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Abstract—Recently a number of high performance many-
objective evolutionary algorithms with systematically generated 
weight vectors have been proposed in the literature. Those 
algorithms often show surprisingly good performance on widely 
used DTLZ and WFG test problems. The performance of those 
algorithms has continued to be improved. The aim of this paper 
is to show our concern that such a performance improvement 
race may lead to the overspecialization of developed algorithms 
for the frequently used many-objective test problems. In this 
paper, we first explain the DTLZ and WFG test problems. Next 
we explain many-objective evolutionary algorithms characterized 
by the use of systematically generated weight vectors. Then we 
discuss the relation between the features of the test problems and 
the search mechanisms of weight vector-based algorithms such as 
MOEA/D, NSGA-III, MOEA/DD and  -DEA. Through 
computational experiments, we demonstrate that a slight change 
in the problem formulations of DTLZ and WFG deteriorates the 
performance of those algorithms. After explaining the reason for 
the performance deterioration, we discuss the necessity of more 
general test problems and more flexible algorithms.  

Keywords—Many-objective optimization, many-objective test 
problems, many-objective evolutionary algorithms, decomposition-
based evolutionary algorithms. 

I. INTRODUCTION 

Recently the development of evolutionary multi-objective 
optimization (EMO) algorithms was discussed from the point 
of view of co-evolution with test problems in [1] where the 
Pareto front was compared with randomly generated initial 
solutions to explain the characteristic features of each test 
problem. For example, Fig. 1 shows a test problem in [2] used 
for performance evaluations of EMO algorithms in the mid-
1990s. As we can see from Fig. 1, some initial solutions are 
very close to the Pareto front. This observation may explain 
why non-elitist EMO algorithms such as NSGA [3] and NPGA 
[4] with no strong convergence property were proposed in the 
mid-1990s. However, initial solutions of a test problem in Fig. 
2 [5] are not close to the Pareto front. Thus we need strong 
convergence whereas no strong diversification is needed in Fig. 
2 (since randomly generated initial solutions have a large 
diversity). These observations explain why elitist EMO 
algorithms such as SPEA [6], NSGA-II [7] and SPEA2 [8] 
were proposed around 2000. In these algorithms, Pareto 
dominance was used as the main fitness evaluation criterion 
together with a secondary criterion for diversity maintenance.  
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Fig. 1. Randomly generated 200 solutions and the Pareto front of a test 
problem in Fonseca & Fleming [2]. 

             0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

f1

f2

Pareto Front

 

Fig. 2. Randomly generated 200 solutions and the Pareto front of a two-
objective ZDT1 problem [5]. 

In parallel with the increase in the popularity of the Pareto 
dominance-based EMO algorithms [6]-[8], many-objective test 
problems called DTLZ [9] and WFG [10] were proposed as 
scalable test problems where the number of objectives can be 
arbitrarily specified. Multi-objective knapsack problems [6] 
were also generalized to many-objective test problems with up 
to 25 objectives [11], [12]. The DTLZ, WFG and knapsack 
problems were repeatedly used for demonstrating difficulties of 
many-objective optimization for the Pareto dominance-based 
EMO algorithms [13]-[16]. When an EMO algorithm is 
applied to a many-objective problem, almost all solutions in a 
population become non-dominated with each other in very 
early generations (e.g., within ten generations) before they 
converge to the Pareto front. This means that the Pareto 
dominance-based selection pressure toward the Pareto front 
becomes very weak. As a result, convergence ability of Pareto 
dominance-based EMO algorithms is severely degraded by the 
increase in the number of objectives. 
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For improving the convergence ability for many-objective 
problems, various approaches have been proposed such as the 
modification of the Pareto dominance relation [17] and the 
introduction of an additional ranking mechanism [18]-[21]. 
The use of a different fitness evaluation mechanism was also 
actively studied. Approaches in this direction can be classified 
into two categories. One is an indicator-based approach such as 
SMS-EMOA [22] and HypE [23]. The advantage of EMO 
algorithms in this category is a sound theoretical support, 
which is based on a direct relation between many-objective 
optimization and indicator optimization. Their main difficulty 
is heavy computation load for fitness evaluation. The other 
category is characterized by the use of a scalarizing function 
for fitness evaluation such as MSOPS [24] and MOEA/D [25]. 
These algorithms are referred to as decomposition-based or 
scalarizing function-based algorithms.  

Whereas MOEA/D [25] was not originally proposed for 
many-objective problems, its high performance as a many-
objective optimizer was observed in the literature (e.g., [16], 
[26]). Recently, a number of new many-objective algorithms 
have been proposed using the framework of MOEA/D (e.g., I-
DBEA [27], MOEA/D-DU [28], EFR-RR [28] and  -DEA 
[29]). Some other algorithms (e.g., NSGA-III [30], MOEA/DD 
[31] and U-NSGA-III [32]) can be viewed as using hybrid 
mechanisms of the Pareto dominance-based fitness evaluation 
and the MOEA/D framework

MOEA/D [25] searches for well-distributed solutions using 
systematically generated weight vectors. As an example, we 
show a set of 91 weight vectors for a three-objective problem 
in Fig. 3. In Fig. 4, we show an example of obtained solutions 
by MOEA/D-PBI with  = 5 [25] for a three-objective DTLZ2 
problem [9]. Well-distributed solutions were obtained in Fig. 4 
using the uniformly distributed weight vectors in Fig. 3.  

In Fig. 3 and Fig. 4, a one-to-one mapping was realized 
between the weight vectors in Fig. 3 and the obtained solutions 
in Fig. 4. However, this is not always the case. As examined in 
[33], the number of obtained non-dominated solutions by 
MOEA/D is often much smaller than the number of weight 
vectors. This is because (i) a single good solution can be shared 
by multiple weight vectors and (ii) all solutions are not always 
non-dominated. Recently proposed many-objective algorithms 
[27]-[32] with the MOEA/D framework have mechanisms for 
improving both the convergence of solutions toward the Pareto 
front and their uniformity over the entire Pareto front. Their 
common feature is the use of systematically generated weight 
vectors. In those algorithms, reference points and/or reference 
lines are constructed using the weight vectors.  

Surprisingly good results were reported by those weight 
vector-based algorithms on the DTLZ and WFG problems in 
the literature. For example, the average inverted generational 
distance (IGD) over 20 runs on a 15-objective DTLZ2 problem 
was reported in [29] as 1.726 102 by NSGA-III, 1.133 102 
by  -DEA, and 6.005 103 by MOEA/D-PBI. In Fig. 5, we 
show the reference points used for the IGD calculation in [29] 
and a set of obtained solutions by a single run of MOEA/D-PBI 
with  = 5 (IGD is 5.590  103 in Fig. 5). The obtained 
solution set in Fig. 5 (b) is almost the same as the reference 
point set in Fig. 5 (a). 
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Fig. 3. Example of weight vectors used in MOEA/D (91 weight vectors). 
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Fig. 4. Example of obtained non-dominated solutions by MOEA/D-PBI for a 
three-objective DTLZ2 problem using the 91 weight vectors in Fig. 3.  
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(a) Reference points. 
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(b) Obtained solutions by a single run of MOEA/D-PBI. 

Fig. 5. Reference points for the IGD calculation and a set of obtained 
solutions by MOEA/D-PBI with  = 5 for a 15-objective DTLZ2 problem.  

Whereas difficulties of many-objective problems were 
repeatedly pointed out in the literature (e.g., see survey papers 
[12], [34], [35]), Fig. 5 and the reported results in [27]-[32] 
may suggest that some DTLZ and WFG problems are not 
difficult. In this paper, we first examine why surprisingly good 
results were obtained for some DTLZ and WFG test problems. 



Then we show that a slight change in the DTLZ and WFG 
formulations degrades the performance of weight vector-based 
many-objective algorithms. Our experimental results suggest 
the overspecialization of those algorithms for the test problems. 

This paper is organized as follows. In Section II, we briefly 
explain the DTLZ [9] and WFG [10] problems. We focus on 
the shape of the Pareto front of each test problem. In Section 
III, we explain a common search mechanism of weight vector-
based algorithms such as MOEA/D-PBI [25],  -DEA [29] and 
NSGA-III [30]. We also discuss the relation between the shape 
of the Pareto front of each test problem and the common search 
mechanism of those algorithms. In Section IV, we demonstrate 
their high performance on the DTLZ and WFG problems. We 
also demonstrate severe performance deterioration by a slight 
change in the problem formulations of DTLZ and WFG: All 
objectives are multiplied by (1). In Section V, we explain 
why the performance of the weight vector-based algorithms is 
sensitive to such a slight change. We also discuss the necessity 
of more general test problems and more flexible algorithms. 
Finally we conclude this paper in Section VI. 

II. MANY-OBJECTIVE TEST PROBLEMS 

In general, an M-objective minimization problem with a 
decision vector x and its feasible region X is written as 

Minimize )(1 xf , )(2 xf , ..., )(xMf  subject to Xx ,  (1) 

where )(xif  is the ith objective to be minimized (i = 1, 2, ..., 
M). In the EMO community, multi-objective problems with 
four or more objectives (i.e., 4M ) are often referred to as 
many-objective problems [12], [34], [35].  

Scalable many-objective test problems called DTLZ [9] 
and WFG [10] have been frequently used to evaluate many-
objective algorithms in the literature. Table I summarizes 
many-objective test problems used for performance evaluation 
of recently proposed weight vector-based algorithms [27]-[32]. 
For comparison, we also show multi-objective test problems 
used for evaluating MOEA/D in [25]. We can see from this 
table that DTLZ1-4 and WFG1-9 have often been used in the 
literature. In this section, we briefly explain those test problems.  

A. DTLZ Test Problems 

The DTLZ test suite was designed by Deb et al. [9] as a set 
of nine scalable test problems (DTLZ1-9). The number of 
decision variables (say n) of M-objective DTLZ1-7 problems is 
specified as n = M + k  1 where k is a parameter. The value of 
k is often specified as k = 5 in DTLZ1, k = 10 in DTLZ2-6, and 
k = 20 in DTLZ7. In DTLZ8-9, the number of decision 
variables is specified as n = 10M. 

Let y*= (y*
1 , y*

2 , ..., y*
M) be a Pareto optimal solution in the 

M-dimensional objective space of each test problem. The 
Pareto front of each of the first four test problems (DTLZ1-4) 
can be represented by the following formulations [9]: 

DTLZ1:  


M

i
iy

1

* 0.5 and 0* iy  for i = 1, 2, …, M.      (2) 

DTLZ2-4:  


M

i
iy

1

2* )( 1 and 0* iy  for i = 1, 2, …, M.  (3) 

Table I. Many-objective test problems used in each study on weight 
vector-based many-objective evolutionary algorithms. 

Ref. Publication
Year 

Proposed  
Algorithm 

Test  
Problems 

Number of 
Objectives 

[25] 2007 MOEA/D 
Knapsack 
ZDT1-4, 6 
DTLZ1-2 

2, 3, 4
2 
3

[27] 2015 I-DBEA 
DTLZ1-4 

DTLZ5(I, M)  
WFG1-9 

3, 5, 8, 10, 15
3, 5, 8, 10, 15
3, 5, 10, 15

[28] 2016 MOEA/D-DU 
EFR-RR 

DTLZ1-4, 7 
WFG1-9 

S-DTLZ1-2 

2, 5, 8, 10, 13
2, 5, 8, 10, 13
2, 5, 8, 10, 13

[29] 2016  -DEA 
DTLZ1-4, 7 
S-DTLZ1-2 

WFG1-9 

3, 5, 8, 10, 15
3, 5, 8, 10, 15
3, 5, 8, 10, 15

[30] 2014 NSGA-III 
DTLZ1-4 
WFG6-7 

S-DTLZ1-2 

3, 5, 8, 10, 15
3, 5, 8, 10, 15
3, 5, 8, 10, 15

[31] 2015 MOEA/DD DTLZ1-4 
WFG1-9 

3, 5, 8, 10, 15
3, 5, 8, 10

[32] 2016 U-NSGA-III 
ZDT1-4, 6 
DTLZ1-2 

S-DTLZ1-2 

2
3, 5 ,8, 10 
3, 5, 8, 10

 
As shown in Table I, DTLZ1-4 have been frequently used 

for performance evaluation of many-objective algorithms. This 
is because their Pareto fronts are represented by the simple 
formulations in (2) and (3). DTLZ5-6 were originally proposed 
as many-objective test problems with degenerate Pareto fronts 
in [9]. However, their Pareto fronts are not degenerate when 
they have four or more objectives ([10], [36], [37]). Constraint 
conditions were introduced to remove the non-degenerate parts 
of the Pareto fronts [36], [37]. The Pareto fronts of DTLZ7-9 
cannot be represented by a simple form as in (2) or (3).  

B. WFG Test Problems 

The WFG test suite was proposed by Huband et al. [10] as 
a set of nine scalable test problems (WFG1-9). An M-objective 
WFG problem has k position-related variables and l distance-
related variables. Thus the total number of decision variables is 
n = k + l. The suggested values of k and l in [10] were k = 4 and 
l = 20 for two-objective problems and k = 2(M  1) and l = 20 
for problems with more than two objectives. However, 
different specifications have been used in the literature. For 
example, they were specified as k = M  1 and l = 24  (M  1) 
in [29]. These specifications [29] are used in this paper. Since l 
should be an even number in WFG2 and WFG3, the 
specification of l is slightly changed as l = 16 for M = 8 and l = 
14 for M = 10 only in WFG2 and WFG3 in this paper. 

WFG1 has a complicated Pareto front, which cannot be 
represented by a simple form as in (2) or (3). The Pareto front 
of WFG2 is disconnected. WFG3 was originally designed as a 
many-objective test problem with a degenerate Pareto front. 
However, its Pareto front is not degenerate when it has three or 
more objectives as recently pointed out in [38]. All the other 
test problems (i.e., WFG4-9) have the following Pareto front: 

WFG4-9: 









M

i

i

i

y

1

2
*

2
1 and 0* iy  for i = 1, 2, …, M.  (4) 

One important feature of the Pareto fronts of WFG4-9 in 
(4) is that the domain of each objective has a different 



magnitude (e.g., 20 *
1  y  and 200 *

10  y ). This explains 
why most of the recently proposed many-objective algorithms 
[27]-[30], [32] in Table I have normalization mechanisms of 
the objective space. Since MOEA/D [25] has no normalization 
mechanism, good results have not been reported for many-
objective WFG problems in the literature.  

C. Common Feature of DTLZ1-4 and WFG4-9 

By normalizing the range of the Pareto front for each 
objective into the unit interval [0, 1], the Pareto fronts of 
DTLZ1-4 and WFG4-9 can be rewritten as follows: 

DTLZ1:  


M

i
iy

1

* 1 and 0* iy  for i = 1, 2, …, M.          (5) 

DTLZ2-4 and WFG4-9: 

      


M

i
iy

1

2* )( 1 and 0* iy  for i = 1, 2, …, M.        (6) 

These formulations show that DTLZ1-4 and WFG4-9 are 
similar test problems with respect to the shape of their Pareto 
fronts. This means that most test problems used for evaluating 
many-objective algorithms in [27]-[32] in Table I are similar 
with respect to the shape of their Pareto fronts whereas they are 
different with respect to other aspects such as the curvature 
property of the Pareto fronts (e.g., linear, concave) and the type 
of the objective functions (e.g., multi-modal, deceptive). In this 
paper, we explain our concern that the development of weight 
vector-based many-objective evolutionary algorithms seems to 
be overspecialized for the above-mentioned similarity of the 
Pareto fronts of DTLZ1-4 and WFG4-9.  

III. WEIGHT VECTOR-BASED MANY-OBJECTIVE ALGORITHMS 

In MOEA/D [25], a multi-objective problem is decomposed 
into single-objective problems, each of which is generated by a 
scalarizing function with a different weight vector. Thus the 
number of single-objective problems is the same as the number 
of weight vectors. Since a single best solution is stored for each 
single-objective problem, the population size is also the same 
as the number of weight vectors. MOEA/D can be viewed as 
an improved version of a cellular multi-objective genetic 
algorithm (C-MOGA [39]). MOEA/D is also similar to multi-
objective genetic local search (MOGLS [40]-[43]): Both of 
them optimize scalarizing functions. Whereas weight vectors 
are systematically generated and fixed in MOEA/D, they are 
randomly updated in each generation in MOGLS. 

A. Weight Vector Specification 

In the original MOEA/D [25], all weight vectors w = (w1, 
w2, ..., wM) satisfying the following formulations are generated:  

 


M

i
iw

1
1 and 0iw  for i = 1, 2, …, M,           (7) 









H

H

HH
wi ...,,

2
,

1
,0  for i = 1, 2, …, M,          (8) 

where H is a positive integer. The total number of the weight 
vectors (say N, which is the same as the population size) is 
calculated as 1

1


 MH
MCN  (i.e., N = H+M1CM1 [25]). 

Weight vectors in (7) and (8) are on the hyper-plane 
specified by (7) in an M-dimensional space. For example, all 
weight vectors for M = 3 are on the triangular shape plane 
specified by 1321  www  and 0iw  for i = 1, 2, 3. When 
H < M, at least one element is zero (i.e., wi = 0) in all weight 
vectors satisfying (7) and (8). That is, no weight vector is 
inside the hyper-plane specified by (7). However, the use of a 
large value for H satisfying MH   leads to an impractically 
large number of weight vectors for many-objective problems. 
For example, if we specify H as 10H  for a ten-objective 
problem, 92,378 weight vectors are generated. In this case, 
only a single weight vector (0.1, 0.1, ..., 0.1) is inside the 
hyper-plane. All the other weight vectors are on its boundary.  

For handling this difficulty, a two-layered approach was 
proposed in NSGA-III [30] and used in recently proposed 
weight vector-based many-objective algorithms. In the two-
layered approach, two sets of weight vectors w = (w1, w2, ..., 
wM) are generated using (7) and (8). One set of weight vectors 
is generated from an integer H1 and used with no modification 
as the boundary layer weight vectors. The other set of weight 
vectors is generated from another integer H2 and used as the 
inside layer weight vectors after the following modification:  

2/)/1( Mww ii    for  i = 1, 2, …, M.           (9) 

The two-layered approach is used for many-objective 
problems with eight or more objectives in this paper. It should 
be noted that all weight vectors generated by the two-layered 
approach are on the same hyper-plane specified by (7), which 
is the same as all weight vectors in the original MOEA/D.  

Another frequently used modification is the use of a small 
number 10

6
 when wi = 0 in the weighted Tchebycheff function. 

We use this modification in our computational experiments. 

B. Basic Idea of MOEA/D 

The basic idea of MOEA/D (and its variants) is to find a set 
of well-distributed non-dominated solutions along the Pareto 
front using the systematically generated weight vectors as 
shown in Fig. 6. The realization of this idea is often explained 
by two distances in Fig. 7: d1 and d2. 
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Fig. 6. Basic idea of MOEA/D and weight vector-based algorithms. 

In Fig. 7, d1 is the distance from the ideal point z I to the 
solution (f1(x), f2(x)) along the reference line specified by a 
weight vector, and d2 is the distance from the reference line to 
the solution (f1(x), f2(x)). These distances should be minimized 
for each reference line (i.e., in each single-objective problem). 



It is also important to assign a single solution to each 
reference line. Weight vector-based algorithms [27]-[32] have 
their own mechanisms to minimize d1 and d2, and to assign a 
single solution to each reference line. While some algorithms 
[30]-[32] use Pareto dominance for minimizing d1, the basic 
idea is the same: the search for well-distributed non-dominated 
solutions along the Pareto front using a set of reference lines.  

The ideal point z I is defined by the best value of each 
objective as shown in Fig. 7. In general, the ideal point z I is 
unknown. So, its approximation is usually used as a reference 
point z* in MOEA/D and other weight vector-based algorithms 
as explained in the next subsection.  
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Fig. 7. Search for a solution using the weight vector w in MOEA/D. 

C. Scalarizing Functions 

Three scalarizing functions were examined in the original 
MOEA/D [25]: the weighted sum, the weighted Tchebycheff 
function, and the penalty-based boundary intersection (PBI) 
function. For the minimization problem in (1), the weighted 
sum with a weight vector w = (w1, w2, ..., wM) is written as  

Minimize )()()|( 11 xxwx MM
WS fwfwf  .      (10) 

The weighted Tchebycheff function is written using a 

reference point )...,,,( **
2

*
1

*
Mzzzz  as  

Minimize |})(|{max),|( **

...,,2,1
xzwx iii

Mi

Tch fzwf 


. (11)  

Each element *
iz  of the reference point *z is specified by 

the minimum (i.e., best) value of each objective )(xif  among 
the examined solutions during the execution of MOEA/D.  

Using a penalty parameter  ( = 5 in [25]) and the 
reference point *z , the PBI function is written as 

Minimize 21
* ),|( ddf PBI zwx ,         (12)  

where d1 and d2 are defined as follows (see Fig. 7):  

wwzxf Td ))(( *
1  ,          (13)  

||||
)( 12

*

w

w
zxf dd  .          (14)  

D. Neighborhood Structure 

In the original MOEA/D [25], each weight vector has its 
neighbors. A pre-specified number of similar weight vectors 

are defined as neighbors for each weight vector. A weight 
vector itself is included in its own neighbors. When a solution 
is to be generated for a weight vector, parents are selected from 
its neighbors. The generated new solution is compared with the 
solution of each neighbor. If the new solution is better, the 
current solution is replaced. The comparison for replacement is 
performed against all solutions of the neighbors. 

This replacement strategy has two potential difficulties. 
One is explained by the following case: A new solution, which 
is generated far from the corresponding reference line, is very 
good for a different reference line while its evaluation is poor 
for the corresponding reference line. This case is explained in 
Fig. 8. Let us assume in Fig. 8 that the set of the seven open 
circles is a current population. We also assume that solution A 
is generated for a reference line l2 with two neighbors l1 and l3. 
The generated solution A, which is very good for a reference 
line l7, is not good for any of l1, l2 and l3. Thus no solution is 
replaced with A. While such a situation is not likely to happen 
very often, its appropriate handling may improve the efficiency 
of MOEA/D. This difficulty can be partially remedied by using 
a large number of neighbors. However, this remedy may 
worsen another potential difficulty explained by the following 
case: Many neighboring solutions are replaced with a single 
good solution. This leads to the decrease in the diversity of 
solutions. For example, if solution B is generated for the 
reference line l2 in Fig. 8, all the current solutions of l1, l2 and l3 
will be replaced with solution B.  

 

Minimize f1(x)z*

M
in

im
iz

e 
f 2

(x
)

l7

l5

l4

l3

l2

l1

l6

B

A

 
Fig. 8. Illustration of reference lines and generated solutions A and B. 

E. Performance Improvement Mechanisms 

These two difficulties can be remedied by the following 
replacement policy: A new solution is compared with its 
similar solutions, and only a single solution is replaced with the 
new solution. Instead of using the pre-specified neighbors, a set 
of similar solutions is selected for the new solution. First the 
nearest reference line to the new solution is identified in the 
objective space (e.g., line l2 for solution B in Fig. 8). Next all 
solutions with the same nearest reference line as the new 
solution are selected as its similar solutions. Then the new 
solution is compared with each similar solution. Only a single 
solution can be replaced with the new solution. If the new 
solution is not better than any similar solutions, no solution is 
replaced. This policy is implemented in [27]-[32] using 
different mechanisms for similar solution selection, solution 
comparison, and solution replacement.  



In NSGA-III [30], reference points are specified in the 
normalized objective space in a similar manner to the weight 
vector specification in MOEA/D. Using the reference points 
and the origin of the normalized objective space, reference 
lines are generated. Each solution is assigned to its nearest 
reference line. Solution comparison in NSGA-III is performed 
using non-dominated sorting, the number of solutions assigned 
to each reference line, and the distance from each solution to its 
nearest reference line. Solutions are updated by a ()ES-
style model. When multiple solutions with the best non-
dominated sorting rank are assigned to the same reference line, 
the best solution with the shortest distance to the reference line 
is selected from them as a member in the next generation. The 
other solutions are randomly ordered. After the generation 
update, most reference lines have a single solution. However, it 
is possible that some reference lines have multiple solutions. It 
is also possible that other reference lines have no solutions.  

In  -DEA [29], each solution is assigned to its nearest 
reference line in the same manner as NSGA-III. The PBI 
function is used for the ranking of solutions assigned to the 
same reference line. Solutions are updated by a ()ES-style 
model based on the rank of each solution. Some reference lines 
may have multiple solutions, and others may have no solutions.  

In MOEA/DD [31], a ()ES-style model is used as in 
the original MOEA/D. Each solution is assigned to the nearest 
weight vector as in NSGA-III and  -DEA. Each solution is 
evaluated by its non-dominated sorting rank, its PBI value, and 
the number of solutions assigned to the same weight vector. 
When all solutions in the current population are non-dominated, 
one solution with the largest PBI value is deleted from the most 
crowded weight vector with the largest number of solutions. 
When some solutions are dominated, one solution to be deleted 
is selected from the worst rank solutions using the number of 
solutions assigned to each weight vector and the PBI value of 
each solution. However, when a weight vector has a single 
solution, the solution is not deleted for diversity maintenance 
even if it has the worst non-dominated sorting rank. 

As we have already explained, weight vector-based 
algorithms in [27]-[30], [32] have normalization mechanisms. 
The two-layered approach in NSGA-III [30] are used in [27]-
[32]. In addition to these two common features, each algorithm 
has its own mechanisms for efficiently realizing the search for 
a set of well-distributed solutions along the Pareto front of a 
many-objective problem.  

F. Relation between Test Problems and Algorithms 

As shown in Section II, the DTLZ1-4 and WFG4-9 test 
problems have the following Pareto front in the normalized M-
dimensional objective space:  

Pareto Front:  


M

i

k
iy

1

* )( 1 and 0* iy  for i = 1, 2, …, M, (15) 

where k = 1 (DTLZ1) and  k = 2 (DTLZ2-4 and WFG4-9). 

Weight vectors in the weight vector-based algorithms [27]-
[32] are generated in the M-dimensional weight space as  

Weight Vectors: 



M

i
iw

1
1 and 0iw  for i = 1, 2, …, M. (16) 

The shape of the Pareto front of each test problem in (15) is 
the same as or similar to the shape of the hyper-plane in (16) 
on which the weight vectors are generated. This explains why 
the search for a single best solution for each weight vector 
leads to a set of well-distributed solutions over the entire Pareto 
front. From the similarity between the shape of the Pareto front 
in (15) and the shape of the distribution of the weight vectors in 
(16), the following questions may arise.  

Q1: How general is the high performance of weight vector-
based algorithms on the DTLZ1-4 and WFG4-9 problems?  

Q2: How general are the triangular shape Pareto fronts of the 
DTLZ1-4 and WFG4-9 test problems? 

In the next section, we discuss the first question through 
computational experiments. The second question is briefly 
discussed in Section V as a future research topic. 

IV. COMPUTATIONAL EXPERIMENTS 

In this section, first we explain our test problems generated 
by slightly changing the DTLZ and WFG formulations. Then 
we demonstrate how high performance of weight vector-based 
algorithms on the DTLZ and WFG problems is deteriorated by 
the slight change in the test problem formulations.  

A. Our Test Problems: DTLZ and WFG  

As we have already explained, the DTLZ and WFG test 
problems have the following form: 

Minimize )(...,),(1 xx Mff  subject to Xx .              (17) 

Our idea is to generate a slightly different test problem 
from each of the DTLZ and WFG problems. More specifically, 
we change their general form from (17) to  

Maximize )(...,),(1 xx Mff  subject to Xx .              (18) 

We use exactly the same objective functions and the same 
constraint conditions except for changing from “Minimize” in 
(17) to “Maximize” in (18). The generated problems in (18) are 
referred to as the Max-DTLZ and Max-WFG problems. Those 
problems are handled as the following minimization problems: 

Minimize )(...,),(1 xx Mff   subject to Xx .        (19)  

All objectives in DTLZ and WFG are multiplied by (–1) in 
our test problems in (19). That is, a negative sign is added to all 
objectives in DTLZ and WFG. In this paper, the minus 
versions in (19) of DTLZ and WFG are referred to as DTLZ1 
and WFG1 (Minus-DTLZ and Minus-WFG), respectively. The 
minimization formulation in (19) with a minus sign for all 
objectives is the same as the maximization form in (18). In our 
computational experiments, we use the minimization form to 
handle all test problems as minimization problems (i.e., to 
apply each algorithm with no modification to DTLZ, WFG, 
DTLZ1 and WFG1 in exactly the same manner). 

In Fig. 9, we show the Pareto fronts of the original three-
objective DTLZ2 problem and its maximization version in 
(18): Max-DTLZ2. The Pareto fronts of the two test problems 
have the same shape with different size. In Fig. 10, we show 
the Pareto fronts of the minus versions of the three-objective 



DTLZ1 and DTLZ2 (i.e., DTLZ1 and DTLZ2). As shown 
in Fig. 10 (a), DTLZ1 has a rotated triangular shape Pareto 
front. The Pareto front of DTLZ2 in Fig. 10 (b) has a rotated 
shape of the Pareto front of the maximization version of 
DTLZ2 in Fig. 9 (b). In this section, we examine the 
performance of weight vector-based algorithms on the DTLZ 
and WFG test problems and their minus versions in (19). 
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  (a) Original three-objective DTLZ2.         (b) Maximization version of DTLZ2. 

Fig. 9. Pareto fronts of three-objective DTLZ2 and Max-DTLZ2 problems. 
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Fig. 10. Pareto fronts of the minus versions of DTLZ1 and DTLZ2.  

As shown in Fig. 9 and Fig. 10 for DTLZ1 and DTLZ2, the 
minus versions of DTLZ have much larger Pareto fronts than 
the original DTLZ problems. When DTLZ has a concave 
Pareto front, its minus version has a convex Pareto front. 
Moreover, the difficulty of optimization is not the same. For 
example, the Pareto optimal solutions of DTLZ2 are obtained 
when all of its distance variables are 0.5. However, the Pareto 
optimal solutions of DTLZ21 are obtained when all of its 
distance variables are 0 or 1 (i.e., at the boundaries of the 
feasible region of each distance variable ix  with the constraint 
condition 10  ix ). These discussions clearly show that our 
idea is not the best way for inverting the Pareto front without 
changing the other properties of the original DTLZ and WFG 
test problems. For this purpose, modification of only the shape 
function may be the best way. In this paper, we use the above-
mentioned simple idea for inverting the Pareto front since it is 
simple and intuitively understandable.  

A test problem called the inverted DTLZ1 was formulated 
in Jain & Deb [44] by applying the following transformation to 
each objective )(xif  of DTLZ1 (i = 1, 2, …, M): 

),())(1(5.0)( xxx ii fgf                                         (20) 

where g(x) is a function in the original DTLZ1 formulation [9]. 
The Pareto front of the inverted DTLZ1 [44] has a rotated 
shape of the Pareto front of DTLZ1 [9]. The size of their Pareto 
fronts is the same since the inverted DTLZ1 was formulated by 

rotating DTLZ1. It should be noted that our DTLZ1
 has a 

much larger Pareto front than DTLZ1 and its rotated version as 
shown in Fig. 10 (a). 

B. Examined Algorithms and Parameter Specifications 

Our computational experiments on DTLZ1-4 and WFG1-9 
with 3, 5, 8 and 10 objectives are performed under the same 
settings as in Yuan et al. [29]. We examine the performance of 
 -DEA [29], NSGA-III [30] and MOEA/DD [31]. We also use 
NSGA-II [7] and four versions of MOEA/D [25]: MOEA/D-
WS with the weighted sum, MOEA/D-Tch with the 
Tchebycheff function, MOEA/D-PBI with the PBI function, 
and MOEA/D-IPBI with the inverted PBI function [45]. 

The inverted PBI (IPBI) function is defined by the distance 
from the nadir point zN, which is a vector consisting of the 
worst value of each objective over the true Pareto front. For 
minimization problems, the IPBI function [45] is defined as 

Maximize 21),|( ddf NIPBI zwx ,         (21)  

where  is a penalty parameter, and d1 and d2 are defined as 
follows:  

wwxfz TNd ))((1  ,          (22)  

||||
)( 12 w

w
xfz dd N  .          (23)  

In this paper, we use the same implementation of MOEA/D 
-IPBI as in [45]: The penalty parameter  is specified as  = 0.1, 
and the nadir point zN is approximated by the worst value of 
each objective in the current population.  

Multi-objective search is performed in MOEA/D-IPBI by 
pushing each solution in the direction from the nadir point to 
the Pareto front by maximizing d1 and minimizing d2. This 
search mechanism contrasts to MOEA/D-PBI, MOEA/D-Tch 
and the other weight vector-based algorithms in [27]-[32] 
where each solution is pulled toward the ideal point.  

Exactly the same set of weight vectors is used in all 
algorithms for each test problem. Table II shows the number of 
weight vectors. The two-layered approach is used for test 
problems with eight and ten objectives. The population size is 
the same as the number of weight vectors except for NSGA-II, 
NSGA-III and  -DEA where the population size is specified 
as multiples of four (see Table II). The weight value 0 is 
replaced with 106 in MOEA/D-Tch. 

Table II. Number of weight vectors and the population size for each 
test problem (the same specifications as in [29]). 

Number of 
objectives 

Divisions 
Number of 

weight vectors 

Population size
of NSGA-II, 

NSGA-III  
and  -DEA 

H1 H2 

3 12 - 91  92 

5 6 - 210 212 

8 3 2 156  156 

10 3 2 275  276 
 



As a termination condition for each test problem, we use 
the same pre-specified total number of generations as in [29]. 
The penalty parameter   in MOEA/D-PBI, MOEA/DD and  -
DEA is specified as   = 5 (  = 0.1 in IPBI). The neighborhood 
size in MOEA/D is 20. The polynomial mutation with the 
distribution index 20 is used with the mutation probability 1/n 
(n is the string length). The simulated binary crossover (SBX) 
with the distribution index 20 (30 in NSGA-III,  -DEA and 
MOEA/DD) is used with the crossover probability 1.0. Our 
parameter specifications are the same as in [29].  

We use our own implementations of the four versions of 
MOEA/D because we have already examined them on various 
test problems. This is also because we have not observed any 
clear inconsistency between our results and the reported results 
in [29]. With respect to NSGA-II,  -DEA, NSGA-III and 
MOEA/DD, we use available codes through the Internet: 
NSGA-II from jMetal [46],  -DEA and NSGA-III from [47] 
by the authors of the  -DEA paper [29], and MOEA/DD from 
[48] by the authors of the MOEA/DD paper [31]. 

C. Performance Measures 
As a performance measure, we use the hypervolume in the 

same manner as [29] for the original DTLZ and WFG 
problems (the setting of the reference point for hypervolume 
calculation is the same as [29]). First, the objective space is 
normalized using the ideal point zI and the nadir point zN so that 
they are normalized as zI = (0, 0, ..., 0) and zN = (1, 1, ..., 1). 
Then the hypervolume is calculated by specifying the reference 
point as (1.1, 1.1, ..., 1.1). The same setting for hypervolume 
calculation is used for DTLZ1 and WFG1. We also use a 
different reference point (2, 2, ..., 2) for DTLZ1 and WFG1 to 
examine whether well distributed solutions are obtained around 
the boundaries of their Pareto fronts. We use a fast calculation 
method of the exact hypervolume value proposed in [49] for all 
test problems with 3, 5, 8 and 10 objectives.  

We also calculate the IGD (inverted generational distance) 
indicator in the normalized objective space for all test problems. 
The Euclidean distance is used in the normalized objective 
space of each test problem. A set of reference points for the 
IGD calculation is generated for each test problem as follows. 
For DTLZ1-4, DTLZ1-41, WFG4-9 and WFG3-91, we 
randomly generate 100,000 reference points on the true Pareto 
front using the uniform distribution. For the other test problems 
(i.e., WFG1-3 and WFG1-21), we use all non-dominated 
solutions among all of the obtained solutions in Table III and 
Table IV since the specification of the uniform distribution 
over the true Pareto front is difficult for these test problems.  

D. Experimental Results on Original Test Problems 
The average hypervolume values over 101 runs on the 

original DTLZ1-4 and WFG1-9 problems are summarized in 
Table III. The best average result is highlighted by bold and 
underlined for each test problem. The worst four average 
results are shaded. For DTLZ1-4, the best average results are 
obtained by MOEA/DD for 12 out of the 16 problems (75%). 
For WFG4-9, the best average results are obtained by  -DEA 
for 23 out of the 24 problems (96%). In Table III, these two 
algorithms are the best. The best average result for each test 
problem in WFG1-3 is obtained by a different algorithm due to 

their different features as test problems.  

The best average result is not obtained by MOEA/D or 
MOEA/DD for WFG4-9 due to the lack of an objective space 
normalization mechanism. The performance of MOEA/DD on 
WFG4-9 can be improved by a normalization mechanism. Just 
for comparison, we perform computational experiments on the 
normalized WFG4-9 test problems after changing all objectives 
as fi (x) = fi (x) /2i, i = 1, 2, ..., M. For the normalized WFG4-9 
test problems, the best average results are obtained by 
MOEA/DD for 14 out of the 24 test problems (58%). This 
observation together with the results on DTLZ1-4 in Table III 
suggests that MOEA/DD with a normalized mechanism may 
be the best algorithm for DTLZ1-4 and WFG4-9. 

E. Experimental Results on Modified Test Problems 
Table IV shows the average hypervolume values for the 

reference point (1.1, 1.1, ..., 1.1) over 101 runs on our minus 
test problems: DTLZ1 and WFG1. From the comparison 
between Table III and Table IV, we can see that totally 
different results are obtained with respect to the performance 
comparison among the eight algorithms. For example, the best 
average results are obtained by  -DEA for 27 out of the 52 test 
problems (52%) in Table III, but only for 6 test problems 
(12%) in Table IV. In Table IV, NSGA-III looks the best. The 
best average results are obtained by NSGA-III for 19 test 
problems (37%). The relative performance of MOEA/D-WS is 
much better in Table IV than Table III. An interesting 
observation is that the performance of NSGA-II is not always 
bad for many-objective test problems in Table IV. 

The difference in the test problems between Table III and 
Table IV is only the multiplication of (1) to each objective. 
Except for this change, the test problems are the same between 
the two tables. However, totally different results are obtained. 
Especially, the performance of the best algorithms in Table III 
(i.e.,  -DEA and MOEA/DD) is deteriorated in Table IV.  

In Table V, we show experimental results evaluated by the 
hypervolume with the reference point (2, 2, ..., 2). Totally 
different results are obtained between Table III (on DTLZ and 
WFG) and Table V (on DTLZ1 and WFG1) with respect to 
algorithm comparison. That is, good results are obtained by the 
last four algorithms in Table V for DTLZ1 and WFG1 while 
good results are obtained by the first four algorithms in Table 
III for DTLZ and WFG. An interesting observation is that 
better results in Table V are obtained from NSGA-II than 
NSGA-III for WFG4-91 while better results are obtained from 
NSGA-III than NSGA-II for WFG4-9 in Table III.  

Performance evaluation results by the IGD indicator are 
shown in Table VI for DTLZ and WFG and Table VII for 
DTLZ1 and WFG1. We can obtain similar observations from 
the IGD-based comparison results and the hypervolume-based 
comparison results. For example, the best results for almost all 
DTLZ and WFG problems are obtained from the first four 
algorithms in Table III and Table VI whereas the best results 
for almost all DTLZ1 and WFG1 problems are obtained from 
the last four algorithms in Table V and Table VII. We can also 
observe very bad results (i.e., very large average IGD values) 
of NSGA-II on DTLZ1-4 in Table VI.  



 
Table III. Average hypervolume values for the reference point (1.1, 1.1, ..., 1.1) over 101 runs on the original test problems. The best average 

result for each test problem is highlighted by bold and underlined. The worst four average results for each test problem are shaded. 

Problem M NSGA-III -DEA MOEA/DD PBI Tch WS IPBI NSGA-II 

DTLZ1 3 1.11508  1.11767  1.11913  1.11711  1.06842  0.39572  0.48149  1.07411  

 5 1.57677  1.57767  1.57794  1.57768  1.51186  0.50052  0.02284  0.00000  

 8 2.13770  2.13788  2.13730  2.13620  2.05463  0.96246  1.44289  0.00000  

 10 2.59280  2.59272  2.59260  2.59220  2.51973  1.07913  1.90272  0.00000  

DTLZ2 3 0.74336  0.74390  0.74445  0.74418  0.70168  0.33187  0.33100  0.69708  

 5 1.30317  1.30679  1.30778  1.30728  1.14598  0.61944  0.27191  0.67442  

 8 1.96916  1.97785  1.97862  1.97817  1.35469  0.68315  0.54410  0.00004  

 10 2.50878  2.51416  2.51509  2.51500  1.69045  0.83883  0.64925  0.00000  

DTLZ3 3 0.73300  0.73642  0.73944  0.73654  0.69553  0.33026  0.31397  0.69959  

 5 1.29894  1.30376  1.30638  1.30398  1.14475  0.60143  0.00750  0.00000  

 8 1.95007  1.96849  1.97162  1.74240  1.33166  0.66684  0.29765  0.00000  

 10 2.50727  2.51279  2.51445  2.50933  1.69956  0.80348  0.52362  0.00000  

DTLZ4 3 0.73221  0.71077  0.74484  0.48232  0.45889  0.17191  0.23377  0.70481  

 5 1.30839  1.30878  1.30876  1.20680  1.00426  0.42941  0.33457  1.00881  

 8 1.98025  1.98078  1.98083  1.86439  1.35100  0.71296  0.53303  0.00000  

 10 2.51524  2.51539  2.51532  2.43536  1.56890  0.95488  0.64498  0.00000  

WFG1 3 0.65088  0.70151  0.69393  0.67291  0.92204  0.73804  0.81622  0.75944  

 5 0.85608  1.14844  1.23809  1.34797  1.51824  1.36724  1.36241  1.03120  

 8 1.36206  1.88297  1.91925  1.73875  2.05117  1.85604  1.75472  1.51083  

 10 2.22078  2.38349  2.37705  1.78435  2.46470  2.27031  2.18237  2.38032  

WFG2 3 1.22359  1.22945  1.22193  1.11888  1.12990  1.12266  1.16687  1.20760  

 5 1.59770  1.59708  1.55672  1.52205  1.58417  1.42821  1.42081  1.58790  

 8 2.13629  2.12442  2.04619  2.01678  2.13569  2.11651  2.11529  2.13214  

 10 2.58890  2.57778  2.48332  2.45715  2.58891  2.57478  2.57367  2.58882  

WFG3 3 0.81929  0.81556  0.77295  0.75364  0.80041  0.48971  0.74146  0.82967  

 5 1.01000  1.02782  0.95386  0.89357  0.88322  0.71619  0.93099  1.06314  

 8 1.21146  1.11348  1.15306  0.74674  1.27479  0.92248  1.41331  1.41857  

 10 1.55771  1.55919  1.37737  0.55186  1.69917  1.13233  1.72878  1.76576  

WFG4 3 0.72867  0.72949  0.72031  0.68710  0.66650  0.34131  0.63483  0.67605  

 5 1.28496  1.28736  1.26067  1.15695  1.01300  0.71180  1.04810  1.07969  

 8 1.96402  1.96426  1.83751  1.19841  1.33398  0.95883  1.45141  1.40330  

 10 2.50322  2.50376  2.22383  1.43393  1.49165  1.20197  1.74551  1.70402  

WFG5 3 0.68658  0.68706  0.67698  0.65668  0.61681  0.27764  0.58174  0.65059  

 5 1.22187  1.22209  1.18965  1.11627  0.93276  0.58164  0.96542  1.06695  

 8 1.84995  1.85027  1.71196  1.27483  1.18970  0.96591  1.33675  1.39529  

 10 2.34640  2.34644  2.07711  1.53615  1.35553  1.18471  1.57386  1.61976  

WFG6 3 0.68696  0.68698  0.67923  0.65655  0.62307  0.28542  0.58469  0.64111  

 5 1.21978  1.22284  1.19424  1.04043  0.93460  0.55026  0.97587  1.01175  

 8 1.84625  1.84330  1.69055  0.71742  1.17924  0.63171  1.21597  1.27938  

 10 2.32660  2.32759  2.01837  0.82027  1.44519  0.77606  1.48368  1.59677  

WFG7 3 0.72894  0.73099  0.72126  0.61145  0.66659  0.33309  0.62859  0.68591  

 5 1.29190  1.29548  1.25983  1.07723  1.01449  0.63899  1.04794  0.97811  

 8 1.97138  1.97353  1.82024  0.83439  1.30773  0.71170  1.45307  1.22911  

 10 2.50754  2.50858  2.25713  0.95972  1.59993  0.97177  1.73385 1.59601  

WFG8 3 0.66560  0.66687  0.65741  0.62986  0.61394  0.24450  0.26792  0.61230  

 5 1.18225  1.18354  1.15376  0.95660  0.60364  0.46673  0.82273  0.96648  

 8 1.75970  1.76647  1.70621  0.30471  1.20786  0.67808  1.24044  1.28486  

 10 2.28203  2.28502  2.10729  0.27470  1.60952  0.82704  1.57781  1.69433  

WFG9 3 0.67519  0.67978  0.67146  0.57864  0.62177  0.25170  0.51403  0.62199  

 5 1.21058  1.22122  1.15493  1.02426  0.78608  0.53143  0.94420  0.92841  

 8 1.80911  1.83678  1.60407  0.97800  1.23897  0.72454  1.18318  1.07824  

 10 2.34332  2.36516  1.92977  1.15138  1.59168  0.86178  1.49927  1.42611  
 
 
 



Table IV. Average hypervolume values over 101 runs on our minus test problems for the reference point (1.1, 1.1, ..., 1.1). The best average 
result for each test problem is highlighted by bold and underlined. The worst four average results for each test problem are shaded. 

 
Problem M NSGA-III -DEA MOEA/DD PBI Tch WS IPBI NSGA-II 

DTLZ1
−1

 3 0.27258  0.25057  0.24887  0.26146  0.27141  0.03935  0.17744  0.26905  
 5 0.01265  0.00898  0.00972  0.01739  0.01208  0.00083  0.00671  0.01520  

 8 5.227E-05 4.499E-05 0.881E-05 0.598E-05 3.215E-05 0.139E-05 2.855E-05 3.568E-05 

 10 1.185E-06 0.451E-06 0.100E-06 0.079E-06 0.620E-06 0.025E-06 0.567E-06 0.765E-06 

DTLZ2
−1

 3 0.68986  0.69303  0.68912  0.69439  0.68780  0.70652  0.70650  0.68187  
 5 0.13957  0.13496  0.08794  0.15984  0.15556  0.14930  0.14910  0.17147  
 8 4.454E-03 3.406E-03 2.690E-03 5.978E-03 0.459E-03 1.560E-03 1.560E-03 4.585E-03 

 10 6.308E-04 5.541E-04 1.836E-04 5.199E-04 0.052E-04 0.640E-04 0.639E-04 3.797E-04 

DTLZ3
−1

 3 0.69251  0.69468  0.68990  0.69609  0.68667  0.70650  0.70650  0.68267  
 5 0.12951  0.13273  0.08190  0.15902  0.15199  0.14891  0.14886  0.16472  
 8 0.00414  0.00401  0.00255  0.00596  0.00050  0.00156  0.00156  0.00390  

 10 0.00054  0.00059  0.00018  0.00052  0.00001  0.00006  0.00006  0.00033  

DTLZ4
−1

 3 0.69397  0.69546  0.68942  0.59319  0.68049  0.70650  0.64625  0.68358  
 5 0.12326  0.11428  0.07242  0.12296  0.14878  0.14881  0.13995  0.16970  
 8 4.582E-03 3.921E-03 2.198E-03 2.020E-03 0.485E-03 1.563E-03 1.340E-03 3.886E-03 

 10 6.065E-04 6.409E-04 2.569E-04 2.333E-04 0.043E-04 0.642E-04 0.649E-04 3.006E-04 

WFG1
−1

 3 0.10955  0.08936  0.08475  0.03944  0.07838  0.04427  0.06037  0.12500  
 5 0.00221  0.00155  0.00094  0.00033  0.00174  0.00089  0.00113  0.00296  
 8 1.835E-06 1.401E-06 1.028E-06 0.126E-06 3.015E-06 1.767E-06 1.798E-06 3.640E-06
 10 1.891E-08 1.524E-08 0.962E-08 0.149E-08 4.755E-08 2.414E-08 2.533E-08 4.974E-08

WFG2
−1

 3 0.38373  0.38347  0.38123  0.37769  0.37505  0.20617  0.31447  0.36889  
 5 0.01067  0.00805  0.00611  0.00500  0.01143  0.00398  0.00443  0.01055  

 8 0.784E-05 0.638E-05 0.383E-05 0.368E-05 1.585E-05 0.690E-05 0.730E-05 1.290E-05 

 10 0.795E-07 0.569E-07 0.441E-07 0.378E-07 2.304E-07 0.885E-07 0.977E-07 1.787E-07 

WFG3
−1

 3 0.26507  0.24959  0.23184  0.25481  0.25408  0.03245  0.11691  0.26451  
 5 0.01279  0.00912  0.00388  0.00459  0.01082  0.00053  0.00286  0.01312  
 8 3.666E-05 1.415E-05 0.262E-05 0.417E-05 1.598E-05 0.083E-05 0.300E-05 2.035E-05 

 10 6.673E-07 2.511E-07 0.250E-07 0.483E-07 2.704E-07 0.106E-07 0.499E-07 4.847E-07 

WFG4
−1

 3 0.66343  0.68880  0.66140  0.68582  0.66881  0.68655  0.69140  0.66561  
 5 0.12711  0.14416  0.10758  0.13711  0.08523  0.10288  0.11997  0.14780  
 8 5.007E-03 5.123E-03 0.255E-03 0.602E-03 0.548E-03 2.351E-03 1.914E-03 2.758E-03 

 10 5.475E-04 2.537E-04 0.039E-04 0.239E-04 0.171E-04 1.539E-04 1.151E-04 1.951E-04 

WFG5
−1

 3 0.66841  0.68748  0.67405  0.68567  0.67011  0.68645  0.69118  0.67184  
 5 0.12789  0.12399  0.12320  0.13919  0.08783  0.10558  0.12259  0.16091  
 8 0.00421  0.00436  0.00062  0.00080  0.00050  0.00237  0.00195  0.00250  

 10 0.00046  0.00025  0.00002  0.00003  0.00001  0.00016  0.00011  0.00015  

WFG6
−1

 3 0.68331  0.69235  0.67553  0.68534  0.66845  0.68665  0.69144  0.68281  
 5 0.13628  0.12549  0.12332  0.13846  0.08150  0.10292  0.11987  0.16948  
 8 0.00450  0.00382  0.00075  0.00076  0.00043  0.00236  0.00194  0.00248  

 10 0.00053  0.00022  0.00002  0.00003  0.00001  0.00016  0.00011  0.00020  

WFG7
−1

 3 0.65101  0.68135  0.65126  0.67742  0.65881  0.68664  0.69143  0.65047  
 5 0.11727  0.11857  0.11268  0.13727  0.08508  0.10297  0.11996  0.14742  
 8 0.00441  0.00382  0.00049  0.00054  0.00050  0.00237  0.00192  0.00340  

 10 0.00047  0.00023  0.00002  0.00002  0.00001  0.00015  0.00011  0.00032  

WFG8
−1

 3 0.68958  0.69311  0.67910  0.68517  0.66818  0.68660  0.69143  0.68535  
 5 0.13845  0.12755  0.12962  0.13872  0.08272  0.10293  0.11978  0.17643  
 8 0.00460  0.00405  0.00129  0.00090  0.00038  0.00237  0.00195  0.00381  

 10 0.00055  0.00023  0.00005  0.00003  0.00001  0.00016  0.00012  0.00034  

WFG9
−1

 3 0.67193  0.68446  0.64574  0.66636  0.65325  0.68255  0.68630  0.66060  
 5 0.13747  0.12627  0.11905  0.13411  0.09712  0.10808  0.12487  0.15893  
 8 0.00478  0.00431  0.00088  0.00073  0.00075  0.00222  0.00181  0.00380  

 10 0.00048  0.00026  0.00003  0.00003  0.00003  0.00014  0.00010  0.00040  

 
 

 



Table V. Average hypervolume values over 101 runs on our minus test problems for the reference point (2, 2, ..., 2). The best average result for 
each test problem is highlighted by bold and underlined. The worst four average results for each test problem are shaded. 

 
Problem M NSGA-III -DEA MOEA/DD PBI Tch WS IPBI NSGA-II 

DTLZ1
−1

 3 5.41176  5.34726   5.29282  5.49085  5.51609  4.08046  5.13110   5.35306 
 5 9.11119  6.95719   7.49073  8.62126 10.84719  6.31454  8.87033  10.07195 

 8  7.37671   6.33654   6.66479  6.50813 21.38202  9.55525 18.07406  16.54193 

 10  7.86919   4.18089   6.96420  6.57523 31.87081  12.43649 26.69442  23.85618 

DTLZ2
−1

 3  6.62189   6.56659   6.55971  6.62696  6.66773  6.72553  6.72544   6.61258 
 5 15.89627  15.08368  14.28746 15.37201 17.44268 17.75316 17.74782  16.60895 

 8 27.65750  19.54767  20.73854 19.99574 40.10508 44.32023 44.29348  41.84263 

 10 46.12984  33.41141  26.99350 27.95097 64.63141 76.26890 76.23983  78.06037 

DTLZ3
−1

 3  6.65425   6.59691   6.59933  6.64415  6.67007  6.72555  6.72553   6.61990 
 5 15.40685  15.02431  14.35655 15.36004 17.42006 17.74347 17.74202  16.50106 

 8 26.92151  20.99691  20.46621 19.75676 40.17889 44.30160 44.26602  39.90168 

 10 43.42177  34.58500  26.59275 27.69662 64.75250 76.25468 76.24625  75.01578 

DTLZ4
−1

 3  6.66826   6.62146   6.60293  6.14964  6.64071  6.72555  6.43316   6.62453 
 5 16.37175  15.12450  14.32240 13.73034 17.39446 17.74047 17.22725  16.68285 

 8 35.59274  22.81013  17.07119 16.02484 39.99005 44.26434 39.83043  41.78905 

 10 65.11754  43.23888  24.22737 21.92158 63.38510 76.25646 75.37652  77.34646 

WFG1
−1

 3  3.94840   3.49316   3.23797  2.61888  3.65774  3.41223  3.67012   4.48059 
 5  5.90557   5.52515   3.28134  2.45346  6.03186  5.07280  5.31238   7.51392 
 8  5.41109   5.53844   3.57939  2.00473  9.53704  8.07837  7.81115  10.76195 
 10  5.51259   5.25281   3.30902  2.01233 13.10962 10.02642 10.29219  13.68541 

WFG2
−1

 3  6.12225   6.12167   6.10910  6.11625  6.13610  5.74837  5.98037   6.07935 
 5 10.77797  10.28187   9.64829  7.10282 11.14371  9.43515  9.54685  10.78963 

 8 10.30634   7.78976   9.05292  6.83792 17.98575 15.06020 15.20026  16.56406 

 10 10.45323   5.90525   9.47472  7.32244 23.59947 18.80022 19.09314  21.44471 

WFG3
−1

 3  5.32265   5.34031   5.12519  5.37874  5.47014  4.01439  4.77819   5.32966 
 5  9.40589   6.95570   6.43180  6.11943 10.70830  6.02464  7.87696   9.85104 

 8  8.28285   4.01439   6.22156  6.09463 18.74847  9.01976 11.19079  14.92069 

 10  8.38143   3.84791   6.43680  6.51623 26.57833 11.04830 14.65720  21.15174 

WFG4
−1

 3  6.46868   6.53600   6.38145  6.47756  6.62071  6.67954  6.69466   6.56320 
 5 15.71312  15.26109  13.06622 13.72311 16.37306 16.74087 17.21992  16.17657 

 8 30.42847  24.08956  15.29133 15.46200 36.01661 38.72524 40.05739  38.62815 

 10 48.82166  24.32377  17.64685 19.26735 57.13700 64.73160 67.03299  68.40053 

WFG5
−1

 3  6.50169   6.55414  6.43149  6.47133  6.61413  6.67041  6.68557   6.58371 
 5 16.16456  14.98968  13.91439 13.83229 16.40218 16.74631 17.22362  16.59823 

 8 29.21383  22.73550  21.44486 16.25172 36.25025 38.90775 40.25929  39.53740 

 10 47.57705  23.77569  29.23595 19.86993 57.69460 65.02107 67.23864  69.08351 

WFG6
−1

 3  6.56605   6.58471  6.45193  6.46840  6.62128  6.67989  6.69498   6.61808 
 5 16.19334  14.99690  14.20128 13.88373 16.34692 16.74439 17.22435  16.79942 

 8 28.23951  21.00836  22.84306 16.15885 35.61979 38.72410 40.08199  38.95506 

 10 42.60624  22.50419  30.59149 19.77665 56.07817 64.76615 67.00523  69.90950 

WFG7
−1

 3  6.44984   6.55400  6.36083  6.46137  6.58880  6.67973  6.69480   6.52938 
 5 16.29530  14.92831  13.76747 13.70136 16.30640 16.74451 17.22413  16.18200 

 8 26.93878  20.60801  18.57115 15.12162 35.93195 38.70618 40.07723  39.29581 

 10 39.54707  22.90411  23.95598 18.53367 57.36886 64.62800 66.92247  73.20667 

WFG8
−1

 3  6.58684   6.58269  6.48000  6.46767  6.62155  6.67943  6.69468   6.63291 
 5 16.36596  14.95199  14.76723 13.91851 16.32779 16.73741 17.22083  17.03252 

 8 28.25011  21.77714  25.62944 16.55536 35.58745 38.71102 40.07927  41.34084 
 10 43.36500  22.87174  35.96638 19.94470 56.04570 64.76123 67.10037  76.53494 

WFG9
−1

 3  6.51204   6.55986  6.35162  6.40979  6.54754  6.65257  6.66428   6.54007 
 5 16.49599  15.06437  14.25769 13.75819 16.36125 16.75200 17.18507  16.49621 

 8 29.77776  22.00054  22.88395 16.04369 37.01047 38.89802 40.06594  39.49413 

 10 45.00021  24.22697  31.19761 19.58884 60.81918 65.23011 67.13225  74.06843 

  
  
  

  



Table VI. Average IGD values over 101 runs on the original test problems. The best average result for each test problem is highlighted by bold 
and underlined. The worst four average results for each test problem are shaded. 

 
Problem M NSGA-III -DEA MOEA/DD PBI Tch WS IPBI NSGA-II 

DTLZ1 3 0.04362  0.04170  0.04138 0.04175 0.06082 0.50173 0.42397  0.06481 
 5 0.11308  0.11125  0.11110 0.11128 0.22189 0.73685 6.52117  19.87954 

 8 0.17984  0.17513  0.17541 0.17601 0.23603 0.72480 0.52039  75.18619 

 10 0.19094  0.18527  0.18552 0.18611 0.23786 0.78417 0.49928  77.22337 

DTLZ2 3 0.05799  0.05804  0.05801 0.05800 0.07318 0.54279 0.54641  0.07182 
 5 0.19403  0.19363  0.19368 0.19368 0.32648 0.69062 0.93890  0.31393 

 8 0.40062  0.39802  0.39575 0.39572 0.46026 0.94291 0.99204  1.90946 

 10 0.46752  0.46462  0.46145 0.46120 0.53319 1.00370 1.05344  2.15108 

DTLZ3 3 0.06261  0.05908  0.05824 0.05848 0.07349 0.54419 0.54800  0.07194 
 5 0.19601  0.19496  0.19384 0.19400 0.32551 0.70566 40.98681  116.19480 

 8 0.41225  0.40224  0.39694 0.46660 0.47438 0.94647 1.23378  348.09573 

 10 0.46843  0.46545  0.46165 0.46321 0.53973 1.01331 1.12693  308.79409 

DTLZ4 3 0.07550  0.10791  0.05800 0.45495 0.47158 0.83789 0.71489  0.07012 
 5 0.19378  0.19373  0.19372 0.33507 0.45264 0.82880 0.89434  0.22875 

 8 0.39672  0.39597  0.39534 0.53322 0.64479 0.95178 1.00074  2.11783 

 10 0.46302  0.46191  0.46074 0.56608 0.61814 0.99026 1.05641  2.33543 

WFG1 3 0.21258  0.18074  0.18377 0.20233 0.07600 0.20087 0.15597  0.16604 
 5 0.29117  0.20606  0.17134 0.19663 0.08683 0.18288 0.18297  0.26815 

 8 0.16839  0.07692  0.06678 0.08509 0.08045 0.10808 0.12427  0.33417 

 10 0.08868  0.09112  0.07619 0.14610 0.10095 0.10556 0.11972  0.23599 

WFG2 3 0.04072  0.03577  0.04866 0.08872 0.08739 0.17910 0.12579  0.05805 
 5 0.05691  0.05685  0.08325 0.10423 0.15136 0.21243 0.20765  0.12767 

 8 0.07015  0.08495  0.09183 0.09860 0.11937 0.13764 0.13030  0.19386 

 10 0.05969  0.08920  0.09114 0.09578 0.11840 0.13169 0.12416  0.19704 

WFG3 3 0.15399  0.28832  0.05425 0.03745 0.04070 0.20844 0.19232  0.05006 
 5 0.09697  0.12176  0.12018 0.08618 0.15235 0.34998 0.28723  0.10195 

 8 0.23351  0.56029  0.14305 0.22451 0.33536 0.56095 0.43524  0.15998 

 10 0.16754  0.41979  0.15640 0.31725 0.39634 0.57148 0.55067  0.16206 

WFG4 3 0.05818  0.05823  0.07217 0.07700 0.09484 0.52334 0.25250  0.07274 
 5 0.19213  0.19223  0.26733 0.30864 0.41147 0.63375 0.42761  0.18244 
 8 0.39954  0.39905  0.51790 0.72445 0.51843 0.85709 0.59237  0.37909 
 10 0.46687  0.46624  0.66822 0.84257 0.58032 0.92412 0.70445  0.45848 

WFG5 3 0.06216  0.06212  0.07543 0.07569 0.10004 0.52875 0.24320  0.07718 
 5 0.18937  0.18935  0.25529 0.29036 0.40381 0.65914 0.41589  0.18139 
 8 0.39141  0.39123  0.51273 0.67067 0.51038 0.81440 0.48871  0.36793 
 10 0.45671  0.45638  0.65521 0.80237 0.56802 0.88882 0.55651  0.45670 

WFG6 3 0.06237  0.06236  0.07542 0.08158 0.09964 0.53091 0.24512  0.08111 
 5 0.18939  0.18942  0.26168 0.32816 0.40693 0.67423 0.41625  0.19635 

 8 0.39279  0.39211  0.52623 0.84861 0.52593 0.92164 0.70887  0.40164 

 10 0.45856  0.45750  0.66364 0.95099 0.57914 0.97505 0.81882  0.46819 

WFG7 3 0.05858  0.05843  0.07272 0.10435 0.09461 0.53919 0.25365  0.07482 
 5 0.19302  0.19308  0.26131 0.34346 0.40967 0.67685 0.42667  0.22350 

 8 0.39970  0.39841  0.50986 0.81487 0.52613 0.92975 0.61293  0.43800 

 10 0.46668  0.46543  0.63276 0.94246 0.59069 0.97643 0.65444  0.49155 

WFG8 3 0.06858  0.06826  0.07974 0.08798 0.10758 0.53692 0.50862  0.09200 
 5 0.19572  0.19568  0.27004 0.31288 0.51613 0.70712 0.51826  0.21824 

 8 0.41691  0.41495  0.49936 0.80811 0.54876 0.92428 0.79070  0.43170 

 10 0.50584  0.49280  0.64259 0.92544 0.62707 1.00382 0.86101  0.48245 

WFG9 3 0.06403  0.06323  0.07385 0.10025 0.09920 0.50142 0.26204  0.08311 
 5 0.18615  0.18634  0.24683 0.29613 0.47733 0.66154 0.44104  0.21086 

 8 0.39688  0.39539  0.51814 0.71655 0.53759 0.85700 0.67375  0.45885 

 10 0.46273  0.46209  0.66553 0.83358 0.60033 0.92832 0.73585  0.50534 
 
 
 



Table VII. Average IGD values over 101 runs on our minus test problems. The best average result for each test problem is highlighted by bold 
and underlined. The worst four average results for each test problem are shaded. 

 
Problem M NSGA-III -DEA MOEA/DD PBI Tch WS IPBI NSGA-II 

DTLZ1
−1

 3 0.06023  0.08080  0.07764  0.07235  0.06726  0.46615  0.15033  0.05772  
 5 0.15781  0.21539  0.18317  0.13134  0.17583  0.58701  0.24709  0.12841  
 8 0.19939  0.22664  0.28573  0.42514  0.27490  0.67675  0.28280  0.21727  

 10 0.19114  0.25461  0.28540  0.42793  0.30308  0.68698  0.30610  0.22753  

DTLZ2
−1

 3 0.06849  0.07061  0.07231  0.06733  0.08081  0.05795  0.05797  0.07106  
 5 0.20140  0.22591  0.26158  0.20294  0.19062  0.19319  0.19338  0.17835  
 8 0.39590  0.44648  0.44169  0.38813  0.46403  0.39536  0.39528  0.34390  
 10 0.41607  0.45647  0.50964  0.44616  0.55239  0.46082  0.46084  0.38069  

DTLZ3
−1

 3 0.06945  0.06923  0.07147  0.06640  0.08231  0.05799  0.05799  0.07117  
 5 0.20451  0.22735  0.26960  0.20317  0.19464  0.19361  0.19366  0.18317  
 8 0.39347  0.43321  0.44242  0.38697  0.46253  0.39517  0.39519  0.34945  
 10 0.41589  0.45076  0.50678  0.44444  0.55227  0.46063  0.46065  0.38427  

DTLZ4
−1

 3 0.06933  0.06795  0.07172  0.14957  0.08734  0.05800  0.10622  0.07001  
 5 0.21479  0.24070  0.27921  0.27387  0.19831  0.19371  0.21271  0.17809  
 8 0.36310  0.42714  0.45958  0.52122  0.46517  0.39528  0.43285  0.35118  
 10 0.39219  0.43337  0.48691  0.52423  0.55814  0.46055  0.46365  0.39096  

WFG1
−1

 3 0.05290  0.10325  0.11665  0.29294  0.15693  0.37597  0.29304  0.04386  
 5 0.11311  0.19147  0.32509  0.55926  0.17943  0.35539  0.31550  0.06629  
 8 0.26898  0.34785  0.39702  0.99344  0.16412  0.32690  0.31295  0.10819  
 10 0.29323  0.38999  0.43426  0.96296  0.14229  0.33064  0.31388  0.09226  

WFG2
−1

 3 0.04190  0.04306  0.05567  0.05739  0.04694  0.33038  0.22170  0.06632  
 5 0.07881  0.14449  0.18688  0.24328  0.07440  0.37314  0.32020  0.09517  

 8 0.20953  0.35963  0.33890  0.45393  0.11549  0.42160  0.38028  0.15819  

 10 0.25544  0.43200  0.36370  0.50669  0.12588  0.46156  0.40894  0.15103  

WFG3
−1

 3 0.06083  0.08114  0.08829  0.08214  0.08449  0.49054  0.24954  0.05986  
 5 0.16490  0.21009  0.26876  0.34333  0.19835  0.62850  0.37408  0.13927  
 8 0.25089  0.31689  0.44622  0.47588  0.34387  0.72693  0.51896  0.25419  

 10 0.25988  0.29982  0.46272  0.49450  0.36499  0.75953  0.50412  0.25219  

WFG4
−1

 3 0.07067  0.06850  0.08952  0.08597  0.09036  0.07125  0.06708  0.07162  
 5 0.20365  0.21184  0.27358  0.25924  0.27079  0.25575  0.22894  0.18955  
 8 0.38615  0.41425  0.63248  0.60677  0.48890  0.42937  0.41881  0.37240  
 10 0.43182  0.49779  0.72355  0.66994  0.55916  0.47924  0.47420  0.41505  

WFG5
−1

 3 0.07096  0.06901  0.08740  0.08494  0.08793  0.07083  0.06681  0.07152  
 5 0.20813  0.23067  0.24814  0.25227  0.26722  0.25228  0.22598  0.18380  
 8 0.39476  0.42790  0.52843  0.58467  0.48796  0.42769  0.41669  0.37803  
 10 0.44100  0.49854  0.61452  0.65891  0.55862  0.47784  0.47400  0.42550  

WFG6
−1

 3 0.07064  0.06940  0.08761  0.08656  0.09107  0.07121  0.06708  0.07144  
 5 0.20879  0.23472  0.23969  0.25092  0.27386  0.25563  0.22895  0.18108  
 8 0.39207  0.44079  0.51870  0.58752  0.49671  0.42929  0.41820  0.38577  
 10 0.43261  0.50390  0.61078  0.66057  0.56964  0.47855  0.47419  0.42065  

WFG7
−1

 3 0.07491  0.06984  0.09135  0.08764  0.08919  0.07122  0.06709  0.07665  
 5 0.21990  0.24024  0.26035  0.25841  0.26725  0.25555  0.22880  0.19349  
 8 0.39812  0.44856  0.57769  0.61427  0.48629  0.42953  0.41873  0.36740  
 10 0.43765  0.50225  0.65658  0.68282  0.55764  0.48052  0.47575  0.39785  

WFG8
−1

 3 0.07182  0.07039  0.08438  0.08642  0.09138  0.07125  0.06708  0.07267  
 5 0.21132  0.23438  0.22655  0.24985  0.27496  0.25585  0.22920  0.18775  
 8 0.39399  0.44081  0.49022  0.57774  0.49801  0.42906  0.41764  0.37975  
 10 0.43266  0.50071  0.57353  0.65643  0.57134  0.47790  0.47233  0.40987  

WFG9
−1

 3 0.06858  0.06769  0.08732  0.08791  0.08518  0.07062  0.06719  0.07407  
 5 0.20468  0.23095  0.23795  0.25551  0.25081  0.24740  0.22190  0.19209  
 8 0.39243  0.43482  0.51895  0.59280  0.46407  0.42810  0.41925  0.37479  
 10 0.44781  0.49704  0.60650  0.66438  0.52325  0.47860  0.47591  0.40130  

 
 



V. DISCUSSIONS AND FUTURE RESEARCH TOPICS 

A. Discussions on Experimental Results 
For further discussing the experimental results in Tables 

III-VII, we show a single run result of each algorithm on the 
three-objective DTLZ11 problem in Fig. 11. Among 101 runs, 
we select a single run with the median hypervolume value in 
Table IV to show a typical result. Fig. 11 shows all solutions in 
the final generation of the selected run. In Fig. 11, three values 
of   are examined for MOEA/D-IPBI (  = 0.1 was used in 
Tables III-VII based on the reported results in [45]).   
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                  (a) NSGA-III.                                                   (b)  -DEA. 
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                (c) MOEA/DD.                                            (d) MOEA/D-PBI. 
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            (e) MOEA/D-Tch.                                           (f) MOEA/D-WS. 
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     (g) MOEA/D-IPBI ( = 0.1).                                       (h) NSGA-II. 
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      (i) MOEA/D-IPBI ( = 1).                               (j) MOEA/D-IPBI ( = 5). 

Fig. 11. Experimental results of a single run of each algorithm on the three-
objective DTLZ1

1
 problem. 

Well-distributed solutions are obtained by MOEA/D-IPBI 
in Fig. 11 (i) and Fig. 11 (j). Such a good solution set is not 
obtained by the other algorithms. In Fig. 11 (d), ten solutions 
are obtained inside the Pareto front together with many 
solutions on its boundary. This result is explained by the 
inconsistency between the shape of the Pareto front and the 
shape of the distribution of the weight vectors in Fig. 12. The 
shaded region is the projection of the Pareto front, which is the 
region of weight vectors intersecting with the Pareto front.   

Weight vector
Projection of

the Pareto front

1.0 1.0

1.0

f1 f2

f3

 
Fig. 12. Relation beween a set of weight vectors and the Pareto front.  

Almost the same figure as Fig. 12 was used in Jain & Deb 
[44] for explaining experimental results of NSGA-III on the 
inverted DTLZ1 problem. As shown in Fig. 12 (and in [44]), 
the weight vectors are uniformly distributed over the triangle 
whereas the shape of the Pareto front is a rotated triangle. We 
can see from Fig. 12 that the ten weight vectors are inside the 
projection of the Pareto front. Those weight vectors correspond 
to the ten inside solutions in Fig. 11 (d). Since each weight 
vector in MOEA/D-PBI always has a single solution, many 
solutions are obtained on the boundary of the Pareto front in 
Fig. 11 (d). Those boundary solutions are the best solutions for 
the outside weight vectors in Fig. 12. For the same reason, 
many solutions are obtained on the boundary in Fig. 11 (e).  

Multi-objective search in weight vector-based algorithms in 
[27]-[32] as well as MOEA/D-PBI and MOEA/D-Tch can be 
viewed as pulling all solutions toward the ideal point using the 
weight vectors. The weight vectors in those algorithms are 
illustrated in Fig. 13 (a). Fig. 12 and Fig. 13 (a) show the same 
weight vectors. The ten inside solutions in Fig. 11 (d) are 
obtained by the ten inside weight vectors in Fig. 12. Almost the 
same ten inside solutions are obtained in Fig. 11 (a)-(d) since 
all algorithms in Fig. 11 (a)-(d) have the same basic idea of 
multi-objective search: pulling all solutions toward the ideal 
point using the weight vectors in Fig. 13 (a). 
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 (a) Most weight vector-based algorithms.   (b) Weighted sum and Inverted PBI.  

Fig. 13. Weight vectors used for three-objective minimization. 



When IPBI is used, multi-objective search is performed by 
pushing all solutions from the nadir point to the Pareto front as 
shown in Fig. 13 (b). In this case, the distribution of weight 
vectors (i.e., reference lines) is consistent with the shape of the 
Pareto front. This explains why well-distributed solutions are 
obtained by MOEA/D-IPBI in Fig. 11 (i) and Fig. 11 (j).  

In NSGA-III,  -DEA and MOEA/DD, each solution is 
assigned to its nearest reference line (whereas each reference 
line has its best solution in MOEA/D). If there is no solution 
close to a reference line, no solution is assigned. In Fig. 12, all 
weight vectors outside the shaded region have no solution. As a 
result, many solutions are not obtained on the boundary of the 
Pareto front by NSGA-III,  -DEA and MOEA/DD. In these 
algorithms, a single reference line can have multiple solutions. 
This is the reason why more inside solutions are obtained in 
Fig. 11 (a)-(c) than Fig. 11 (d). In NSGA-III, the second 
solution for each reference line is selected randomly from the 
assigned solutions with the best rank. As a result, solution 
distribution looks somewhat random in Fig. 11 (a). Since the 
second solution for each reference line in  -DEA is the second 
best solution with respect to PBI, all solutions assigned to the 
same reference line are almost the same in Fig. 11 (b). Similar 
solution sets are obtained in Fig. 11 (b) and Fig. 11 (c) since  -
DEA and MOEA/DD have similar mechanisms to choose the 
second best solution for each reference line. 

In the same manner as Fig. 11, we show an experimental 
result of a single run of each algorithm on the three-objective 
DTLZ21 problem in Fig. 14. Good results are obtained by 
MOEA/D-WS and MOEA/D-IPBI in Fig. 14. One difference 
between Fig. 11 and Fig. 14 is the results by MOEA/D-WS and 
MOEA/D-IPBI ( = 0.1). Since the Pareto front of DTLZ11 is 
a plane, well-distributed solutions are not obtained in Fig. 11 
by MOEA/D-WS and MOEA/D-IPBI ( = 0.1). However, 
good results are obtained by these algorithms in Fig. 14 since 
the Pareto front of DTLZ21 is convex. It should be noted that 
the weighted sum and the inverted PBI function with  = 0.1 
have similar contour lines [45]. 

As in Fig. 11, the distribution of the weight vectors is not 
consistent with the shape of the Pareto front in Fig. 14 except 
for MOEA/D-WS and MOEA/D-IPBI. Thus, many solutions 
are obtained on the boundary of the Pareto front in Fig. 14 (d) 
and Fig. 14 (e). However, the distribution of solutions around 
the center of the Pareto front is similar between two groups: 
One is Fig. 14 (b)-(d) with the inconsistent weight vector 
distribution, and the other is Fig. 14 (f), (g), (i), (j) with the 
consistent weight vector distribution. This can be explained by 
the convexity of the Pareto front of DTLZ21. As shown in Fig. 
6, when the Pareto front is convex, more solutions are obtained 
around its center by pulling solutions toward the ideal point. In 
this case, less solutions are obtained around the center by 
pushing solutions from the nadir point as shown in Fig. 14 (f), 
(g), (i), (j). As a result of these two effects (i.e., the 
inconsistency between the weight vector distribution and the 
Pareto front shape, and the Pareto front convexity), the 
distribution of solutions around the center of the Pareto front is 
similar between Fig. 14 (b)-(d) and Fig. 14 (f), (g), (i), (j).  

Thanks to random selection of the second solution for each 
reference point in NSGA-III, more solutions are obtained 

around the center of the Pareto front in Fig. 14 (a) than the 
other algorithms in Fig. 14. This observation in Fig. 14 (a) 
explains why good average results are obtained by NSGA-III 
in Table IV where the hypervolume is measured from the 
reference point (1.1, 1.1, ..., 1.1).  
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                  (a) NSGA-III.                                                   (b)  -DEA. 
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                (c) MOEA/DD.                                             (d) MOEA/D-PBI. 
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             (e) MOEA/D-Tch.                                             (f) MOEA/D-WS. 
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     (g) MOEA/D-IPBI  ( = 0.1).                                     (h) NSGA-II. 
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      (i) MOEA/D-IPBI ( = 1).                                 (j) MOEA/D-IPBI ( = 5). 
Fig. 14. Experimental results on the three-objective DTLZ2

1
 test problem. 

Hypervolume contributions of solutions around the center 
of the Pareto front are relatively large when the reference point 
is close to the Pareto front. By moving a reference point away 
from the Pareto front, their contributions become relatively 
small since contributions of solutions on the boundary of the 
Pareto front increase. This explains why the evaluation results 
of NSGA-III are not good in Table V with the reference point 



(2, 2, ..., 2). The difference in the evaluation results of NSGA-
III between Table IV and Table V suggests that many solutions 
around the center of the Pareto front are obtained by NSGA-III 
as shown in Fig. 14 (a) and Fig. 11 (a).  

We also show an experimental result of a single run of each 
algorithm on the ten-objective DTLZ21 and WFG91 problems 
in Fig. 15 and Fig. 16, respectively. In Fig. 15, a wide variety 
of solutions are not obtained by the first four algorithms. This 
observation explains why those algorithms have low evaluation 
results on the ten-objective DTLZ21 problem in Table V with 
the reference point (2, 2, ..., 2) for hypervolume calculation 
whereas some of them have high evaluation results in Table IV 
with the reference point (1.1, 1.1, ..., 1.1). This is also the case 
in Fig. 16. Thanks to a large diversity of solutions in Fig. 15 (h) 
and Fig. 16 (h), NSGA-II has the best results on the ten-
objective DTLZ21 and WFG91 problems in Table V. 
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                  (a) NSGA-III.                                                (b)  -DEA. 
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                (c) MOEA/DD.                                           (d) MOEA/D-PBI. 
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            (e) MOEA/D-Tch.                                           (f) MOEA/D-WS. 
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       (g) MOEA/D-IPBI  ( = 0.1).                                  (h) NSGA-II. 
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           (i) MOEA/D-IPBI ( = 1).                        (j) MOEA/D-IPBI ( = 5). 

Fig. 15. Experimental results on the ten-objective DTLZ2
1

 test problem. 

A large diversity of obtained solutions by NSGA-II in Fig. 
15 (h) and Fig. 16 (h) also explains good evaluation results by 
the IGD indicator in Table VII. Fig. 16 (h) also shows low 
convergence ability of NSGA-II. In Fig. 16, the Pareto front 
satisfies 1)(12  xifi  for i = 1, 2, ..., 10. However, 
some solutions in Fig. 16 (h) have objective values close to 0.  
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                  (a) NSGA-III.                                                (b)  -DEA. 
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                (c) MOEA/DD.                                           (d) MOEA/D-PBI. 
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            (e) MOEA/D-Tch.                                           (f) MOEA/D-WS. 
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         (g) MOEA/D-IPBI  ( = 0.1).                                (h) NSGA-II. 
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           (i) MOEA/D-IPBI ( = 1).                        (j) MOEA/D-IPBI ( = 5). 

Fig. 16. Experimental results on the ten-objective WFG9
1

 test problem. 

B. Future Research Topics: Test problems 

As reported in the literature [27]-[32] on evolutionary 
many-objective optimization, very good results are obtained by 
weight vector-based algorithms such as NSGA-III,  -DEA and 
MOEA/DD on the DTLZ1-4 and WFG4-9 problems in Table 
III. This is because the shapes of the Pareto fronts of these test 
problems are consistent with the shape of the distribution of the 
weight vectors in these algorithms. The DTLZ1-4 and WFG4-9 
problems have the following Pareto fronts in the normalized 
objective space: 



 


M

i

k
iy

1

* )( 1 and 0* iy  for i = 1, 2, …, M,                   (24) 

where k = 1 (DTLZ1) and k = 2 (DTLZ2-4 and WFG4-9).  

One question for future research is the similarity of these 
test problems to real-world many-objective problems. In other 
words, the question is their generality as test problems. We 
need much more research to answer this question. However, 
we can say that the Pareto front in (24) is very special in the 
following sense: An arbitrarily selected (M 1) objectives can 
be simultaneously optimized. For example, the Pareto front in 
(24) includes a Pareto optimal solution (1, 0, 0, ..., 0) where all 
objectives except for the first one simultaneously have their 
individual optimal values. This means that an (M 1)-objective 
problem created by removing an arbitrarily selected single 
objective from any of the DTLZ1-4 and WFG4-9 problems 
always has a single absolutely optimal solution (0, 0, ..., 0). 
That is, the ideal point of the (M 1)-objective problem is a 
feasible solution, which dominates all the other feasible 
solutions. This feature sounds very strange since it is not likely 
that (M 1) objectives of a real-world M-objective problem can 
be simultaneously optimized with no conflict among them.  

The minus versions of DTLZ1-4 and WFG4-9 do not have 
this strange feature. However, they may have some other 
strange features because their original versions have the above-
mentioned feature. For example, in the DTLZ1-41 problems, 
optimization of a single objective always leads to the worst 
values of all the other objectives. The Pareto optimal solution 
(3.5, 0, 0, ..., 0) of DTLZ21 is an example of such a single-
objective optimization result where the optimization of the first 
objective leads to the worst values for all the other objectives.  

Our experimental results show that the consistency between 
the shape of the Pareto front and the shape of the distribution of 
the weight vectors has a large effect on the performance of 
weight vector-based algorithms. This was demonstrated by Jain 
& Deb [44] for NSGA-III on the three-objective and five-
objective inverted DTLZ1 problems. Our experimental results 
also suggest that the size of the Pareto front may have a large 
effect on the performance of EMO algorithms on many-
objective problems. In Fig. 17, we show the Pareto fronts of 
the two-objective DTLZ2 and DTLZ21 problems together 
with their feasible region and randomly generated 100 initial 
solutions. In Fig. 17, DTLZ21 is shown as the maximization 
problem of DTLZ2: Max-DTLZ2. Thus the two problems 
(DTLZ2 and its maximization version) have exactly the same 
feasible region. As we can see from Fig. 17, DTLZ2 has a 
small Pareto front in comparison with the spread of the 
randomly generated initial solutions. It is likely that a good 
solution set can be obtained for DTLZ2 by pulling those initial 
solutions toward the ideal point. That is, the convergence of 
solutions toward the Pareto front is important for DTLZ2. 

However, in DTLZ21 in Fig. 17, not only the convergence 
of solutions but also the diversification of solutions is very 
important for finding a set of well-distributed solutions over 
the entire Pareto front. Moreover, the improvement in the 
diversity of solutions in Fig. 17 has a positive effect on the 
convergence of solutions toward the Pareto front of DTLZ21 
(whereas it has a negative effect for DTLZ2). For example, the 

crowding distance-based fitness evaluation tends to increase 
the range of objective values for each objective in the 
population. In Fig. 17, the maximum range for each objective 
is obtained by the two extreme solutions on the edge of the 
Pareto front of DTLZ21 (i.e., one extreme solution with the 
maximum value of f1(x) and the other with the maximum value 
of f2(x) of Max-DTLZ2). These two extreme solutions will 
help the convergence of other solutions toward the Pareto front 
of DTLZ21. However, they have a negative effect on the 
convergence of solutions toward the Pareto front of the original 
DTLZ2. The difference in the effects of the diversity 
improvement efforts on the convergence of solutions toward 
the Pareto front between DTLZ2 and DTLZ21 in Fig. 17 
explains the difference of the performance of NSGA-II 
between DTLZ1-4 and DTLZ1-41 in Tables III-VII. NSGA-II 
is evaluated as the worst among the examined eight algorithms 
for DTLZ1-4 by the hypervolume in Table III and also by the 
IGD indicator in Table VI. However, it is evaluated as the best 
algorithm for DTLZ1-41 by IGD in Table VII. 
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Fig. 17. Pareto fronts of the two-objective DTLZ2 and its maximization 
version Max-DTLZ2 which is equivalent to the two-objective DTLZ2

1
. 

Let us briefly explain why good solutions can be obtained 
for many-objective DTLZ, WFG, DTLZ1 and WFG1 test 
problems as shown in Fig. 5, Fig. 15 and Fig. 16. In all of the 
DTLZ1-4 and DTLZ1-41 problems and some of the WFG1-9 
and WFG1-91 problems, decision variables are separable into 
distance variables and position variables. In those problems, 
any changes only in the distance variables simply modify only 
the distance of a solution from the Pareto front. When only 
position variables are changed, only the position is changed 
without changing the value of the distance function. For 
illustrating these properties of most test problems based on 
their separable decision variables, first we randomly generate 
five initial solutions. The generated five initial solutions are 
shown by open circles in Fig. 18. Then we generate a new 
solution by randomly changing the values of all distance 
variables of each initial solution (i.e., by replacing the current 
values of the distance variables with randomly generated 
values within their domains). This is iterated 100 times to 
generate 100 solutions for each initial solution. In this manner, 
we generate 500 solutions. Fig. 18 shows the generated 
solutions for the two-objective DTLZ1-4 and WFG1-9 
problems (and DTLZ1 with five and ten objectives in Fig. 18 
(a2) and (a3)). We also perform the same experiment by 
changing the values of all position variables (see Fig. 19).  
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Fig. 18. Generated solutions by changing distance variables. 

In Fig. 18, the generated solutions from the same parent are 
on the same line except for WFG7 and WFG9. Since this also 
holds for many-objective problems from the DTLZ and WFG 
problem formulations, the generated solutions by changing 
distance variables can be compared by the Pareto dominance 
relation. This explains why good results are obtained by 
NSGA-II for some many-objective test problems. However, 
this is totally different from a general case of many-objective 
optimization where almost all solutions are non-dominated 
with each other. Moreover, each test problem in DTLZ and 
WFG has only a single distance function independent of the 
number of objectives. By optimizing the single distance 
function, we can obtain Pareto optimal solutions. This means 
that the search for Pareto optimal solutions is single-objective 
optimization independent of the number of objectives. 
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Fig. 19. Generated solutions by changing position variables. 

Fig. 19 shows the generated solutions by changing position 
variables. Except for WFG2, generated solutions from the 
same solution have the same distance from the Pareto front. 
This also holds for many-objective problems from the DTLZ 
and WFG problem formulations. If a solution is Pareto optimal 
(i.e., if it is on the Pareto front), all solutions generated by 
changing position variables are also Pareto optimal. Thus we 
can easily increase the diversity of solutions by changing 
position variables without deteriorating their convergence. 
From these discussions on Fig. 18 and Fig. 19, we can see that 
most test problems in DTLZ and WFG are not difficult as 
many-objective problems. This observation is consistent with 
the reported results by the weight vector-based algorithms in 
the literature [27]-[32] where very good solutions were 
obtained (which are almost the same as a reference point set for 



the IGD calculation as shown in Fig. 5). This is also consistent 
with our experimental results by NSGA-II (e.g., the best results 
are obtained by NSGA-II for some of the WFG problems in 
Table VI with the IGD indicator). 

Our observation from Fig. 18 and Fig. 19 also explains the 
features of some weight vector-based algorithms. Since the 
Pareto dominance relation holds among solutions generated by 
changing distance variables, Pareto dominance-based fitness 
evaluation is used in some weight vector-based algorithms 
(whereas it does not work well on many-objective problems in 
general). For the same reason, the convergence improvement is 
not difficult. Thus a large penalty value (i.e.,  = 5) is used in 
the PBI function even for many-objective problems (whereas 
the PBI function with a large penalty value does not work well 
on many-objective problems in general). These discussions 
suggest that the recent development of weight vector-based 
algorithms is overspecialized for DTLZ and WFG with respect 
to not only the shape of the distribution of the weight vectors 
but also their fitness evaluation mechanisms (in other words, 
their convergence-diversification balance).  

As we have explained in this paper, the DTLZ and WFG 
problems are test problems with special characteristic features. 
Thus an important future research topic is the creation of a 
wide variety of test problems with respect to the shape of the 
Pareto front, the size of the Pareto front, the relation among 
decision variables, and the relation among objectives. The size 
of the Pareto front can be rephrased as the shape of the feasible 
region in the objective space.   

C. Future Research Topics: Algorithm Developments 

Our experimental results showed that good results were 
obtained when the shape of the distribution of weight vectors is 
the same as or similar to the shape of the Pareto front. In 
general, we do not know the shape of the Pareto front. It is 
much more difficult to find the exact shape of the Pareto front 
of a many-objective problem than the case of two or three 
objectives. So it may be desirable for many-objective 
optimizers to have robust search ability with respect to the 
shape of the Pareto front. A simple idea is to simultaneously 
use multiple sets of weight vectors with different distributions. 
For example, it may be a good idea to simultaneously use both 
the PBI and inverted PBI functions in a single MOEA/D 
algorithm. In [50], the simultaneous use of the weighted sum 
and the weighted Tchebycheff was examined. Then it was 
shown that better results were obtained from their simultaneous 
use than their individual use (i.e., MOEA/D-WS and 
MOEA/D-Tch) on many-objective knapsack problems.  

Another idea is the adaptation of the distribution of weight 
vectors to the shape of the Pareto front. This idea has been 
suggested for MOEA/D in the literature (e.g., pa-MOEA/D 
[51]). A-NSGA-III (Adaptive NSGA-III [44]) can be viewed 
as a representative algorithm in such a research direction. A-
NSGA-III has simple mechanisms for weight vector deletion 
and creation. Its performance has not been evaluated on many-
objective problems with eight or more objectives (i.e., many-
objective problems for which the two-layered approach was 
used to generate weight vectors). Development of adaptive 
many-objective algorithms seems to be an interesting future 
research direction. However, before implementing an efficient 

and effective adaptation mechanism of the weight vector 
distribution, we may need to further examine the behavior of 
weight vector-based algorithms on a wide variety of many-
objective test problems under various settings such as a large 
number of weight vectors together with a large population, a 
large number of weight vectors together with a small 
population, and a small number of weight vectors together with 
a large population. Analyzing multi-objective search behavior 
under these settings may help us to understand the necessity of 
weight vector deletion and creation. 

VI. CONCLUDING REMARKS 

In this paper, we clearly showed the similarity between the 
shape of the distribution of the weight vectors in weight vector-
based many-objective algorithms and the shape of the Pareto 
fronts of frequently used many-objective test problems (i.e., 
DTLZ1-4 and WFG4-9). For demonstrating the high sensitivity 
of their performance to the shape of the Pareto front, we 
formulated DTLZ

1
 and WFG

1
 problems by multiplying (1) 

to each objective of the DTLZ and WFG problems. Whereas 
DTLZ1-4 and WFG4-9 have triangular shape Pareto fronts, 
DTLZ1-4

1
 and WFG4-9

1
 have rotated triangular shape Pareto 

fronts. We demonstrated through computational experiments 
that totally different performance comparison results among 
different algorithms were obtained from the original test 
problems and their minus versions. Whereas the best results 
were obtained by  -DEA and MOEA/DD on the original 
DTLZ and WFG problems, they were outperformed by 
MOEA/D-WS and MOEA/D-IPBI on their minus versions 
with 3, 5, 8 and 10 objectives. Those high performance weight 
vector-based algorithms on the original DTLZ and WFG 
problems were also outperformed by NSGA-II on some of the 
minus versions even when they have ten objectives.  

One difficulty of recently developed weight vector-based 
algorithms is the lack of appropriate handling of reference lines 
outsize the Pareto front (i.e., with no intersection with the 
Pareto front). This difficulty can be rephrased as the lack of 
appropriate criteria for choosing the second solution for each 
reference line. This difficulty was demonstrated by our 
experimental results on DTLZ

1
 and WFG

1
 where NSGA-III 

with random selection of the second solution outperformed -
DEA and MOEA/DD with the selection of the second best 
solution. This difficulty is not clear when we apply them to 
frequently used many-objective test problems such as DTLZ1-
4 and WFG4-9. This is because all reference lines are inside 
the Pareto fronts of those test problems thanks to their 
triangular shape Pareto fronts. In general, the above-mentioned 
difficulty is severe when many reference lines are outside the 
Pareto front. In this sense, many-objective test problems with 
degenerate Pareto fronts are difficult for weight vector-based 
algorithms. This discussion is consistent with Table III where 
the best results were obtained by NSGA-II for all test problems 
of WFG3 and also with Table VI where good results were not 
obtained by -DEA for any test problem of WFG3. Whereas 
WFG3 is not a degenerate test problem, the non-degenerate 
part of its Pareto front is very small (see [38] for the shape of 
the Pareto front of WFG3). Thus many weight vectors have no 
intersection with the Pareto front. The use of a wide variety of 



test problems with various Pareto front shapes will prevent the 
development of weight vector-based algorithms from being 
overspecialized for a special class of many-objective test 
problems such as DTLZ1-4 and WFG4-9. The use of a wide 
variety of test problems will encourage the development of 
appropriate handling mechanisms of reference lines outside the 
Pareto front including their online adaptation.  

We also suggested that the DTLZ and WFG test problems 
are not difficult even when they have many objectives due to 
their special features in the test problem formulations. As a 
result, weight vector-based algorithms developed for those 
problems have fitness evaluation mechanisms which are not 
always suitable for many-objective optimization such as Pareto 
dominance and the emphasis on the minimization of the 
distance from the nearest reference line (e.g., the use of a large 
penalty value for the distance d2 in the PBI function). These 
discussions also clearly show the necessity of a wide variety of 
many-objective test problems.  

Our computational experiments explained the following 
reasons for high performance of recently proposed weight 
vector-based algorithms on many-objective DTLZ1-4 and 
WFG4-9 test problems:  

(i) Triangular shape Pareto front of each test problem, which is 
the same as or similar to the shape of the distribution of the 
weight vectors. 

(ii) Relatively small size Pareto front of each test problem in 
comparison with the feasible region in the objective space, 
which is suitable for multi-objective search by pulling 
solutions toward the ideal point using the weight vectors. 

(iii) Easy convergence and easy diversification of solutions due 
to separable decision variables, which make it possible to 
focus on the uniformity of obtained solutions over the 
Pareto front. 

Thanks to these special features of frequently used many-
objective test problems, uniformly distributed and well 
converged solutions can be obtained over the entire Pareto 
front even for the case of many objectives. However, these 
features are not likely to hold in real-world applications. Our 
computational experiments showed that high performance of 
recently proposed weight vector-based algorithms on many-
objective test problems was deteriorated by changing the shape 
and the size of the Pareto front of each test problem. In the 
design of an MOEA/D-based algorithm for a many-objective 
problem at hand, weight vectors should be carefully specified 
based on the shape and the size of the Pareto front. A 
scalarizing function (i.e., a single-objective optimization 
problem) should be carefully defined for each weight vector 
depending on the difficulty of the convergence and the 
diversification in order to strike a good balance between them. 
However, these features (i.e., Pareto front shape, Pareto front 
size, convergence difficulty, and diversification difficulty) are 
usually unknown in real-world applications. Thus we may need 
an adaptation mechanism for the weight vectors and the 
scalarizing function. The framework of MOEA/D continues to 
be useful for developing such an adaptive many-objective 
algorithm. This is because MOEA/D has a large flexibility in 
weight vector specification and scalarizing function definition. 

We can use any set of weight vectors as well as any scalarizing 
function in MOEA/D-based many-objective algorithms. In an 
adaptive many-objective algorithm, the distribution of weight 
vectors will be adjusted to the shape and the size of the Pareto 
front, and the search mechanism for each weight vector will be 
adjusted by changing its scalarizing function depending on the 
difficulty of the convergence and the diversification.  
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