i.e., 

=T 10, 20, 50, 1000). Average results over 100 independent runs are shown in Table 7. We can see 

that similar results were obtained in Table 7 from the five specifications of the number of rounds. We 

can also see that the increase in the number of rounds slightly increased the percentage of mutual 

cooperation.  

 

 

Table 7. Percentage of mutual cooperation for each specification of the number of rounds 
( 3|)(| IPD =iN , =CP 1 and =MP 1/ )9615( × ). 

 
Size of )(GA iN  Number of 

rounds (T) 3 5 9 25 49 961
Average

10 93.7 92.8 90.3 36.2 12.6 5.4 55.2  
20 93.1 92.0 88.7 40.1 14.8 5.8 55.7 
50 92.5 92.8 89.3 41.5 15.9 4.7 56.1 

100 92.3 93.6 90.2 40.5 19.6 3.3 56.6 
1000 91.1 94.3 89.8 53.8 20.8 9.4 59.9 

 

 

 

V. Conclusions 
 In this paper, we first formulated a spatial IPD game using the concept of structured demes. The 

main characteristic of our spatial IPD game is the use of two neighborhood structures: One is for the 

interaction among players through the IPD game and the other is for mating strategies. Next we 

demonstrated through computer simulations that the use of a small interaction neighborhood facilitated 

the evolution of cooperative behavior even in the situation with a relatively high mistake probability 

(e.g., 0.1). In the case of the mistake probability 0.1, the percentage of mutual cooperation was high 

(i.e., about 65%) with the smallest interaction neighborhood including only three players while it was 

low (i.e., about 10%) with no neighborhood structures. On the other hand, when the mistake 

probability was zero, the evolution of cooperative behavior was always evolved for all combinations 

of the two neighborhood structures, including the case of no neighborhood structures. 

 Then we introduced a random pairing scheme with the two neighborhood structures, in which a 

player chose a different opponent in each round of the game randomly from its interaction 

neighborhood. Simulation results demonstrated that cooperative behavior was evolved when we used 
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the smallest interaction neighborhood with three players and a small mating neighborhood with three, 

five, or nine players. When the interaction neighborhood included nine or more players, the percentage 

of mutual cooperation was almost zero and the average payoff was about one, which means that 

mutual defection was always played. Further analysis is required to explain these results. 

 In this paper, a player’s strategy was represented by a binary string. An interesting extension is to 

use a stochastic strategy represented by a string of real numbers between 0 and 1 (e.g., Brauchli et al. 

[16]). Each real number in the string denotes the probability of cooperation. The evolution of 

stochastic strategies in the spatial IPD game with random pairing is left for a future research topic. 

 Another future research topic is the evolution of cooperative behavior under the random pairing 

scheme in a large interaction neighborhood. In this situation, cooperative behavior was not evolved in 

our computer simulations. A promising approach would be to tag players with certain types. Each 

player may have a strategy for responding to players of each type. 
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