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Abstract

The hypervolume indicator has frequently been used for comparing evolutionary
multi-objective optimization (EMO) algorithms. A reference point is needed for hyper-
volume calculation. However, its specification has not been discussed in detail from
a viewpoint of fair performance comparison. A slightly worse point than the nadir
point is usually used for hypervolume calculation in the EMO community. In this
paper, we propose a reference point specification method for fair performance com-
parison of EMO algorithms. First, we discuss the relation between the reference point
specification and the optimal distribution of solutions for hypervolume maximization.
It is demonstrated that the optimal distribution of solutions strongly depends on the
location of the reference point when a multi-objective problem has an inverted trian-
gular Pareto front. Next, we propose a reference point specification method based on
theoretical discussions on the optimal distribution of solutions. The basic idea is to
specify the reference point so that a set of well-distributed solutions over the entire lin-
ear Pareto front has a large hypervolume and all solutions in such a solution set have
similar hypervolume contributions. Then, we examine whether the proposed method
can appropriately specify the reference point through computational experiments on
various test problems. Finally, we examine the usefulness of the proposed method
in a hypervolume-based EMO algorithm. Our discussions and experimental results
clearly show that a slightly worse point than the nadir point is not always appropriate
for performance comparison of EMO algorithms.
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1 Introduction

In the field of evolutionary multi-objective optimization (EMO), a number of new
algorithms continue to be proposed every year. The proposed algorithms are com-
pared with existing ones using performance indicators. The hypervolume indicator
(Zitzler and Thiele (1998)), which is also abbreviated as ”hypervolume” in this paper,
has frequently been used for performance comparison in the EMO community while
a wide variety of indicators are available in the literature (Zitzler et al. (2003)). This is
because no other Pareto compliant indicator is known (Zitzler et al. (2007)). The hy-
pervolume indicator has also frequently been used in indicator-based EMO algorithms
such as LAHC (Knowles et al. (2003)), SMS-EMOA (Emmerich et al. (2005); Beume et al.
(2007)) and HypE (Bader and Zitzler (2011)). In these algorithms, multi-objective opti-
mization is handled as single-objective optimization of a solution set for hypervolume
maximization.

An important research issue is the analysis of the optimal distribution of solutions
for hypervolume maximization. Theoretical studies (Emmerich et al. (2007); Auger
et al. (2012); Brockhoff (2010); Friedrich et al. (2015)) show that the hypervolume indi-
cator is maximized by a set of uniformly distributed solutions on a linear Pareto front
of a two-objective problem. It is also shown that such a solution set is not optimal
when the Pareto front is nonlinear. This is because the optimal distribution of solutions
depends on the slope of the Pareto front in the two-dimensional objective space. Ex-
cept for the case of single-dimensional degenerate Pareto fronts (Shukla et al. (2014)),
no optimal distribution of solutions has been theoretically derived for multi-objective
problems with three or more objectives. General theoretical analysis of the optimal
distribution of solutions for hypervolume maximization is difficult for multi-objective
problems with three or more objectives.

Selection of a pre-specified number of solutions from a given solution set has been
actively studied for hypervolume maximization under the name of hypervolume sub-
set selection. This is a single-objective combinatorial optimization problem. Efficient
subset selection methods have been proposed in the literature (Basseur et al. (2016);
Bringmann et al. (2014); Guerreiro et al. (2015, 2016); Kuhn et al. (2016)). Hypervol-
ume subset selection can be also viewed as a pre-processing procedure for selecting a
small number of solutions to be presented to the decision maker from a large number
of solutions obtained by EMO algorithms (Ishibuchi et al. (2014)). Recently, such a pre-
processing procedure has been used for performance comparison of EMO algorithms
with an unbounded archive population (Ishibuchi et al. (2016); Tanabe et al. (2017)).

A reference point is needed to calculate the hypervolume indicator of a given so-
lution set. For two-objective problems, the effect of the reference point specification
on the optimal distribution of solutions for hypervolume maximization has been the-
oretically studied (Auger et al. (2012); Brockhoff (2010); Friedrich et al. (2015)). For
three-objective problems with linear Pareto fronts, the optimal distribution of solutions
has been empirically studied through a number of computation experiments (Ishibuchi
et al. (2017a)). It is also shown through computational experiments that performance
comparison results among different EMO algorithms depend on the location of the ref-
erence point (Ishibuchi et al. (2015, 2017c)). However, to the best of our knowledge,
the reference point specification has not been studied in detail from a viewpoint of

This article is an extended version of two conference papers (Ishibuchi et al. (2017b)), which includes
many new experiments, explanations and discussions on the reference point specification for multi-objective
problems with nonlinear Pareto fronts and also for many-objective problems. The visualization method of
hypervolume contributions is also improved from the conference paper (Ishibuchi et al. (2017b)).
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fair performance comparison of EMO algorithms, especially for many-objective prob-
lems, except for our former conference paper (Ishibuchi et al. (2017b)) where it was dis-
cussed for two multi-objective test problems with linear Pareto fronts (i.e., DTLZ1 and
inverted DTLZ1). This paper is an extended version of our former conference paper.
We discuss the reference point specification not only for multi-objective test problems
with linear Pareto fronts but also for those with non-linear Pareto fronts (i.e., DTLZ2
and Minus-DTLZ2), a multi-objective knapsack problem and a multi-objective car-side
impact problem. A visualization method of hypervolume contributions is improved
from the conference paper. Moreover, detailed discussions on the reference point spec-
ification in SMS-EMOA (Emmerich et al. (2005); Beume et al. (2007)) are added.

A general guideline for the reference point specification is to use a slightly worse
point than the nadir point so that the reference point is dominated by all Pareto opti-
mal solutions (i.e., so that all Pareto optimal solutions in a solution set have positive
hypervolume contributions). However, there exists no specific numerical guideline.
As a result, different specifications were used in different studies as pointed out by
Chugh et al. (2018). For example, the reference point was specified for DTLZ1 (Deb
et al. (2002)) with the ideal point (0.0, ..., 0.0) and the nadir point (0.5, ..., 0.5) as follows:
1% larger than the nadir point, i.e., (0.505, ..., 0.505) in Seada and Deb (2016), 10% larger
in Yuan et al. (2016a,b) and Maltese et al. (2018), 40% larger in Wagner et al. (2007), and
100% larger in Li et al. (2015). In Zhang et al. (2018), the nadir point was used as the ref-
erence point. These observations raise the following two questions: “How sensitive are
the performance comparison results to the reference point specification?” and “How
should we specify the reference point for fair performance comparison?”.

The goal of this paper is to answer these two questions. First, we discuss the opti-
mal distribution of solutions for hypervolume maximization. We clearly demonstrate
that the sensitivity of the optimal distribution of solutions to the location of the ref-
erence point is problem-dependent. The effect of the reference point is minor when
a multi-objective problem has a triangular Pareto front such as DTLZ1-4 (Deb et al.
(2002)) and WFG4-9 (Huband et al. (2006)). However, the reference point specifica-
tion has a large effect on the optimal distribution of solutions when a multi-objective
problem has an inverted triangular Pareto front such as Minus-DTLZ1-4 and Minus-
WFG4-9 (Ishibuchi et al. (2017c)). We discuss why the reference point specification has
a different effect depending on the shape of the Pareto front. Then, we propose a ref-
erence point specification method for fair performance comparison of EMO algorithms
for multi-objective and many-objective problems. Our idea is based on the following
two assumptions with respect to the performance evaluation of solution sets by the
hypervolume indicator.

1. A uniformly distributed solution set over an entire linear Pareto front should be
highly evaluated by the hypervolume indicator. That is, such a solution set should
have a large hypervolume.

2. All solutions from such a solution set should have similar hypervolume contribu-
tions. That is, no solution should have a dominant or too small effect on hypervol-
ume calculation.

This paper is organized as follows. In Section 2, we examine the optimal distri-
bution of solutions for hypervolume maximization using SMS-EMOA (Emmerich et al.
(2005); Beume et al. (2007)) for DTLZ1-4 and Minus-DTLZ1-4. It is clearly demonstrated
that the optimal distribution of solutions strongly depends on the location of the refer-
ence point when a multi-objective problem has an inverted triangular Pareto front. In
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Section 3, we propose a reference point specification method for fair performance com-
parison based on the above-mentioned two assumptions and the theoretical studies on
the optimal distribution of solutions for a two-objective problem with a linear Pareto
front. In Section 4, we examine whether the proposed method can appropriately specify
a reference point for fair performance comparison of EMO algorithms through compu-
tational experiments on various test problems. In Section 5, we examine the usefulness
of the proposed method in SMS-EMOA through computational experiments. Finally,
we conclude this paper in Section 6.

2 Optimal Distribution of Solutions for Hypervolume Maximization:
Empirical Discussions

In the EMO community, we implicitly assume that a set of well-distributed solutions
over the entire Pareto front of a multi-objective problem is a good solution set. We
also implicitly assume that such a solution set is highly evaluated by the hypervolume
indicator and the IGD (inverted generational distance indicator). Thus these two indi-
cators have frequently been used for performance comparison in the EMO community.
However, we do not know the optimal distribution of solutions with respect to each
indicator except for some special cases such as two-objective problems. That is, we are
comparing different EMO algorithms using these indicators without knowing which
solution set of a fixed size (what type of solution sets of a fixed size) is most highly
evaluated by each indicator. If a set of solutions on a particular region of the Pareto
front is evaluated as being better than a set of well-distributed solutions over the entire
Pareto front, performance comparison results may be inconsistent with our intuition
(i.e., they may be unreliable). In this sense, it is important to know the optimal dis-
tribution of solutions with respect to each indicator. Actually, a set of well-distributed
solutions over the entire Pareto front is not always the best solution set. For example,
it is reported in a recent study (Ishibuchi et al. (2018)) that the best solution set for IGD
minimization has much smaller diversity than a fully expanded solution set over the
entire Pareto front when a large number of uniformly distributed reference points are
used for IGD calculation for many-objective problems.

In this section, we examine the optimal distribution of solutions for hypervol-
ume maximization using SMS-EMOA (Emmerich et al. (2005); Beume et al. (2007)) for
DTLZ1-4 (Deb et al. (2002)) and Minus-DTLZ1-4 (Ishibuchi et al. (2017c)). The objec-
tive space of each test problem is normalized for uniform visualization so that the ideal
and nadir points are (0, ..., 0) and (1, ..., 1), respectively. Since DTLZ2-4 have the same
Pareto front, they have the same optimal distribution of solutions. For the same reason,
Minus-DTLZ2-4 have the same optimal distribution of solutions.

In order to focus on the search for the optimal distribution of solutions on the
Pareto front, the number of distance variables in each test problem is specified as zero
in our computational experiments in this section. Under this setting, all feasible so-
lutions of each test problem are Pareto optimal. SMS-EMOA with the SBX crossover
(crossover probability: 1.0, distribution index: 20) and the polynomial mutation (mu-
tation probability: 1/n where n is the number of decision variables, distribution index:
20) is applied to each test problem using the following parameter specifications: The
population size is 50, and the termination condition is 100,000 generations. Five settings
of the reference point r = (r, ..., r) are examined in SMS-EMOA: r = 1.0 (the same as
the nadir point), r = 1.1 (10% larger than the nadir point), r = 1.5 (50% larger), r = 2.0
(100% larger) and r = 10 (ten times larger). During the execution of SMS-EMOA, the
reference point is fixed at the pre-specified point (i.e., one of the five settings). For each
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setting of the reference point, SMS-EMOA is executed five times. In this manner, we
obtained 25 solution sets. Each solution set is evaluated using the hypervolume indica-
tor with each setting of the reference point. Then, the best solution set with respect to
the hypervolume indicator is selected among the 25 solution sets as the final result for
each setting of the reference point.

2.1 Three-Objective DTLZ1 and Minus-DTLZ1 Test Problems

The obtained solution set for each setting of the reference point is shown in Figure 1 for
the three-objective normalized DTLZ1. When the nadir point is used as the reference
point in Figure 1 (a), the three extreme solutions of the Pareto front are not included in
the best solution set. In Figure 1 (b)-(e) with r = 1.1, 1.5, 2.0, 10, the same solution set is
selected independent of the reference point specification. The solution set in Figure 1 (a)
with r = 1.0 is similar to the solution set in Figure 1 (b)-(e). These observations suggest
that a set of well-distributed solutions over the entire Pareto front is highly evaluated
by the hypervolume indicator, independent of the reference point specification. As a
result, it is likely that similar results are obtained from hypervolume-based comparison,
independent of the reference point specification for the three-objective DTLZ1.

In Figure 2, we show the obtained solution sets for the three-objective normalized
Minus-DTLZ1. When the nadir point is used as the reference point in Figure 2 (a),
all solutions are inside the Pareto front. On the contrary, when r = 10 (i.e., when the
reference point is far away from the nadir point) in Figure 2 (e), almost all solutions
are on the sides of the Pareto front. Only a single inside solution is included in the
best solution set in Figure 2 (e). By increasing the distance of the reference point from
the nadir point, the optimal distribution of solutions is biased toward the sides of the
Pareto front. Figure 2 clearly shows that the optimal distribution of solutions strongly
depends on the location of the reference point. This means that hypervolume-based
comparison results for the three-objective Minus-DTLZ1 strongly depend on the ref-
erence point specification. Different specifications of the reference point may lead to
different comparison results of EMO algorithms by the hypervolume indicator.

The question is why our simulation results in Figure 1 and Figure 2 are totally
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Figure 1: Obtained solution sets for the three-objective normalized DTLZ1.
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Figure 2: Obtained solution sets for the three-objective normalized Minus-DTLZ1.
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different from each other. First, we explain the reason for the difference between Figure
1 (a) and Figure 2 (a) where the nadir point is used as the reference point (i.e., r = 1.0).
In this case, the hypervolume calculation is performed within the triangular pyramid
stretched from the nadir point (1, 1, 1) as shown in Figure 3 and Figure 4. In Figure 3, the
triangular Pareto front of DTLZ1 is inscribed in the green inverted triangle, which is the
base of the triangular pyramid for the hypervolume calculation. Only the three extreme
solutions of the Pareto front are on the sides of the green inverted triangle (i.e., only
these extreme solutions have zero hypervolume contribution). Thus, Pareto optimal
solutions on the sides of the Pareto front have positive hypervolume contributions. As
a result, some solutions on the sides of the Pareto front are included in the best solution
set in Figure 1 (a). However, in Figure 4, the green inverted triangle perfectly overlaps
the inverted triangular Pareto front of Minus-DTLZ1. This means that any solution on
the sides of the Pareto front cannot have a positive hypervolume contribution. As a
result, all solutions in the best solution set in Figure 2 (a) are inside the Pareto front.

Next, let us discuss the difference between Figure 1 (e) and Figure 2 (e) when the
reference point is far away from the nadir point. This difference can be explained by
projecting two types of Pareto fronts onto a two-dimensional subspace as shown in
Figure 5. In Figure 5 (a), the triangular Pareto front of DTLZ1 is projected to the red
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Figure 3: Hypervolume calculation from the nadir point for the three-objective normal-
ized DTLZ1.
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Figure 4: Hypervolume calculation from the nadir point for the three-objective normal-
ized Minus-DTLZ1.
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Figure 5: Projection of the Pareto front to the f2-f3 space.
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triangle in the f2-f3 space. Only the extreme solution (1, 0, 0) projected to (0, 0) is
non-dominated in the f2-f3 space. This means that only this solution has a positive
hypervolume contribution in the f2-f3 space. By moving the reference point away from
the Pareto front along the f1 axis, the hypervolume contribution of only this solution
increases in the original three-dimensional objective space. From the same discussion
in the f1-f2 and f1-f3 spaces, we can see that the hypervolume contributions of the three
extreme solutions increase by moving the reference point far away from the nadir point.
The location of the reference point has no effect on the hypervolume contributions of
all the other solutions when the three extreme solutions are included in the solution set.
Thus the same best solution set is obtained in Figure 1 (b)-(e).

In Figure 5 (b), the inverted triangular Pareto front of Minus-DTLZ1 is projected to
the red triangle in the f2-f3 space. All solutions on the line between (1, 0) and (0, 1) are
non-dominated in the f2-f3 space. This means that all solutions on this line have posi-
tive hypervolume contributions in the f2-f3 space. By moving the reference point away
from the Pareto front along the f1 axis, their hypervolume contributions monotonically
increase in the original three-dimensional objective space. From the same discussion in
the f1-f2 and f1-f3 spaces, we can see that the hypervolume contributions of all solu-
tions on the sides of the inverted triangular Pareto front monotonically increase with
the increase in the distance of the reference point from the nadir point. As a result, more
solutions on the sides of the Pareto front are included in the best solution set in Figure
2. When r is very large, almost all solutions in the best solution set are on the sides
of the Pareto front as in Figure 2 (e). In Section 3, we will explain these discussions
about the relation between the location of the reference point and the optimal solution
set through visualization of the hypervolume contribution of each solution.

2.2 Five-Objective DTLZ1 and Minus-DTLZ1 Test Problems

Experimental results on the five-objective normalized DTLZ1 and Minus-DTLZ1 are
shown in Figure 6 and Figure 7, respectively. In Figure 6, the same solution set is ob-
tained for the three settings of the reference point (r = 1.5, 2.0, 10) for the five-objective
normalized DTLZ1. This is because the location of the reference point has an effect only
on the hypervolume contributions of the five extreme solutions of the five-objective
normalized DTLZ1. When r = 1.0 (i.e., when the nadir point is used as the reference
point), the best solution set does not cover the entire Pareto front. That is, the diver-
sity of the best solution set in Figure 6 (a) is much smaller than that in Figure 6 (c)-(e).
The best solution set for r = 1.1 does not cover the entire Pareto front, either. That
is, r = 1.1 is too small for the five-objective normalized DTLZ1 whereas it is a good
setting for the three-objective normalized DTLZ1. This observation suggests that the
appropriate specification of the reference point depends on the number of objectives.
This issue will be further discussed in Section 3.

In Figure 7, a different solution set is obtained for each setting of the reference
point for the five-objective Minus-DTLZ1. When r = 1.0, the diversity of the obtained
solution set is very small in Figure 7 (a). Almost all solutions are close to the center
of the Pareto front (0.8, 0.8, 0.8, 0.8, 0.8). When r = 1.1, the diversity is still small in
Figure 7 (b) whereas it is larger than that in Figure 7 (a). However, when r = 10, no
solutions are close to the center of the Pareto front in Figure 7 (e). Our experimental
results in Figure 6 and Figure 7 suggest that the reference point specification is much
more important for Minus-DTLZ1 in Figure 7 than DTLZ1 in Figure 6. This is consistent
with our observation in Figure 1 and Figure 2 for the three-objective normalized DTLZ1
and Minus-DTLZ1.
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Figure 6: Obtained solution sets for the five-objective normalized DTLZ1 problem.
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Figure 7: Obtained solution sets for the five-objective Minus-DTLZ1 problem.

2.3 Three-Objective DTLZ2 and Minus-DTLZ2 Test Problems

Whereas DTLZ1 and Minus-DTLZ1 have linear Pareto fronts, the Pareto fronts of
DTLZ2 and Minus-DTLZ2 are non-linear. Experimental results on the three-objective
DTLZ2 and normalized Minus-DTLZ2 are shown in Figure 8 and Figure 9, respectively.
As in Figure 1 and Figure 6 for DTLZ1, the location of the reference point does not have
a large effect on the optimal distribution of solutions in Figure 8 for DTLZ2. This is be-
cause DTLZ2 has a triangular Pareto front. In Figure 9 for Minus-DTLZ2, the location
of the reference point has a large effect on the optimal distribution of solutions. This is
because Minus-DTLZ2 has an inverted Triangular Pareto front. However, the optimal
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Figure 8: Obtained solution sets for the three-objective DTLZ2 problem.
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Figure 9: Obtained solution sets for the three-objective Minus-DTLZ2 problem.
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Figure 10: Hypervolume contribution of each of the five uniformly distributed solu-
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distributions of solutions in Figure 9 for Minus-DTLZ2 are clearly different from Figure
2 for Minus-DTLZ1. For example, in Figure 2 (e), almost all solutions are on the sides
of the inverted triangular Pareto front. However, most solutions are not on the sides of
the inverted triangular Pareto front in Figure 9 (e) whereas they are close to the sides.
This is related to the nonlinear shape of the Pareto front of Minus-DTLZ2.

As explained in Auger et al. (2012) for a nonlinear Pareto front of a two-objective
problem, the two extreme solutions of the Pareto front are not always included in
the optimal distribution of solutions even when the reference point is far away from
the Pareto front. In Figure 10, we show the hypervolume contribution of each of the
five uniformly distributed solutions on the entire Pareto fronts of the two-objective
DTLZ2 and normalized Minus-DTLZ2. The hypervolume contribution of each solution
is shown by the corresponding shaded rectangle in Figure 10 (a) and (b), and by the size
of the corresponding open circle in Figure 10 (c) and (d). The size of each open circle
in Figure 10 (c) and (d) is proportional to the hypervolume contribution of the corre-
sponding solution. This hypervolume visualization method is used for three-objective
problems later in this paper. When the reference point is far away from the Pareto front,
the two extreme solutions of DTLZ2 have large hypervolume contributions as shown
in Figure 10 (a) and (c). Thus they are included in the optimal distribution of solutions
of DTLZ2. However, the two extreme solutions of Minus-DTLZ2 have small hypervol-
ume contributions as shown in Figure 10 (b) and (d). Thus they are not included in
the optimal distribution of solutions of Minus-DTLZ2. Similar explanations hold for
the three-objective normalized Minus-DTLZ2 in Figure 9. Thus most solutions in the
obtained best solution set are inside the Pareto front (whereas they are close to the sides
of the Pareto front) even when the reference point is far away from the Pareto front.

In this section, we demonstrated that the optimal distribution of solutions for hy-
pervolume maximization depends on the location of the reference point, the curvature
property of the Pareto front (linear, convex, or concave) and the Pareto front shape (tri-
angular or inverted triangular). Among the six combinations of the curvature property
and the Pareto front shape, four combinations are examined using DTLZ1 (linear tri-
angular), Minus-DTLZ1 (linear inverted triangular), DTLZ2 (concave triangular) and
Minus-DTLZ2 (concave inverted triangular).

3 Reference Point Specification Method

In this section, we propose a reference point specification method in hypervolume cal-
culation for fair performance comparison of EMO algorithms. First, we derive a simple
specification method for two-objective problems from theoretical analysis of the opti-
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mal distribution of solutions on the linear Pareto front of a normalized two-objective
problem. Next, the specification method is generalized for multi-objective problems.
Then, its validity is examined through computational experiments.

3.1 Basic Idea for Two-Objective Problems: Theoretical Analysis

Let us consider a two-objective minimization problem with a linear Pareto front, which
is a line between (0, 1) and (1, 0) in the two-dimensional objective space. For this
problem, the hypervolume indicator is maximized by a set of equidistant points on
the Pareto front (Emmerich et al. (2007); Auger et al. (2012)). The optimal distribution
of five solutions is illustrated in Figure 11 for different settings of the reference point
r = (r, r): r = 1.0, 1.1, 1.25, 1.5. Each shaded region in Figure 11 shows the hypervol-
ume contribution of the corresponding solution. As illustrated in Figure 11 (a) with
r = 1.0, the two extreme solutions of the Pareto front are not included in the optimal
solution set when the nadir point is used as the reference point. When r = 1.1 in Figure
11 (b), they are not included in the optimal solution set either. The two extreme solu-
tions are included in the optimal solution set only when the reference point satisfies
the inequality condition r ≥ 1 + 1/(µ − 1) where µ is the number of solutions. This
condition has already been proven in Theorem 3 of Brockhoff (2010). In Figure 11 with
µ = 5, this condition means r ≥ 1.25. Thus the two extreme solutions are included in
Figure 11 (c) and (d).

In Figure 12, we show the hypervolume contribution of each of the five uniformly
distributed solutions. When the nadir point is used as the reference point in Figure
12 (a), the two extreme solutions have no hypervolume contribution. This means that
they have no effect on hypervolume-based performance comparison results. This is
not desirable for fair performance comparison. When r = 1.1 in Figure 12 (b), the
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1.1

0 f1

f2

1.1

r

(b) r = 1.1.
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(d) r = 1.5.

Figure 11: Optimal distributions of solutions for hypervolume maximization for a lin-
ear Pareto front.
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Figure 12: Hypervolume contribution of each of the uniformly distributed solutions on
a linear Pareto front.
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two extreme solutions have much smaller hypervolume contributions than the other
three solutions. However, when r = 1.5 in Figure 12 (d), they have much larger hy-
pervolume contributions than the other three solutions. All of these settings are not
desirable from a viewpoint of fair performance comparison since some solutions in the
solution set have much smaller or much larger effects on hypervolume calculation (i.e.,
on hypervolume-based performance comparison results). Only when r = 1.25 (i.e.,
r = 1 + 1/(µ − 1)), all solutions in Figure 12 have the same hypervolume contribu-
tion. Based on these discussions, we propose to specify the reference point r = (r, r) as
r = 1 + 1/(µ− 1) for two-objective problems.

The optimal distribution of solutions has been actively studied theoretically for the
case of two objectives. For example, an interesting relation between the optimal distri-
bution and the hypervolume contribution was proven by Bader (2009): Each solution
in the optimal distribution for hypervolume maximization has the same hypervolume
contribution when the number of solutions increases to infinity (Theorem 3.26). It was
shown by Auger et al. (2012) that the density of solutions in the optimal distribution
depends only on the slope of the Pareto front. Generalization of the hypervolume indi-
cator was also proposed. For example, cone-based hypervolume indicators were pro-
posed in Emmerich et al. (2013) where the optimal distribution of solutions depends on
an angle parameter of cones. When the angle parameter is small (i.e., cones are acute),
solutions are more evenly distributed on convex and concave Pareto fronts than the
case of the standard hypervolume indicator. Reference point free weighted hypervol-
ume indicators were proposed in Emmerich et al. (2014) where it was shown that the
standard hypervolume indicator belongs to a more general class of Pareto compliant
measures. Whereas those generalized versions were proposed, we focus on the stan-
dard hypervolume indicator since it has frequently been used for performance compar-
ison of EMO algorithms in the literature.

3.2 Generalization to Multi-Objective Problems: Proposed Method

In Figure 13, we show 15 uniformly distributed solutions on the entire Pareto front of
the three-objective normalized DTLZ1. In this paper, uniformly distributed solutions
are generated by the simplex lattice-based method in the same manner as MOEA/D for
generating uniformly distributed weight vectors (whereas other methods may gener-
ate other distributions, e.g., simplex centroid). In Figure 13, each side of the triangular
Pareto front is divided into four intervals as in Figure 11 (c) and Figure 12 (c) with five
solutions on the linear Pareto front. Our idea is to apply the reference point specifica-
tion method in the previous subsection to the sides of the triangular Pareto front. Since
each side is divided into four intervals in Figure 13 as in Figure 11 (c) and Figure 12 (c),
we propose to use (1.25, 1.25, 1.25) as the reference point in Figure 13. In general, let

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

Figure 13: Fifteen uniformly distributed solutions for the three-objective normalized
DTLZ1 problem.
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us assume that each side of the triangular Pareto front of the normalized m-objective
DTLZ1 problem is divided into H intervals. Then, we propose to specify the refer-
ence point r = (r, r, ..., r) as r = 1 + 1/H . In the case of two-objective problems, H is
calculated from the number of solutions µ as H = µ − 1. Thus the proposed specifica-
tion method by r = 1 + 1/H can be viewed as a generalization of our basic idea (i.e.,
r = 1 + 1/(µ− 1)) for two-objective problems in the previous subsection.

In MOEA/D (Zhang and Li (2007)), the population size µ is defined for an m-
objective problem using a user-defined integer parameter H as µ = CH+m−1

m−1 where Cn
m

is the number of m-combinations from a set of n elements, i.e., Cn
m = n!/m!(n − m)!.

The integer parameter H in MOEA/D corresponds to the number of intervals of each
side of the triangular Pareto front (e.g., H = 4 in Figure 13). When the population size µ
is specified by this formulation, we can directly use our formulation (i.e., r = 1 + 1/H)
for specifying the reference point r = (r, r, ..., r). However, in general, the population
size µ is not always specified as µ = CH+m−1

m−1 . For handling such a general case, first
we specify the value of H using the following formulation:

CH+m−1
m−1 ≤ µ < CH+m

m−1 , (1)

where µ is the population size and m is the number of objectives. Then, the reference
point r = (r, r, ..., r) is specified in the normalized objective space with the ideal point
(0, 0, ..., 0) and the nadir point (1, 1, ..., 1) as follows:

r = 1 + 1/H. (2)

Our proposal is to use (1) and (2) for specifying the reference point r = (r, r, ..., r) in
the normalized objective space from the population size µ and the number of objectives
m.

3.3 Numerical Examples: Hypervolume Contribution of Each Solution on Linear
Pareto Fronts

In this subsection, we examine whether each of the uniformly distributed solutions
over the entire Pareto front has a similar hypervolume contribution when the reference
point r = (r, r, ..., r) is specified by the proposed method. In Figure 14, we generate 66
solutions for the three-objective normalized DTLZ1 using the weight vector generation
method in MOEA/D with H = 10. The suggested reference point by the proposed
method is r = 1.1. The hypervolume contribution of each solution is shown by the
size of the corresponding circle. That is, the area of each circle is proportional to the
hypervolume contribution of the corresponding solution. In this subsection, the size of
each circle is normalized so that the largest circle in each figure has the same maximum
radius. So, we can compare the size of each circle within each figure (e.g., between a
circle in Figure 14 (a) and another one in Figure 14 (e)). However, we cannot compare
the size of each circle between different figures (e.g., between Figure 14 and Figure 15).

As we have already explained, the hypervolume contributions of the three extreme
solutions are zero when the nadir point is used as the reference point (i.e., r = 1.0) in
Figure 14 (a). When r is large (e.g., r = 2.0), those three extreme solutions have much
larger hypervolume contributions than the other solutions. Only when the reference
point is specified by the proposed method as r = 1.1, all the 66 solutions have the same
hypervolume contribution.

For examining the effect of the number of solutions on the appropriate reference
point specification, we also generate 21 solutions using the weight vector generation
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Figure 14: Hypervolume contribution of each solution for the three-objective normal-
ized DTLZ1 (H = 10).
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Figure 15: Hypervolume contribution of each solution for the three-objective normal-
ized DTLZ1 (H = 5).

method in MOEA/D with H = 5. The suggested reference point by the proposed
method is r = 1.2. The hypervolume contribution of each solution is shown in Fig-
ure 15 in the same manner as in Figure 14 (i.e., the area of each circle is proportional
to the hypervolume contribution of the corresponding solution). As we have already
explained, the size of each circle is normalized in each figure. So, the three extreme
solutions in Figure 14 (e) and Figure 15 (e) have the largest circles of the same size.
However, their hypervolume contributions in Figure 15 are larger than those in Figure
14.

When r = 1.1 in Figure 15 (b), the three extreme solutions have much smaller
hypervolume contributions than the other solutions. This observation suggests that
the reference point is too close to the Pareto front. When r = 1.5 and r = 2.0, the
three extreme solutions have much larger hypervolume contributions than the other
solutions. This observation suggests that those specifications are too far from the Pareto
front. Only when the reference point is specified by the proposed method as r = 1.2,
all the 21 solutions have the same hypervolume contribution.

We also perform the same computational experiment for the three-objective nor-
malized Minus-DTLZ1 for the case of H = 5 (i.e., 21 solutions). Experimental results
are shown in Figure 16. Only in this figure, the three extreme solutions which are shown
by squares (instead of circles) in Figure 16 (e) are excluded from the normalization of
the size of each circle. This is because they have too large hypervolume contributions
to be visualized in the same figure.

Minus-DTLZ1 has an inverted triangular Pareto front. When the nadir point is
used as the reference point in Figure 16 (a), all solutions on the sides of the Pareto front
have no hypervolume contribution. When r = 1.1, those solutions have much smaller
hypervolume contribution than the other solutions inside the Pareto front. Only when
we specify the reference point as r = 1.2 using the proposed method, all the 21 solutions
have the same hypervolume contribution. By increasing the value of r (i.e., by moving
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Figure 16: Hypervolume contribution of each solution for the three-objective normal-
ized Minus-DTLZ1 (H = 5).
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Figure 17: Hypervolume contribution of each solution for the five-objective normalized
DTLZ1 (H = 2). The hypervolume contribution is shown by the line thickness.

the reference point away from the Pareto front), the hypervolume contributions of the
three extreme points increase as in the case of the triangular Pareto front in Figure
15. However, at the same time, the hypervolume contributions of the other solutions
on the sides of the inverted triangular Pareto front also increase in Figure 16. This is
the reason why almost all solutions in the best solution sets are on the sides of the
inverted triangular Pareto front when the reference point is far away from the Pareto
front (e.g., see Figure 9 (e)). It should be noted that the hypervolume contributions of
those solutions do not change by moving the location of the reference point in the case
of the triangular Pareto front as shown in Figure 15. That is, when the Pareto front is
triangular, the location of the reference point has an effect only on the hypervolume
contributions of the extreme solutions.

To examine the effect of the number of objectives on the appropriate reference point
specification, we generate 15 solutions for the five-objective normalized DTLZ1 using
the weight vector generation method in MOEA/D with H = 2. The suggested refer-
ence point by the proposed method is r = 1.5. The hypervolume contribution of each
solution is shown by the line thickness in Figure 17. When r = 1.0, the five extreme
solutions with fi = 1 for one of the five objectives have no hypervolume contribution.
Thus they are not depicted in Figure 17 (a). When r = 1.1 and r = 1.2, their hyper-
volume contributions are much smaller than the other solutions. When the suggested
reference point r = 1.5 is used in Figure 17 (d), all solutions have the same hypervol-
ume contribution. By increasing the value of r from r = 1.5, the five extreme solutions
have larger hypervolume contributions than the other solutions as shown in Figure 17
(e).

We further examine the hypervolume contributions of a large number of solu-
tions of the five-objective normalized DTLZ1. First, we generate its 1001 solutions uni-
formly on the triangular Pareto front using the weight vector generation mechanism of
MOEA/D with H = 10. The suggested reference point by the proposed method is 1.1.
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Table 1: Hypervolume contribution of each solution of the five-objective normalized
DTLZ1 (×10−5)

Solution Type
(Number of solutions)

r = 1.0 r = 1.05 r = 1.1 r = 1.2 r = 1.5

One non-zero element (5) 0.000 0.500 1.000 2.000 5.000
Two non-zero elements (90) 1.000 1.000 1.000 1.000 1.000

Three non-zero elements (360) 1.000 1.000 1.000 1.000 1.000
Four non-zero elements (420) 1.000 1.000 1.000 1.000 1.000
Five non-zero elements (126) 1.000 1.000 1.000 1.000 1.000

Table 2: Hypervolume contribution of each solution of the five-objective normalized
Minus-DTLZ1 (×10−5)

Solution Type
(Number of solutions)

r = 1.0 r = 1.05 r = 1.1 r = 1.2 r = 1.5

One non-one element (5) 0.000 0.0625 1.000 16.00 625.0
Two non-one elements (90) 0.000 0.125 1.000 8.000 125.0

Three non-one elements (360) 0.000 0.250 1.000 4.000 25.00
Four non-one elements (420) 0.000 0.500 1.000 2.000 5.000
Five non-one elements (126) 1.000 1.000 1.000 1.000 1.000

The 1001 solutions (i.e., 1001 points in the five-dimensional objective space) satisfy the
following relations: f1 + f2 + f3 + f4 + f5 = 1 and 0 ≤ fi ≤ 1 for i = 1, 2, ..., 5. Among
them, 126 solutions are inside the Pareto front. That is, they have no zero element
(i.e., they have five non-zero elements). All the others are boundary solutions with at
least one zero element (i.e., with less than five non-zero elements). For example, the
five extreme solutions have only a single non-zero element: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0),
(0, 0, 1, 0, 0), (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1). Ninety solutions have only two non-zero el-
ements such as (0.9, 0.1, 0, 0, 0) and (0, 0, 0.4, 0, 0.6). The hypervolume contribution of
each solution is summarized in Table 1. When the reference point is specified by the
proposed method as r = 1.1, all solutions have exactly the same hypervolume contri-
bution. The hypervolume contributions of only the five extreme solutions depend on
the location of the reference point in Table 1. This is because the shape of the Pareto
front is triangular as we have already explained.

In the same manner as in Table 1, we also examine the hypervolume contribution of
1001 uniformly distributed solutions on the inverted triangular Pareto front of the five-
objective normalized Minus-DTLZ1. The suggested reference point by the proposed
method is 1.1. The 1001 solutions satisfy the following relations: f1+f2+f3+f4+f5 = 4
and 0 ≤ fi ≤ 1 for i = 1, 2, ..., 5. Among the 1001 solutions, 126 are inside the Pareto
front. Those inside solutions have five non-one elements. All the others are boundary
solutions with less than five non-one elements such as the five extreme solutions with
only a single non-one element: (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1) and
(1, 1, 1, 1, 0). The hypervolume contribution of each solution is summarized in Table 2.
When the reference point is specified by the proposed method as r = 1.1, all solutions
have exactly the same hypervolume contribution. When the nadir point is used as the
reference point (i.e., r = 1.0), only the 126 inside solutions have positive hypervolume
contributions. Their hypervolume contributions are the same independent of the loca-
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Figure 18: Hypervolume contribution of each solution for the three-objective DTLZ2
(H = 5).

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

(a) r = 1.0.

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

(b) r = 1.1.

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

(c) r = 1.2.

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

(d) r = 1.5.

0.0

1.0

0.00.0

1.01.0

f3

f2 f1

(e) r = 2.0.

Figure 19: Hypervolume contribution of each solution for the three-objective normal-
ized Minus-DTLZ2 (H = 5).

tion of the reference point in Table 2. The hypervolume contribution of each of the other
boundary solutions increases as the value of r increases. It is interesting to observe that
the increase of the hypervolume contribution is more rapid when solutions have less
non-one elements. For example, the hypervolume contributions of the five extreme
solutions with only a single non-one element drastically increase when the value of r
increases from r = 1.1 to r = 1.5 in Table 2.

3.4 Numerical Examples: Hypervolume Contribution of Each Solution on
Nonlinear Pareto Fronts

Experimental results in the previous subsection show that each solution in a uniformly
distributed solution set on a linear Pareto front has the same hypervolume contribu-
tion when the reference point r = (r, r, ..., r) is specified by the proposed method as
r = 1 + 1/H . For comparison, we also examine the hypervolume contribution of each
solution on non-linear Pareto fronts. In Figure 18, we generate 21 solutions for the
three-objective DTLZ2 using the weight vector generation method in MOEA/D with
H = 5. More specifically, we calculate the best solution for each weight vector with
respect to the PBI function with θ = ∞ in MOEA/D. Then, we calculate the hyper-
volume contribution of each solution. When the nadir point is used as the reference
point (i.e., r = 1.0) in Figure 18 (a), the three extreme solutions have no hypervolume
contribution. When r = 2.0 in Figure 18 (e), their hypervolume contributions are much
larger than the other solutions. Due to the nonlinearity of the Pareto front, each solu-
tion has a different hypervolume contribution in Figure 18. The proposed specification
r = 1.2 in Figure 18 (c) is more appropriate than r = 1.0 and r = 2.0 in the sense that
the difference of the hypervolume contributions among the 66 solutions is small. Due
to the concave shape of the Pareto front, solutions on the sides of the Pareto front have
larger hypervolume contributions than inside solutions in Figure 18 as explained for
the two-objective DTLZ2 in Figure 10.

We also generate 21 solutions for the three-objective normalized Minus-DTLZ2
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using the inverted PBI function with θ = ∞ in MOEA/D (Sato (2014)). Then, we cal-
culate the hypervolume contribution of each solution. When the nadir point is used as
the reference point (i.e., r = 1.0) in Figure 19 (a), all solutions on the sides of the Pareto
fronts have no hypervolume contribution. By increasing the distance of the reference
point from the nadir point, their hypervolume contributions increase. However, due
to the convex shape of the Pareto front, solutions on the sides of the Pareto front have
smaller hypervolume contributions than inside solutions in Figure 19 as explained for
the two-objective Minus-DTLZ2 in Figure 10.

3.5 Numerical Examples: Hypervolume-based Comparison of Solution Sets

In this subsection, we examine whether a uniformly distributed solution set has a larger
hypervolume than biased solution sets when the reference point is specified by the
proposed method. In our computational experiments, first we generate a set of 91 uni-
formly distributed solutions for the three-objective normalized DTLZ1 by specifying
the value of H as H = 12 in the weight vector specification mechanism in MOEA/D
as shown in Figure 20 (d). For comparison, we also generate other solution sets with
91 solutions. For generating a biased solution set around the center of the Pareto front,
first we generate 136 uniformly distributed solutions for H = 15. This solution set con-
sists of 91 inside solutions and the other 45 solutions on the sides of the Pareto front.
We use a set of the 91 inside solutions for comparison as shown in Figure 20 (c). We also
generate a further biased solution set. First, we generate 190 solutions by specifying H
as H = 18. Next, we remove the 54 solutions on the sides of the Pareto front. Then, we
remove the 45 solutions on the side of the remaining solution set. We use the other 91
inside solutions as a solution set for comparison as shown in Figure 20 (b). In the same
manner, we also generate a solution set with 91 solutions selected from 253 uniformly
distributed solutions for H = 21 in Figure 20 (a).

We also generate biased solution sets toward the sides of the Pareto front in the
following manner. First, we generate a set of 66 uniformly distributed solutions by
specifying the value of H as H = 10. This solution set includes 36 inside solutions. In
addition to those 36 inside solutions, 55 solutions are uniformly distributed over the
sides of the Pareto front to generate a solution set with 91 solutions as shown in Figure
20 (e). In the same manner, we generate a solution set from H = 8 in Figure 20 (f)
where the 21 inside solutions are generated from H = 8 and the other 70 solutions are
uniformly distributed over the sides of the Pareto front. We also generate a solution
set with 10 inside solutions from H = 6 and 81 uniformly distributed solutions on the
sides of the Pareto front in Figure 20 (g).

In the same manner, we also generate seven solution sets with 91 solutions of the
three-objective normalized Minus-DTLZ1, DTLZ2, and Minus-DTLZ2. The generated

0.5

0.0

1.0

0.5
1.0

0.0

0.5
0.0

1.0
f2 f1

f3

(a) H = 21.

0.5

0.0

1.0

0.5
1.0

0.0

0.5
0.0

1.0
f2 f1

f3

(b) H = 18.

0.5

0.0

1.0

0.5
1.0

0.0

0.5
0.0

1.0
f2 f1

f3

(c) H = 15.

0.5

0.0

1.0

0.5
1.0

0.0

0.5
0.0

1.0
f2 f1

f3

(d) H = 12.

0.5

0.0

1.0

0.5
1.0

0.0

0.5
0.0

1.0
f2 f1

f3

(e) H = 10.

0.5

0.0

1.0

0.5
1.0

0.0

0.5
0.0

1.0
f2 f1

f3

(f) H = 8.

0.5

0.0

1.0

0.5
1.0

0.0

0.5
0.0

1.0
f2 f1

f3

(g) H = 6.

Figure 20: Generated solution sets with 91 solutions of the three-objective normalized
DTLZ1 for hypervolume-based performance comparison. The value of H shows the
resolution of inside solutions. A large value of H means a dense distribution of solu-
tions around the center of the Pareto front.
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Figure 21: Generated solution sets with 91 solutions of the three-objective normalized
Minus-DTLZ2.

Table 3: Best solution set by the hypervolume-based comparison with each specification
of the reference point.

Reference Point Specification (r)Test Problem 1.01 1.02 1.04 1.06 1.08 1.1 1.2 1.4 1.6 1.8 2
DTLZ1 (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)

Minus-DTLZ1 (c) (c) (c) (d) (d) (d) (e) (e) (f) (f) (f)
DTLZ2 (d) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)

Minus-DTLZ2 (b) (b) (b) (b) (b) (b) (c) (c) (d) (d) (d)

solution sets of Minus-DTLZ2 are shown in Figure 21. The generated seven solution
sets for each test problem are compared by the hypervolume indicator for each of the
following specifications of the reference point: r = 1.00, 1.02, 1.04, 1.06, 1.08, 1.10, 1.20,
1.40, 1.60, 1.80, 2.00. Table 3 shows the solution set with the largest hypervolume for
each specification of the reference point. For DTLZ1, the well-distributed solution set
in Figure 20 (d) is evaluated as the best solution set, independent of the specification of
the reference point. For DTLZ2, such a solution set is also evaluated as the best solution
set, independent of the specification of the reference point. However, for Minus-DTLZ1
and Minus-DTLZ2, the hypervolume-based performance comparison results strongly
depend on the specification of the reference point. The suggested reference point by
the proposed method for a three-objective problem with 91 solutions (i.e., m = 3 and
µ = 91) is r = 1 + 1/12 = 1.0833. In Table 3, the well-distributed solution set over the
entire Pareto front of Minus-DTLZ1, which is the inverted distribution of Figure 20 (d),
is evaluated as the best solution set only when r = 1.06, 1.08, 1.10. This observation
supports the validity of the proposed reference point specification method. However,
for Minus-DTLZ2, the solution set in Figure 21 (b) is evaluated as the best solution
set when r = 1.06, 1.08, 1.10. This observation, which is consistent with the above-
mentioned experimental results on Minus-DTLZ2 with respect to the best solution set
and the hypervolume contribution of each solution, suggests the necessity of special
care in the hypervolume-based performance comparison for multi-objective problems
with convex Pareto fronts.

4 Computational Experiments on Various Test Problems

We have already explained that an appropriate reference point can be obtained by the
proposed method for DTLZ1, DTLZ2 and Minus-DTLZ1. We have also demonstrated
that the location of the reference point has a large effect on the optimal distribution of
solutions and performance comparison results through computational experiments on
Minus-DTLZ1 and Minus-DTLZ2 with inverted triangular Pareto fronts. However, the
effect of the location of the reference point is small when test problems have triangular
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Pareto fronts (e.g., DTLZ1-4 and WFG4-9). In this section, we examine the effect of the
reference point specification using other frequently-used three-objective test problems:
knapsack problem, car-side impact problem, and WFG3. The number of solutions is
specified as 50. For m = 3 (three objectives) and µ = 50 (50 solutions), the suggested
reference point by the proposed method is calculated as r = 1.125 since H is deter-
mined as H = 8 from Eq. (1). The three test problems in this section are normalized as
three-objective minimization problems with the ideal point (0, 0, 0) and the nadir point
(1, 1, 1).

4.1 Three-Objective Knapsack Problem

Multi-objective knapsack problems have frequently been used as combinatorial multi-
objective test problems in the EMO community (Zitzler and Thiele (1999); Zhang and
Li (2007); Ishibuchi et al. (2015)). As a test problem, we use the three-objective 500-item
knapsack problem in Ishibuchi et al. (2015). First, we search for an approximate Pareto
front by MOEA/D with Tchebycheff function (Zhang and Li (2007)) using a large com-
putation load (population size: 10,011, termination condition: 1,000 generations, exe-
cution: ten times). All solutions obtained from ten runs of MOEA/D are merged into
a single solution set. Next, we select only non-dominated solutions from the merged
solution set. In this manner, we obtain an approximate Pareto front with 31,509 non-
dominated solutions in Figure 22 (a) where the three-dimensional objective space is
normalized as a minimization problem with the ideal point (0, 0, 0) and the nadir point
(1, 1, 1). Then, a greedy algorithm (Guerreiro et al. (2016)) is used to select a set of 50
solutions for hypervolume maximization. In the greedy algorithm, the first solution is
selected by examining the hypervolume indicator of each solution. That is, the best so-
lution with the largest hypervolume is selected as the first solution and included in the
solution set. Next, the second solution is included in the solution set to maximize the
hypervolume indicator after examining all combinations of the first solution and one of
the other solutions. Then, the third solution is included in the solution set to maximize
the hypervolume indicator after examining all combinations of the first two solutions
and one of the other solutions. In this manner, 50 solutions are selected for each of the
following settings of the reference point: r = 1.01, 1.125, 1.5, 20. The obtained solution
sets are shown in Figure 22 (b)-(e).

When the reference point is slightly worse than the nadir point (i.e., r = 1.01)
in Figure 22 (a), only a few solutions are close to the sides of the Pareto front. When
the reference point is far away from the Pareto front (i.e., r = 2.0) in Figure 22 (e),
many solutions are close to the sides of the Pareto front. When the reference point
is specified by the proposed method (i.e., r = 1.125) in Figure 22 (c), solutions are

(a) Pareto front. (b) r = 1.01. (c) r = 1.125. (d) r = 1.5. (e) r = 2.0.

Figure 22: Pareto front in (a) and selected 50 solutions for each specification of the
reference point for hypervolume maximization in (b)-(e) for the three-objective 500-
item knapsack problem.
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well distributed over the entire Pareto front. Our experimental results in Figure 22
show that an appropriate reference point is specified by the proposed method for the
three-objective 500-item knapsack problem. They also show that the optimal solution
set strongly depends on the reference point specification. That is, hypervolume-based
performance comparison results are sensitive to the reference point specification. As
shown in Figure 22, the Pareto front of the three-objective knapsack problem is inverted
triangular. As a result, the experimental results in Figure 22 are similar to those on the
three-objective Minus-DTLZ1 problem in Figure 2.

4.2 Three-objective Car-Side Impact Problem

The car-side impact problem has frequently been used as a multi-objective problem
with constraint conditions in the EMO community (Jain and Deb (2014); Asafuddoula
et al. (2015)). This problem has three objectives, ten constraint conditions and eleven
decision variables. First, we search for an approximate Pareto front by NSGA-II (Deb
et al. (2002)) using a large computation load (population size: 5,000, termination con-
dition: 10,000 generations, execution: 20 times). In NSGA-II, a set of 5,000 feasible
solutions are generated as an initial population by randomly generating a large num-
ber of solutions and selecting only feasible solutions. During the execution of NSGA-II,
infeasible solutions are handled as being dominated by feasible ones. All solutions ob-
tained from 20 runs of NSGA-II are merged into a single solution set, from which non-
dominated solutions are selected. In this manner, we obtain an approximate Pareto
front with 54,874 non-dominated solutions in Figure 23 (a) in the three-dimensional
objective space. Then, a greedy algorithm is used to select a set of 50 solutions for
hypervolume maximization.

In Subsection 4.1, we used MOEA/D to search for an approximate Pareto front
of the three-objective knapsack problem. This is because much better results were re-
ported for multi-objective knapsack problems with 2-4 objectives from MOEA/D than
NSGA-II in the literature (e.g., Zhang and Li (2007); Ishibuchi et al. (2015)). However,
in this subsection, we used NSGA-II to search for an approximate Pareto front of the
car-side impact problem. This is because each objective of the car-side impact prob-
lem has a different scale. Since MOEA/D has no scaling mechanism of the objective
space, usually it does not work well on such a multi-objective problem (e.g., WFG test
problems of Huband et al. (2006)).

The selected 50 solutions are shown in Figure 23 (b)-(e). When a reference point is
slightly worse than the nadir point (i.e., r = 1.01) in Figure 23 (b), no solutions are close
to the right-hand side boundary of the Pareto front. By specifying the reference point
by the proposed method as r = 1.125, well-distributed solutions are obtained in Figure
23 (c) except for the right-bottom corner of the Pareto front. By increasing the value of

(a) Pareto front. (b) r = 1.01. (c) r = 1.125. (d) r = 1.5. (e) r = 2.0.

Figure 23: Pareto front in (a) and selected 50 solutions for each specification of the ref-
erence point for hypervolume maximization in (b)-(e) for the car-side impact problem.
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Figure 24: Pareto front in (a) and obtained 50 solutions for each specification of the
reference point for hypervolume maximization in (b)-(e) for the three-objective WFG3.

r (i.e., by moving the reference point far away from the Pareto front), more solutions
are obtained around the top and the right sides of the Pareto front as shown in Figure
23 (d) and (e). Our experimental results on the car-side impact problem show that an
appropriate reference point is specified by the proposed method. They also show that
the optimal solution set strongly depends on the reference point specification. That
is, hypervolume-based performance comparison results are sensitive to the reference
point specification. The shape of the Pareto front of the car-side impact problem is a
mixture of triangle and inverted triangle. In Figure 23, the bottom-left half of the Pareto
front is triangular. The solution at the bottom-right corner is the single optimal solution
in the f2−f3 space as in Figure 5 (a). So, many solutions are not around the bottom and
left sides of the Pareto front even when r = 2.0 in Figure 23 (e). On the contrary, the
top-right half of the Pareto front is inverted triangular. So, many solutions are around
the top and right sides of the Pareto front in Figure 23 (e).

4.3 Three-Objective WFG3 Problem

WFG3 was originally proposed as a degenerate test problem (Huband et al. (2006)).
However, it was shown in Ishibuchi et al. (2016) that WFG3 has a partially degenerate
Pareto front as shown in Figure 24 (a). In the same manner as in Section 2, SMS-EMOA
is applied to the three-objective WFG3. The number of distance variables is specified
as two due to the restriction of the WFG problem formulation whereas it was specified
as zero for DTLZ1 and DTLZ2 in Section 2. Experimental results are shown in Figure
24 (b)-(e). When r = 1.01 in Figure 24 (b), the two extreme solutions at the bottom-left
and bottom-right corners are not selected. When r = 2.0 in Figure 24 (e), only four
solutions are inside the Pareto front. If compared with these results, the solution set
from r = 1.125 in Figure 24 (c) looks better. As in Figure 22 and Figure 23, Figure 24
shows that an appropriate reference point is specified by the proposed method. Figure
24 also shows that the best solution set depends on the reference point specification.
That is, hypervolume-based performance comparison results depend on the reference
point specification.

5 Effect on the Search Ability of SMS-EMOA

In this section, we examine whether the proposed specification method is useful in
SMS-EMOA or not. In Sections 2-4, we discussed the reference point specification
method for fair performance comparison where the true or approximate Pareto front is
assumed to be known. However, in the use of the proposed method in SMS-EMOA,
the ideal and nadir points are estimated from the current population. Their estimations
are not accurate especially in early generations. In our computational experiments in
this section, the normalization is performed using non-dominated solutions among so-
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lutions in the current population at each generation. As mentioned in Emmerich et al.
(2005), SMS-EMOA can work with an infinite reference point. This is a good specifi-
cation for two-objective problems and multi-objective problems with triangular Pareto
fronts. However, this is not appropriate for multi-objective problems with inverted
triangular Pareto fronts. In this section, we examine the usefulness of the proposed
reference point specification method in SMS-EMOA for multi-objective problems with
triangular and inverted triangular Pareto fronts.

We apply SMS-EMOA to the three-objective normalized DTLZ1 and Minus-
DTLZ1 under the following parameter specifications:

Number of distance variables: 5,
Population size (µ): 15 and 50,
Crossover: SBX with the index 20 (probability: 1.0),
Mutation: Polynomial mutation with the index 20 (probability: 1/n where n is the
number of variables),
Termination conditions: 100,000 generations,
Number of runs: 5.

In our computational experiments, we examine the following three-specification of
the reference point: a slightly worse reference point than the nadir point (i.e., r = 1.01),
the suggested reference point (i.e., r = 1.25 for µ = 15 and r = 1.125 for µ = 50), and a
much worse reference point than the nadir point (i.e., r = 2.0).

Experimental results on DTLZ1 are shown in Figures 25-27 where the final solution
sets obtained from the five runs are shown for each specification of the population size.

Figure 25: Obtained solution sets for the three-objective normalized DTLZ1 with r =
1.01 (top: population size 15, bottom: population size 50).

Figure 26: Obtained solution sets for the three-objective normalized DTLZ1 with the
suggested reference point (top: population size 15 and r = 1.25, bottom: population
size 50 and r = 1.125).
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Figure 27: Obtained solution sets for the three-objective normalized DTLZ1 with r =
2.0 (top: population size 15, bottom: population size 50).

When r = 1.01 in Figure 25, good results are not obtained. The final population always
converges to a small region of the Pareto front. When the reference point is specified
by the proposed method in Figure 26, well-distributed solutions are always obtained.
Good results are also obtained in Figure 27 where the reference point is far away from
the Pareto front. As we have already explained, the reference point can be far away
from the triangular Pareto front. However, such a reference point specification has a
clear negative effect when the Pareto front is inverted triangular.

Experimental results on Minus-DTLZ1 are shown in Figures 28-30. When the refer-
ence point is far away from the Pareto front in Figure 30, many solutions are on the sides
of the inverted triangular Pareto front. When the reference point is slightly worse than
the nadir point (i.e., r = 1.01), the final population always converges to a small region

Figure 28: Obtained solution sets for the three-objective normalized Minus-DTLZ1 with
r = 1.01 (top: population size 15, bottom: population size 50).

Figure 29: Obtained solution sets for the three-objective normalized Minus-DTLZ1 with
the suggested reference point (top: population size 15 and r = 1.25, bottom: population
size 50 and r = 1.125).
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Figure 30: Obtained solution sets for the three-objective normalized Minus-DTLZ1 with
r = 2.0 (top: population size 15, bottom: population size 50).

of the Pareto front in Figure 28. When the reference point is specified by the proposed
method in Figure 29, well-distributed solutions are obtained. Our experimental results
in Figures 28-30 show that the performance of SMS-EMOA on multi-objective problems
with inverted triangular Pareto fronts strongly depends on the reference point spec-
ification. Only when the reference point is appropriately specified, well-distributed
solutions over the entire Pareto front are obtained.

We also apply SMS-EMOA to the five-objective normalized DTLZ1 and Minus-
DTLZ1. The population size is specified as 50. The suggested reference point for this
setting (i.e., m = 5 and µ = 50) is r = 1.333. Experimental results are shown in Figure
31 and Figure 32. When the reference point is slightly worse than the nadir point (i.e.,
r = 1.01), good results are not obtained for these test problems as shown in the top five
results in each figure. When the reference point is specified by the proposed method
(i.e., r = 1.333), good results are obtained as shown in the middle five results in each
figure. When the reference point is far away from the Pareto front (i.e., r = 2.0), good
solution sets are obtained for DTLZ1 in the bottom five results of Figure 31. This is
because DTLZ1 has a triangular Pareto front. However, in the application of SMS-
EMOA to Minus-DTLZ1, most solutions are around the sides of the Pareto front (i.e.,
at least one objective value is 0 or 1). Many solutions are not obtained inside the Pareto
front (whereas this is not very clear in the bottom five results in Figure 32).
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Figure 31: Experimental results on the five-objective normalized DTLZ1 with the pop-
ulation size 50 (top: r = 1.01, middle: r = 1.333, bottom: r = 2.0).
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Figure 32: Experimental results on the five-objective normalized Minus-DTLZ1 with
the population size 50 (top: r = 1.01, middle: r = 1.333, bottom: r = 2.0).

6 Concluding Remarks

In this paper, we discussed the reference point specification in hypervolume calcula-
tion for fair performance comparison of EMO algorithms. First, we demonstrated that
the optimal distribution of solutions for hypervolume maximization strongly depends
on the location of the reference point except for multi-objective problems with triangu-
lar Pareto fronts such as DTLZ1-4 and WFG4-9. This means that hypervolume-based
performance comparison results strongly depend on the location of the reference point.
It was shown through computational experiments that a slightly worse reference point
than the nadir point is not always appropriate especially for the case of many-objective
problems and/or small population size. It was also shown that a much worse ref-
erence point, which is far away from the nadir point, is not appropriate except for
multi-objective problems with triangular Pareto fronts. Based on the theoretical anal-
ysis of the optimal distribution of solutions for hypervolume maximization, we pro-
posed a reference point specification method. The proposed method calculates the lo-
cation of the reference point based on the number of solutions (i.e., population size)
and the number of objectives. In the proposed method, the distance between the refer-
ence point and the nadir point increases with the increase in the number of objectives
and the decrease in the number of solutions (i.e., it increases with the increase in the
distance between adjacent solutions). Our experimental results showed that an appro-
priate reference point can be specified by the proposed method for multi-objective and
many-objective problems with linear triangular and linear inverted triangular Pareto
fronts. It was also shown that the reference point specified by the proposed method is
more appropriate for other test problems than a slightly or much worse reference point.

Since the proposed method was derived from the theoretical analysis of the opti-
mal distribution of solutions for two-objective problems with linear Pareto fronts, the
specified reference point is not necessarily appropriate for multi-objective problems
with nonlinear Pareto fronts. Modification of the proposed method for nonlinear Pareto
fronts is an interesting future research topic. Since the proposed method was derived
for fair performance comparison where the true Pareto front is assumed to be known,
the specified reference point is not necessarily appropriate in hypervolume-based EMO
algorithms where the ideal and nadir points are estimated from the current population.
Modification of the proposed method for hypervolume-based EMO algorithms is also
an interesting future research topic. Especially, on-line adaptation of the reference point
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seems to be a promising future research direction.
In this paper, we discussed the reference point specification in hypervolume calcu-

lation using the optimal distribution of solutions for hypervolume maximization. This
approach (i.e., use of the optimal distribution of solutions) applies to the analysis of
other performance indicators (Ishibuchi et al. (2018)). Comparison of performance in-
dicators using the optimal distribution of solutions for each indicator is an important
future research direction for their further understanding and fair performance compar-
ison of EMO algorithms.

In this paper, we implicitly assumed that the size of each solution set to be com-
pared was the same. That is, the number of non-dominated solutions obtained by each
EMO algorithm was the same. However, this is not always the case. As demonstrated
in Ishibuchi et al. (2016), an appropriate population size for each EMO algorithm is dif-
ferent. As a result, performance comparison results of EMO algorithms depend on the
setting of the population size when they are compared under the same population size.
Moreover, even when they are compared under the same population size, the number
of obtained non-dominated solutions by each EMO algorithm may be different since
all the obtained solutions are not always non-dominated. Thus, fair performance com-
parison of EMO algorithms is difficult. In order to address this difficulty, two scenarios
were proposed in Ishibuchi et al. (2016) and used in Tanabe et al. (2017). One scenario is
the use of an unbounded archive where all non-dominated solutions among examined
ones are stored. Performance comparison is based on all non-dominated solutions in
the obtained archive by each run of an EMO algorithm. The other scenario is the selec-
tion of a pre-specified number of non-dominated solutions from the obtained archive.
By using several settings of the number of non-dominated solutions, performance com-
parison results may be unbiased if compared with the case of the common population
size.
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