

Specification of Genetic Search Directions in Cellular
Multi-objective Genetic Algorithms

Tadahiko Murata 1, Hisao Ishibuchi 2 and Mitsuo Gen 1

1 Department of Industrial and Information Systems Engineering,
Ashikaga Institute of Technology,

268 Omae-cho, Ashikaga 326-8558, Japan
{murata, gen}@ashitech.ac.jp

2 Department of Industrial Engineering, Osaka Prefecture University,
1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan

hisaoi@ie.osakafu-u.ac.jp

Abstract. When we try to implement a multi-objective genetic algorithm
(MOGA) with variable weights for finding a set of Pareto optimal solutions,
one difficulty lies in determining appropriate search directions for genetic
search. In our MOGA, a weight value for each objective in a scalar fitness
function was randomly specified. Based on the fitness function with the
randomly specified weight values, a pair of parent solutions are selected for
generating a new solution by genetic operations. In order to find a variety of
Pareto optimal solutions of a multi-objective optimization problem, weight
vectors should be distributed uniformly on the Pareto optimal surface. In this
paper, we propose a proportional weight specification method for our MOGA
and its variants. We apply the proposed weight specification method to our
MOGA and a cellular MOGA for examining its effect on their search ability.

1 Introduction

Genetic algorithms have been successfully applied to various optimization problems
[1]. The extension of GAs to multi-objective optimization was proposed in several
manners (for example, Schaffer [2], Kursawe [3], Horn et al. [4], Fonseca & Fleming
[5], Murata & Ishibuchi [6], Zitzler & Thiele [7]). The aim of these algorithms is to
find a set of Pareto-optimal solutions of a multi-objective optimization problem.
Another issue in multi-objective optimization is to select a single final solution from
Pareto-optimal solutions. Many studies on multi-objective GAs did not address this
issue because the selection totally depends on the decision maker’s preference. In this
paper, we also concentrate our attention on the search for finding a set of Pareto-
optimal solutions.

In this paper, we try to improve the search ability of our multi-objective genetic
algorithm (MOGA) in [6] and its variants (i.e., extensions of our MOGA). Fig. 1
shows some extended algorithms in our previous studies [8-10]. By hybridizing our
MOGA with a local search procedure, we have already extended it to a multi-

objective genetic local search algorithm (MOGLS [8]). We have also extended our
MOGA to a cellular multi-objective genetic algorithm (C-MOGA [9]) by introducing
a cellular structure. We have employed a local search procedure and a cellular
structure in a cellular MOGLS [10]. Furthermore we have extended the cellular
algorithms by introducing a relocation procedure (i.e., a kind of immigration) in [10].
Each individual is relocated to a cell at every generation based on the values of
multiple objectives (i.e., the location in the multi-dimensional objective space). Those
extended algorithms, which are based on the cellular structure and the immigration
procedure, are referred to as Cellular Immigrative (“CI-”) algorithms in Fig. 1.

CI-MOGLS

Local Search

Cellular structure

Immigration

CI-MOGA

C-MOGLSC-MOGA

MOGLSMOGA

Fig. 1. Extensions of our MOGA by introducing local search, cellular structures and
immigration procedures

When we try to implement our MOGA and its variants with variable weights, one
difficulty lies in determining appropriate search directions for genetic search. In those
algorithms, the weight value for each objective in a scalar fitness function is randomly
specified. Based on the scalar fitness function with the randomly specified weight
values, a pair of parent solutions are selected for generating a new solution by genetic
operations. In order to find a variety of Pareto optimal solutions of a multi-objective
optimization problem, a proportional weight specification method is more desirable
than the random specification method. In this paper, we propose a proportional weight
specification method for our MOGA and its variants. We apply the proposed weight
specification method to our MOGA and a cellular MOGA for examining its effect on
their search ability.

The concept of cellular genetic algorithms was proposed by Whitley [11]. In
cellular genetic algorithms, each individual (i.e. a chromosome) resides in a cell of a
spatially structured space. Genetic operations for generating new individuals are
locally performed in the neighborhood of each cell. While the term “cellular genetic
algorithm” was introduced by Whitley, such algorithms had already been proposed by
Manderik & Spiessens [12]. A similar concept was also studied in evolutionary
ecology in the framework of “structured demes” (Wilson [13], Dugatkin &
Mesterton-Gibbons [14]). The effect of spatial structures on the evolution of
cooperative behavior has also been examined in many studies (e.g., Nowak & May
[15], Wilson et al. [16], Oliphant [17], Grim [18], and Ishibuchi et al. [19]) where
each individual was located in a cell of single-dimensional or two-dimensional grid-
worlds. The concept for generating a grid world on an n-objective space is also
employed in the Pareto Archived Evolution Strategy (PAES) [20], where each

individual is located in a grid on the objective space. The PAES employs a grid world
in order to avoid introducing a niche size in the algorithm.

2 Multi-objective Optimization

Let us consider the following multi-objective optimization problem with n objectives:
Maximize)(1 xf ,)(2 xf , ...,)(xnf , (1)

where)(1 ⋅f ,)(2 ⋅f , ...,)(⋅nf are n objectives. When the following inequalities hold
between two solutions x and y, the solution y is said to dominate the solution x:

)()(: yx ii ffi ≤∀ and)()(: yx jj ffj <∃ . (2)
If a solution is not dominated by any other solutions of the multi-objective
optimization problem, that solution is said to be a Pareto-optimal solution. The task of
multi-objective algorithms in this paper is not to select a single final solution but to
find all Pareto-optimal solutions of the multi-objective optimization problem in (1).
When we use heuristic search algorithms such as taboo search, simulated annealing,
and genetic algorithms for finding Pareto-optimal solutions, we usually can not
confirm the optimality of obtained solutions. We only know that each of the obtained
solutions is not dominated by any other solutions examined during the execution of
those algorithms. Therefore obtained solutions by heuristic algorithms are referred to
as “nondominated” solutions. For a large-scale multi-objective optimization problem,
it is impossible to find all Pareto-optimal solutions. Thus our task is to find many
near-optimal nondominated solutions in a practically acceptable computational time.
The performance of different multi-objective algorithms is compared based on several
quality measures of obtained nondominated solutions.

3 Multi-objective Genetic Algorithms (MOGA)

In this section, we explain our MOGA [6], which is the basic algorithm of the C-
MOGA (See Fig. 1). In our MOGA, the weighted sum of the n objectives is used as a
fitness function:

)()()()(2211 xxxx nn fwfwfwf +++= K , (3)
where nww ,,1 K are nonnegative weights for the n objectives, which satisfy the
following relations:

0≥iw for ni ,,2,1 K= , (4)

121 =+++ nwww L . (5)
This fitness function is utilized when a pair of parent solutions are selected for
generating a new solution by crossover and mutation. One characteristic feature of our

MOGA is to randomly specify weight values whenever a pair of parent solutions are
selected. That is, each selection (i.e., the selection of two parents) is performed based
on a different weight vector. This means that each of newly generated solutions by the
genetic operations has its own weight vector. The other characteristic feature of our
MOGA is preserving all nondominated solutions which are obtained during the
execution of the algorithm. We describe these characteristic features in the following
subsections.

3.1 Selection Operation

When a pair of parent solutions are to be selected from a current population in a
selection operation for generating an offspring by genetic operations, first the n
weight values (,, 21 ww nw,K) are randomly specified as follows:

)/(1 nii randomrandomrandomw ++= L , ni ,,2,1 K= , (6)
where irandom is a nonnegative random real number. For example, when N pairs of
parent solutions are selected for generating a new population, N different weight
vectors are specified by (6). This means that N search directions are utilized in a
single generation. In other words, each selection (i.e., the selection of two parents) is
governed by a different fitness function.

3.2 Elitist Strategy

Our MOGA separately stores two different sets of solutions: a current population and
a tentative set of nondominated solutions. After genetic operations are applied to the
current population, it is replaced with newly generated solutions. At the same time,
the tentative set of nondominated solutions is updated. That is, if a newly generated
solution is not dominated by any other solutions in the current population and the
tentative set of nondominated solutions, this solution is added to the tentative set.
Then all solutions dominated by the added one are removed from the tentative set. In
this manner, the tentative set of nondominated solutions is updated at every
generation in our MOGA.
 From the tentative set of nondominated solutions, a few solutions are randomly
selected and added to the current population (see Fig. 2). The randomly selected
nondominated solutions may be viewed as elite solutions because they are added to
the current population with no modification.
 When a multi-objective optimization problem has a non-convex Pareto front,
weighted sum approaches with constant weights fail to find its entire Pareto solutions.
This is because those algorithms try to find a single optimal solution with respect to
the fixed weights by their single trial. Our approach remedies such a difficulty by
using variable weights and storing the tentative set of nondominated solutions. This
set is updated by examining the Pareto optimality of every solution generated by
genetic operations during the execution of the algorithm. It was shown in [6, 8] that
our approach found nondominated solutions on a non-convex Pareto front of a two-
objective continuous optimization problem. In [6, 8], our approach was also applied to
two-objective flowshop scheduling problems with non-convex Pareto fronts.

Elite
solutions

Genetic
operations

Current
population

 Update

Non-dominated
solutions

Next
population

 Update

Non-dominated
solutions

Fig. 2. Illustration of the elitist strategy in the MOGA

3.3 Algorithm

Let us denote the population size by popN . We also denote the number of
nondominated solutions added to the current population by eliteN (i.e., eliteN is the
number of elite solutions, see Fig. 2). Using these notations, our MOGA can be
written as follows.

Step 0) Initialization: Randomly generate an initial population of popN solutions.
Step 1) Evaluation: Calculate the values of the n objectives for each solution in the

current population. Then update the tentative set of nondominated solutions.
Step 2) Selection: Repeat the following procedures to select (elitepop NN −) pairs of

parent solutions.
a) Randomly specify the weight values 1w , nww ,,2 K in the fitness

function (3) by (6).
b) According to the following selection probability)(xP , select a pair of

parent solutions from the current population Ψ .

∑
Ψ∈

Ψ−
Ψ−=

y
y

xx
)}()({

)()()(
min

min
ff

ffP , (7)

where)(min Ψf is the minimum fitness value in the current population
Ψ .

Step 3) Crossover and Mutation: Apply a crossover operator to each of the selected
(elitepop NN −) pairs of parent solutions. A new solution is generated from

each pair of parent solutions. Then apply a mutation operator to the
generated new solutions.

Step 4) Elitist Strategy: Randomly select eliteN solutions from the tentative set of
nondominated solutions, and add the selected eliteN solutions to the
(elitepop NN −) solutions generated in Step 3 to construct a population of

popN solutions.
Step 5) Termination Test: If a prespecified stopping condition is satisfied, end the

algorithm. Otherwise, return to Step 1.

4 Cellular Algorithms

4.1 Relation between Cell Location and Weight Vector

In cellular algorithms, each individual (i.e. a solution) resides in a cell in a spatially
structured space (e.g., two-dimensional grid-world). For utilizing a cellular structure
in our MOGA, we assign a different weight vector to each cell. For our n-objective
optimization problem, cells are structured in an n-objective weight space. Fig. 3
shows an example of structured cells for a two-dimensional optimization problem
where the two weights 1w and 2w are used for the calculation of the fitness function

)(xf as)()()(2211 xxx fwfwf += . In this figure, the population size is eleven
because an individual exists in each cell. As shown in Fig. 3, the location of each cell
corresponds to its weight vector. In order to allocate cells on uniformly distributed
weight vectors, we generate weight vectors systematically (not randomly). For
example, weight vectors in Fig. 3 are (1.0, 0.0), (0.9, 0.1), ..., (0.0, 1.0).

As shown in Fig. 3, we can easily generate uniform weight vectors on the two-
dimensional weight space. In order to generate uniformly distributed weight vectors
for multi-objective optimization problems with three or more objectives, we propose a
weight specification method on an n-dimensional grid world. Let us consider weight
vectors satisfying the following conditions.

1
2

3
4

5
6

7
8

9
10

0

1.0

1.0

11

1

2w

Fig. 3. Location of each cell in the two-dimensional weight space

0

(1, 0, 3)

(0, 1, 3)

(0, 2, 2)

(0, 3, 1)
(1, 3, 0)

(4, 0, 0)

(3, 1, 0)

(3, 0, 1)
(2, 0, 2)

(1, 1, 2)

(2, 2, 0)
(1, 2, 1)

(0, 0, 4)

(0, 4, 0)

(2, 1, 1)

1w

2w

3w

Fig. 4. Location of each cell in the three-dimensional weight space by the proposed method

dwww n =+++ L21 , (8)

}...,,2,1,0{ dwi ∈ . (9)

These conditions show that weight vectors are generated by combining n non-
negative integers with the sum of d. In our cellular algorithm, a cell is located on
every weight vector satisfying the above conditions. Thus the number of cells (i.e., the
population size) is equal to the total number of weight vectors satisfying the above
conditions. This means that the population size is determined by d. For example,
when we specify d as 10=d in (8) for the case of two-objective problems, we will
have eleven weight vectors (10, 0), (9, 1), ..., (0, 10). Each of these weight vectors has
the same direction as the corresponding weight vector in Fig. 3.
 This weight specification method is easily extended to the case with three or more
objectives. For example, Fig. 4 shows an example of the three-objective case where d
is specified as 4=d . From Fig. 4, we can observe that the value of d can be
considered as the number of partitions of the edge between two extreme points (e.g.,
(0,4,0) and (4,0,0)). By this weight specification method, we can uniformly distribute
cells on the n-dimensional space. We can calculate the number of cells generated for
n-objective problems as follows:

)(1)(2 dOddN ≈+= , (10)

∑∑ == ≈++=+== d
i

d
i dOiiiiNdN 0

2
0 23)(2/)2)(1()1()()(, (11)

∑ ∑= = ≈++== d
i

d
i dOiiiNdN 0 0

3
34)(2/)2)(1()()(, (12)

M M M
)()()(1

0 1
−

= − ≈= ∑ nd
i nn dOiNdN , (13)

where)(dN j , nj ...,,2= are the number of generated cells for j-objective problems.

We can see from the above equations that the number of cells can be calculated
recursively. We also see that the order of the number of cells is 1−nd for n-objective
problems. Since the number of cells is determined from the value of d, the population
size of our cellular algorithm can be specified by d. In other words, we should specify
the value of d according to an appropriate population size.

4.2 Definition of Neighborhood

We can arbitrary define a neighborhood structure among cells. That is, we can utilize
any distance between cells in the n-dimensional space in which cells are structured.
For example, the Euclid distance can be used for measuring the distance between cells.
In this paper, we use the Manhattan distance. That is, we define the distance between
a cell with the weight vector)...,,,(21 nwww=w and another cell with

)...,,,(21 nvvv=v as follows:

∑
=

−=
n

i
ii vwDistance

1
||),(vw . (14)

We define the neighborhood of the weight vector w as

}),(|{)(DDistanceN ≤= vwvw . (15)

For example, when 2=D in Fig. 5, the cell with the weight vector (2,1,1) has six
neighboring cells (i.e., shaded cells, (1,2,1), (1,1,2), (2,0,2), (3,0,1), (3,1,0), and
(2,2,0) in Fig. 4) and that cell itself in its neighborhood. As shown in this example, the
neighborhood of each cell is defined by its nearby cells within the distance D
including that cell itself.

4.3 Selection

Two parents for generating a new individual in a cell are selected from its
neighborhood. When 2=D in Fig. 5, the parent solutions for the cell on (2,1,1) can
be selected from that cell and its six neighbors. It is noted that the fitness value of
each neighbor is recalculated based on the weight vector assigned to the cell for
which a new individual is generated. That is, each individual is differently evaluated
by this recalculation procedure of the fitness function in the selection for each cell.
This corresponds to the selection procedure of our original MOGA where the
selection of each pair of parents was governed by a different weight vector (see Step 2
in Subsection 3.3).
 It is noted that the modification of the normalization condition from (5) to (8) has
no effect on the selection procedure (Step 2 (a) in Subsection 3.3). Let w′ , which
satisfies the normalization condition (8), be a weight vector generated by the proposed
weight specification method. A weight vector),...,,(21 nwww=w satisfying the
normalization condition (5) can be easily obtained from the relation

),...,,(21 ndwdwdwd =⋅=′ ww . Let us denote our scalar fitness function with the
weight vectors w and w′ by),(wxf and),(wx ′f , respectively, for a solution x in
the current population. Since our scalar fitness function in linear with respect to
weight values, we have =′),(wxf),(wxfd ⋅ and =′Ψ),(min wf),(min wΨ⋅ fd in
the selection procedure defined by (7). Thus the same selection probability is obtained
from w and w′ for each solution x in the current population Ψ . This means that the
modification of the normalization condition from (5) to (8) has no effect on the
selection procedure.

4.4 Other Genetic Opearations

In the previous Subsections 4.1 to 4.3, we show the characteristic features in our C-
MOGA. As for other genetic operations such as crossover, mutation, and elite
preserve strategy, we can employ the same operations which can be used in the
MOGA. That is, the same crossover and mutation operations can be employed for the
C-MOGA. As shown in Fig. 2, some solutions are selected from the tentative set of
nondominated solutions, and add them as elite solutions to the current population
randomly.

5 Computer Simulations

5.1 Test Problems

We applied the C-MOGA with the proposed weight specification method to flowshop
scheduling problems. Flowshop scheduling is one of the most well-known scheduling
problems. Since Johnson’s work [21], various scheduling criteria have been
considered. Among them are makespan, maximum tardiness, total tardiness, and total
flowtime. Several researchers extended single-objective flowshop scheduling
problems to multi-objective problems (see, for example, Daniels & Chambers [22]).

In this paper, we use the makespan and the total tardiness as two scheduling
criteria in our two-objective flowshop scheduling problems. The makespan is the
maximum completion time of all jobs to be processed. The total tardiness is the total
overdue of all jobs. We also employ the total flowtime together with these two criteria
in our three-objective flowshop scheduling problems. The total flowtime is the total
completion time of all jobs. Let)(1 xg ,)(2 xg , and)(3 xg be the makespan, the total
tardiness, and the total flowtime, respectively. Since these scheduling criteria are to be
minimized, we specify the three objectives)(1 xf ,)(2 xf and)(3 xf of our flowshop
scheduling as =)(1 xf)(1 xg− ,)()(22 xx gf −= and)()(33 xx gf −= .

Since flowshop scheduling is to find a job permutation that optimizes the given
objectives, a sequence of jobs is handled as an individual (i.e., as a string) in our
algorithm. As test problems, we generated ten 20-job and 10-machine flowshop
scheduling problems with two and three objectives. The processing time of each job
on each machine was specified as a random integer in the interval [1, 99], and the

duedate of each job was defined randomly. Our task is to find a set of Pareto-optimal
solutions of each test problem.

5.2 Quality Measures of Solution Sets

Since multi-objective algorithms find a set of nondominated solutions with respect to
multiple objectives (not a single final solution with respect to a single objective), the
comparison between different multi-objective algorithms is not easy. For this purpose,
we use the following measures for evaluating the quality of a solution set obtained by
each algorithm.

1) The number of obtained nondominated solutions

The number of nondominated solutions obtained by each algorithm is a measure to
evaluate the variety of the solution set.

2) The number of solutions that are not dominated by other solution sets
For comparing different solution sets with one another, we examine whether each
solution is dominated by any other solutions in other sets. If a solution is
dominated by another solution, we remove that solution. In this manner, we
remove solutions dominated by other solution sets. The number of remaining
solutions in each solution set is a measure for evaluating its relative quality with
respect to the other solution sets.

3) Set quality measure proposed by Esbensen
Esbensen [23] proposed an evaluation method of the quality of a solution set. Let
us denote a solution set by Ω . The best solution *x for a given weight vector

),...,,(21 nwww=w can be chosen from Ω for the n-objective optimization
problem as follows:

)()(*)(*)(2211 xxxx nn fwfwfwf +++= L
}|)()()(max{ 2211 Ω∈+++= xxxx nn fwfwfw L . (16)

Esbensen [23] proposed an idea of measuring the quality of the solution set Ω by
calculating the expected value of *)(xf over possible weight vectors. In this paper,
we calculate the expected value of *)(xf by randomly generating 10,000 weight
vectors by (6). That is, the quality of the solution set Ω is calculated as follows:

∑
=

Ω∈+++=Ω
10000

1
2211 }|)()()(max{

10000
1)(

i
n

i
n

ii fwfwfwq xxxx L , (17)

where)(Ωq is the quality of the solution set Ω and)...,,,(21

i
n

iii www=w ,
10000,,2,1 K=i are randomly specified weight vectors.

5.3 Simulation Results on Two-Objective Flowshop Scheduling Problems

In our computer simulations, we applied three algorithms (i.e., the MOGA with

random weights, the MOGA with weights generated by the proposed method, and the
C-MOGA) to test problems in order to show the effectiveness of the weight
specification method and compare the search ability of the C-MOGA with that of the
MOGAs. We employed the following parameter specifications:

Crossover: Two-point order crossover (crossover rate: 0.8),
Mutation: Shift mutation (mutation rate: 0.3),
Number of elite solutions: 3elite =N ,
Neighborhood structure for the local search: Shift,
Stopping condition: Examination of 50,000 solutions.

We used the above stopping condition in order to compare the three algorithms
under the same computation load. In a single trial of each algorithm, 50,000 solutions
were examined. The parameter d, which determines the population size, was specified
as 100=d for two-objective problems. This means that the population size was 101
(see the equation (10)). The weight vectors of 101 cells were =),(21 ww (100, 0), (99,
1), ..., (0, 100). For the C-MOGA, we specified the value of D as 20=D . Therefore
parent solutions for each cell are selected from neighboring cells within the
Manhattan distance 20.

We examined the effect of the introduction of the weight specification method and
the cellular structure (i.e., the locally restricted genetic operations) in this experiment.
We obtained a set of nondominated solutions by each algorithm. In Table 1, we
summarize the average results over 100 trials for each algorithm (i.e. 10 trials for each
of 10 test problems). In this table, “A” is the number of nondominated solutions
obtained by each algorithm, and “B” is the number of solutions that are not dominated
by other solutions obtained by the other algorithm. The ratio of these two numbers is
shown in the column of B/A. “Quality” is the set quality measure of Esbensen, and
“SD of Q” shows the standard deviation of the value of Quality. In the calculation of
“SD of Q”, we averaged the standard deviation for each of ten test problems.

From Table 1, we can see that most solutions obtained by the MOGA with random
weights are dominated by solutions obtained by the MOGA with the proposed method
or the C-MOGA. Thus we can conclude that the weight specification method
proposed in this paper is effective in the MOGA and the C-MOGA. We can also
observe that the average and the standard deviation of the Quality value for the C-
MOGA are better than those for the MOGAs.

Next, we examined the specification of the parameter D in the C-MOGA. Table 2
shows the average results over 100 trials for each specification of the neighborhood
structure (i.e., each specification of D) in the C-MOGA. In this table, the C-MOGA
with 200=D is the MOGA with the proposed weight specification method. When

200=D , all solutions in the current population are considered as neighbors of every
cell in the selection procedure. From Table 2, we can observe that the restriction of
the genetic operations within some neighboring cells is effective for improving the
ability to find good sets of nondominated solutions.

Table 1. Comparison of MOGA with C-MOGA (Two-Objective)
 A B B/A Quality SD of Q

MOGA (random) 14.6 2.8 0.200 -1063.4 48.4
MOGA (proposed) 17.1 10.8 0.648 -967.4 15.2
C-MOGA (20=D) 17.5 9.3 0.536 -963.6 10.6

A: The number of nondominated solutions of the method.
B: The number of nondominated solutions that are not dominated by those obtained by the

other method.
Quality: Set quality measure of Esbensen.
SD of Q: Standard deviation of Quality.

Table 2. Effect of the choice of D in C-MOGA (Two-Objective)
D 4 10 20 50 200

Quality -976.4 -968.6 -963.6 -966.0 -967.4
SD of Q 17.9 14.3 10.6 12.9 15.2

Table 3. Comparison of MOGA with C-MOGA (Three-Objective)
 A B B/A Quality SD of Q

MOGA 44.8 8.4 0.190 -8004.7 65.54
C-MOGA 61.2 63.8 0.966 -7850.9 42.13

Table 4. Effect of the choice of d in C-MOGA (Three-Objective)
D 10 11 12 13 14

Poplation Size 66 78 81 105 120
of Generations 758 642 618 477 417

Quality -7871.0 -7866.7 -7852.9 -7850.9 -7864.7

5.4 Simulation Results on Three-Objective Flowshop Scheduling Problems

We also applied the C-MOGA and the MOGA with random weights to three-
objective test problems. We used the same parameter specifications as in the previous
subsection except for the population size. Since we defined 13=d for the C-MOGA,
the population size was 105 from the equation (11). In order to compare the two
algorithms under the same computation load, we specified the population size in the
MOGA as 105. Simulation results are summarized in Table 3 and Table 4. From
Table 3, we can see that the performance of the C-MOGA is better than that of the
MOGA. Table 4 shows the effect of the choice of a value of d on the performance of
the C-MOGA. The second row shows the population size calculated from the value of
d. It is noted that each algorithm with a different value of d was terminated when the
number of examined solutions exceeded the termination condition. The number of
generations is shown in the third row of Table 4 for each specification of d. From
Table 4, we can see that the best quality value was obtained by the C-MOGA with

13=d .

6 Conclusion

In this paper, we proposed a weight specification method for the cellular multi-
objective genetic algorithm (C-MOGA), which is an extension of a multi-objective
genetic algorithm (MOGA) in our former study (Murata & Ishibuchi [6]). In the
proposed C-MOGA, each individual is located in a cell with a different weight vector.
This weight vector governs the selection operation. The selection is performed in the
neighborhood of each cell. The effectiveness of the C-MOGA with the proposed
weight specification method was demonstrated by computer simulations on two- and
three-objective flowshop scheduling problems.

References
1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Reading,

MA: Addison-Wesley (1989).
2. Schaffer, J.D.: Multi-objective optimization with vector evaluated genetic algorithms. Proc. of

1st Int’l Conf. on Genetic Algorithms (1985) 93-100.
3. Kursawe, F.: A variant of evolution strategies for vector optimization. In H.-P.Schwefel and

R.Männer (Eds.), Parallel Problem Solving from Nature, Springer-Verlag, Berlin (1991) 193-
197.

4. Horn, J., Nafpliotis, N. and Goldberg, D.E.: A niched Pareto genetic algorithm for multi-
objective optimization. Proc. of 1st IEEE Int’l Conf. on Evolutionary Computation (1994) 82-
87.

5. Fonseca, C. M. and Fleming, P. J.: An overview of evolutionary algorithms in multiobjective
optimization, Evolutionary Computation 3 (1995) 1-16.

6. Murata, T. and Ishibuchi, H.: Multi-objective genetic algorithm and its applications to flowshop
scheduling. International Journal of Computers and Engineering 30, 4 (1996) 957-968.

7. Zitzler, E. and Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study
and the strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3 (1999) 257-271.

8. Ishibuchi, H. and Murata, T.: A multi-objective genetic local search algorithms and its
application to flowshop scheduling. IEEE Trans. on System, Man, and Cybernetics, Part C 28
(1998) 392-403.

9. Murata, T. and Gen, M.: Cellular genetic algorithm for multi-objective optimization. Proc. of
4th Asian Fuzzy System Symposium (2000) 538-542.

10. Murata, T., Ishibuchi, H., and Gen, M.: Cellular genetic local search for multi-objective
optimization. Proc. of the Genetic and Evolutionary Computation Conference 2000 (2000) 307-
314.

11. Whitley, D.: Cellular Genetic Algorithms. Proc. of 5th Int’l Conf. on Genetic Algorithms (1993)
658.

12. Manderick, B. and Spiessens, P.: Fine-grained parallel genetic algorithms. Proc. of 3rd Int’l
Conf. on Genetic Algorithms (1989) 428-433.

13. Wilson, D. S.: Structured demes and the evolution of group-advantageous traits. The American
Naturalist 111 (1977) 157-185.

14. Dugatkin, L. A. and Mesterton-Gibbons, M.: Cooperation among unrelated individuals:
Reciprocal altruism, by-product mutualism and group selection in fishes. BioSystems 37 (1996)
19-30.

15. Nowak, M. A. and May, M.: Evolutionary games and spatial chaos. Nature 359 (1992) 826-
859.

16. Wilson, D. S., Pollock, G. B., and Dugatkin, L. A.: Can altruism evolve in purely viscous
populations? Evolutionary Ecology 6 (1992) 331-341.

17. Oliphant, M.: Evolving cooperation in the non-iterated Prisoner’s Dilemma: The importance of
spatial organization. in R. A. Brooks and P. Maes (Eds.), Artificial Life IV, MIT Press,
Cambridge (1994) 349-352.

18. Grim, P.: Spatialization and greater generosity in the stochastic Prisoner’s Dilemma.
BioSystems 37 (1996) 3-17.

19. Ishibuchi, H., Nakari, T., and Nakashima T.: Evolution of Strategies in Spatial IPD Games with
Structured Demes, Proc. of the Genetic and Evolutionary Computation Conference 2000 (2000).

20. Knowles, J.D., and Corne, D.W.: Approximating the nondominated front using the Pareto
Archived Evolution Strategy, Evolutionary Computation (MIT Press), 8, 2 (2000) 149-172.

21. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included.
Naval Research Logistics Quarterly 1 (1954) 61-68.

22. Daniels, R.L. and Chambers, R.J.: Multiobjective flow-shop scheduling. Naval Research
Logistics 37 (1990) 981-995.

23. Esbensen, H.: Defining solution set quality. Memorandum (No.UCB/ERL M96/1, Electric
Research Laboratory, College of Engineering, Univ. of California, Berkeley, USA, Jan., 1996).

	D�

